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Domestic hot water heaters are considered to be easily integrated as flexible
loads for demand response. While literature grows on reproducible simulation
and lab tests, real-world implementation in field tests considering state
estimation and demand prediction-based model predictive control approaches
is rare. This work reports the findings of a field test with 16 autonomous smart
domestic hot water heaters. The heaters were equipped with a retrofittable
sensor/actuator setup and a real-time price-driven model predictive control
unit, which covers state estimation, demand prediction, and optimization
of switching times. With the introduction of generic performance indicators
(specific costs and thermal efficiency), the results achieved in the field are
compared by simulations to standard control modes (instantaneous heating,
hysteresis, night-only switching). To evaluate how model predictive control
performance depends on the user demand prediction and state estimation
accuracy, simulations assuming perfect predictions and state estimations are
conducted based on the data measured in the field. Results prove the feasible
benefit of RTP-based model predictive control in the field compared to a
hysteresis-based standard control regarding cost reduction and efficiency
increase but show a strong dependency on the degree of utilization.

KEYWORDS

domestic hot water heaters, demand response, demand side management, model
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1 Introduction

Historically, research on model predictive control (MPC) of domestic hot water
heaters (DHWHs) for demand response (DR) followed a typical path. In the early
days, researchers focused on theoretical considerations and simulation, followed by proof
of concept studies in lab environments. In the last years, the first attempts to apply
DHWHs in the field have been published. Generally, residential field tests published cover
infrastructural and strategical issues (Shariatzadeh et al., 2015), technical and methodical
aspects (Barbato and Capone, 2014), and economic or social impacts and acceptance
(Darby and McKenna, 2012; Parrish et al., 2020). Although DHWHs are assumed to be
one of the most promising devices for DR in the residential sector (Shan et al., 2016), field
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tests and smart grid implementation do not focus on the DHWH
itself. Instead, DHWHs are mostly just seen as a specific form of
the more generic concept of a shiftable load. This becomes apparent
by the review of Kohlhepp et al. (2019) on field tests for residential
thermal energy storage and their flexibility for DR. In the following,
we discuss those field tests available in the literature that allow for an
analysis specifically addressing DHWHs.

Hammerstrom et al. (2007) investigated 50 retrofitted DHWHs
as grid-friendly appliances in the Pacific Northwest GridWise™
Testbed Demonstration Project. They switched off the appliances
whenever the frequency of the grid fell below 59.95Hz from the
nominal 60Hz used in the US. In a second approach of this project,
they operated DHWHs on a real-time price (RTP) market via
an automated control module considering participants’ comfort
settings (Hammerstrom et al., 2008). In the EcoGrid EU Project
(Aleixo et al., 2013), several DHWHs were simulated to show the
cost reduction potential. Chassin and Kiesling (2008) reported on
smart appliances including water heaters which were enabled to
automatically respond to price signals. Svalstedt and Löf (2017)
reported on the Smart Grid Gotland market test. DHWHs and
other electrical residential loads were remotely controlled according
to preset user comfort settings and according to special customer
retail prices. D’hulst et al. (2015) deployed 15 DHWH with a DR
control system in the LINEARproject, whereas user comfort settings
had to be met. Maximum and minimum water temperature settings
served as comfort requirements. A derived state of chargemodel and
an indirect demand estimation based on power measurements were
used to create flexibility.

In most field tests published, only incentives are used as input
parameters and the DHWH is often modeled as a black box. This
leads to aggregated results as a basis for scenario analysis whereas it
is not possible to trace back a certain behavior of the superordinated
energy system to a single DHWH or a single user. On the one
hand, the necessary simplifications of field tests and their missing
reproducibility compared to simulations and lab experiments are
a major disadvantage. On the other hand, field tests are absolutely
necessary to exploit the finding of simulations and lab experiments.
Field tests allow us to analyze the technically achievable potential of
MPC of DHWHs for DR.

Generally, published work of simulations and lab experiments
follow a similar structure, both are reproducible, thus, exhibiting
similar advantages. Various input parameters and assumptions can
be included: different DHWH models, the state or state estimation
of the DHWH, the knowledge or prediction of the user behavior,
and the choice of different incentives (Engelbrecht et al., 2021;
Heidari et al., 2021; Maltais and Gosselin, 2022). Based on this,
simulations or lab experiments can be performed multiple times
leading to a variety of results. These results can be evaluated
individually for different setups, e.g., depending on each storage or
demand. Additionally, the aforementioned reproducibility enables
sensitivity analyses. Aggregating the results may even enable
scenario studies on the behavior of multiple DHWHs within the
superordinated energy system.

For an overview of simulation studies and lab experiments
available in the literature, we refer, e.g., to the work of Kepplinger
(2018) and Engelbrecht et al. (2021). We shortly discuss some recent
publications to highlight typical shortcomings of purely simulation-
based studies. Peirelinck et al. (Peirelinck et al., 2020) investigated the

effect of pre-training a reinforcement learning agent for DHWHs
in a price-driven DR control scenario. Compared to hysteresis
control and MPC, the study showed that for a successful MPC
implementation, a higher system identification effort is necessary
compared to reinforcement learning approaches. On the other hand,
reinforcement learning suffers from the training time of the models.
The authors conclude that experimental tests have to be conducted
to certainly quantify the state estimation error. Heidari et al. (2021)
trained and compared several supervised learning methods for hot
water demand prediction. Based on data collected from six residential
homes, they tested the performance of a one-hour predictive control
of the DHWH in a simulation environment using a random forest
prediction model. Although the demand prediction is taken into
account, the error due to system estimation is neglected in this study.
Maltais and Gosselin (Maltais and Gosselin, 2022) proposed an MPC
forDHWHsusing amachine learningmodel to forecast user demand.
They investigated the effect of user prediction errors on the results
achieved. As the MPC assumed perfect system state knowledge, the
error due to state estimation was not considered.

Next to the summarized key findings, the literature also gives a
variety of insufficiently studied issues. Kohlhepp et al. (2019) state
that model predictive control (MPC) for DR of DHWH has not
been analyzed in field tests so far, although the potential of such a
combination is clearly there. Further investigations are necessary,
especially in combination with uncertainties. Patyn et al. (2018)
define state estimation as a key for future research. Furthermore,
no project with a special focus on DHWHs as appliances exist.
Especially a deeper look into distributed autonomous and use-
dependent control strategies as well as the technical challenges for
even retrofittable systems is lacking.

To summarize: despite the high relevance to the community, the
following research questions have not been answered so far.

• What is the technical-feasible potential of DHWHs for DR in
retrofit applications?
• What is the DR potential by MPC under real-world conditions

compared to standard modes of operation?
• What is the impact of errors due to user prediction and state

estimation on the cost reduction and thermal efficiency in a
practical achievable solution?

To answer these research questions, we combine the methods
developed and investigated in two of our prior publications
(Kepplinger et al., 2015; 2019) to derive and present our approach
of combining a long-term field test with a simulation study in
Section 2. In Section 3, we provide an analysis of the results gathered
in the field. Based on simulations, we compare with alternative
standardmodes of operation and analyze the impact of user demand
prediction and state estimation errors. Finally, we set our results into
a greater perspective in the conclusion in Section 4.

2 Materials and methods

2.1 General framework

The general framework of the study comprises a field test and
simulation studies as shown in Figure 1. As starting point, we
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FIGURE 1
General framework of the study presented. The study reports on a field test, which tested an MPC approach for DR of DHWHs. Details on the field test
are discussed in Section 2.2. Via simulations based on the data measured in the field, we mimic standard operation modes, namely, a hysteresis-based
mode (HYS), a night-only heating mode (NO), and an instantaneous heating system (IH), these are described in detail in Section 2.3. To evaluate the
impact of error due to state estimation and user prediction that has to be accounted for the real-world application of the field test, additional
simulations are conducted assuming perfect knowledge of the system state (KNN) and the future demand (OPT). The methods used are
described in Section 2.4. Based on the measurements and simulation results, we evaluate the degree of utilization (DoU - the fraction of daily energy
use relative to the total exploitable heat capacity), specific costs, and thermal efficiency to analyze the technically feasible potential of the MPC
approach in the field, the improvement compared to standard modes of operation, and the impact of prediction and estimation errors.

present the development of our real-world field test of an MPC-
based demand response approach for domestic hot water heaters
with respect to hardware (retrofittable controller with sensors
and actuators) and software (data handling, system identification,
state estimation, demand prediction, and optimization)
in Section 2.2.

We integrate the data recorded in the field test into simulations.
These simulations can be understood as idealized operation modes
of the DHWH. They use a subset of the data measured in the
field as disturbances (user demand, environment), systemproperties
(heat transfer characteristics, capacity, set point temperatures), and
the incentive (cost function). The simulation mimics the DHWH’s
behavior, but differs in mode of operation, and, thus, leads to a
differing output with respect to power consumption Wel(t) and
DHWH system state. For all the simulations, a single-layer bulk
model is used, where the system state is described by the average
temperature only.

As a first category of comparative studies, simulations of
the domestic hot water heaters under standard control strategies
(instantaneous heating (IH), hysteresis control (HYS), and night
tariff switching (NT)) are conducted (Section 2.3) to evaluate
savings and performance.

As a second category, to quantify the influence of model and
prediction errors on the savings achieved, the data collected is
also used in simulations of the MPC approach (Section 2.4). First,
considering perfect knowledge of the system state but predicting
the demand (KNN) similarly to the routines implemented in
the field. Second, considering perfect knowledge of the system

state and the future demand (OPT). An overview of the different
simulated operation modes and the assumptions associated is
given in Table 1.

By introducing suitable key performance indicators (specific
costs of electricity and thermal energy, thermal efficiency)
we evaluate the performance of the field test (Section 3.1),
compare it to standard operation modes (Section 3.2), and
analyze errors (Section 3.3). Therefore, we introduce quantities
and indicators for comparison. This approach combines real-
world field test data with simulations and makes their results
comparable.

2.2 Field test

In the Austrian Smart City Rheintal project (Eugster, 2016),
we cooperated with the local energy supplier illwerke vkw and
selected 16 homes with DHWHs to participate in the field test.
These households of varying sizes rely on resistive hot water heaters
for domestic hot water supply. The heaters were equipped with
measuring, computing, and switching units. The DHWHs selected
have a nominal volume of 120l or 150l and resistive heating elements
located at the bottom of the tank with power ratings ranging
from 1.9 kW to 2.5 kW. An overview of the metadata on the
DHWHs considered in the study is given in Table 2. In the case
of one flat, a change of tenants took place during the field test.
This is why, a single heater (Heater ID 13) has been used by two
different users (User IDs 13 and 14), and, thus, is listed separately.
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TABLE 1 Operation modes (real and simulated) considered for evaluation. In addition to the evaluation of the MPC mode during the field test,
simulations of five different operation modes are conducted. These are based on the same user behavior and pricing regime but reflect either standard
operation modes or idealized operation modes at different information statuses.

Name Operation mode Execution User demand prediction State estimation

MPC MPC Field Test k-Nearest Neighbors UTD tuni (Kepplinger et al., 2019)

HYS Hysteresis Control Simulation - -

NO Night-Only Control Simulation - -

IH Instantaneous Heating Simulation - -

KNN MPC Simulation k-Nearest Neighbors Perfect

OPT MPC Simulation Perfect Prediction Perfect

TABLE 2 User data evaluated in the field test. From left to right: User and heater ids; tank volume; set-point temperature; hysteresis temperature
difference; start date of the evaluation; end date of the evaluation. Note that one DHWH (#13) has been used two times in the evaluation by different
users (change of tenants) in the flat.

User DHWH V Tmax ΔThys Start date End date

ID ID (l) (°C) (K)

01 01 150 69 3 06.06.2017 18.06.2018

02 02 120 62 8 06.06.2017 18.06.2018

03 03 150 61 8 01.02.2018 18.06.2018

04 04 120 62 8 14.01.2018 05.04.2018

05 05 150 66 8 06.06.2017 18.06.2018

06 06 150 64 10 06.06.2017 18.06.2018

07 07 120 70 8 06.06.2017 24.01.2018

08 08 120 79 10 06.06.2017 18.06.2018

09 09 120 66 5 06.06.2017 24.01.2018

10 10 120 71 1 06.06.2017 07.05.2018

11 11 150 66 8 06.06.2017 18.06.2018

12 12 150 70 5 06.06.2017 18.06.2018

13 13 120 71 8 06.06.2017 21.12.2017

14 13 120 71 8 01.02.2018 05.06.2018

15 14 120 70 10 06.06.2017 07.06.2018

16 15 150 64 8 01.08.2017 24.02.2018

17 16 150 63 7 06.06.2017 09.01.2018

Prior to the field test, the DHWHs have been operated in the
night-only (NO) operation mode. A signal (ripple control or time
switch) activated the electrical power supply of the DHWH. For

the cases investigated, this release time window referring to off-
peak times was set from 10:30 p.m. to 06:00 a.m. by the distribution
system operator.
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FIGURE 2
Setup and main components of the hardware developed for the field
test. The hardware uses a Raspberry Pi for data acquisition (DAQ) and
to run the MPC algorithm. The embedded system comprises a GSM
module to receive electricity RTPs and store measurement data, an
uninterruptible power supply, sensors partly including A/D converters
to measure electric power consumption, water volume flow, as well as
several temperatures (inlet, outlet, thermal well, and environment). Via
a relay module the power supply of the DHWH can be interrupted.

2.2.1 Hardware
Each of the 16 DHWHs was equipped with in-house-built

hardware, as shown in Figure 2.This embedded systemwas designed
to handle the data acquisition (DAQ) of the relevant physical values,
receive a price signal via GSM, calculate the optimal switching times,
and control the electricity supply of the DHWH accordingly. The
choice of hardware was crucial as the goal was to develop a system
that is easy to retrofit and would allow for a completely autonomous
edge computing approach.

ARaspberry Pi 2Model B v1.1was connected to various sensors.
Water demand was measured using a volume flow meter with pulse
output. The electric energy consumption was measured using a
power meter. Four temperature sensors (thermocouples (TC), type
K with A/D converters) were installed: one at both, the inlet (Tin)
and outlet pipe (Tout) of the DHWH; at the immersion sleeve
(thermal well) protruding inside the tank (Ttw); at the outside of the
tank to measure the environment temperature (Tenv). Table 3 shows
relevant information (type, protocol, accuracy) on the measuring
devices used.

An uninterruptible power supply was installed to ensure
reliability. In the event of a power failure, it continues to supply
the RaspBerry Pi with power from a battery and, if necessary, shuts
down the system in a controlled way.

The DHWH is switched via a commercially available relay
(5V DC - 16A 250V AC) via the RasPiComm relay module
from Amerscon.

The Fona telephonemodule fromAdafruit with a corresponding
M2M data tariff was used to communicate with a data server to
receive the price signal and transmit the data collected for backup
and monitoring of the devices.

2.2.2 Control routine
The software deployed on the embedded systems manages the

individual tasks that are necessary for switching at optimal times.
An overview of the main processes and data streams is provided
in Figure 3. Following the approach of autonomous price-driven
optimal control as published by the authors in (Kepplinger et al.,
2015), an integer linear optimization problem minimizing the costs
for heating is solved. The implementation is based on a bulk model
of the heater constrained by a maximum and minimum average
temperature limit. To apply such an approach, themodel parameters
(overall heat transfer coefficient UA and thermal capacitance C)
and the current state of the system (average temperature in the
tank T) have to be estimated, and hot water demand (Qdem) to
be predicted. For the latter, the k-nearest neighbor algorithm on
the hot water demand data collected beforehand is used according
to the method the authors proposed in (Kepplinger et al., 2015).
For the former, the model parameters are identified based on
historic data, and the system state is estimated periodically (please
refer to our previous publication (Kepplinger et al., 2019) for more
details). In the following, all processes of the software developed are
discussed in detail.

2.2.3 Temperature compensation
Due to the unspecified accuracy of the temperature

measurement, eight systems consisting of a thermocouple and
an A/D converter were subjected to a temperature compensation
procedure. For this purpose, these were exposed to different
water temperatures in a heating bath and compared to reference
temperature measurements with a sensor of known accuracy
(±0.5 %± 0.5 K) and a resolution of 0.1K. A linear temperature
compensation curve was derived from the determined values
(analogous as in (Kepplinger et al., 2016)) showing a coefficient
of determination of R2 = 0.9993. The linear compensation function
is given by T = pslope ⋅Tmeasured +Toffset with a slope of pslope = 0.9759
and an offset of Toffset = 0.2299°C. This compensation is applied
during the process of data acquisition for all temperature
measurements (Ttw, Tin, Tout, Tenv).

2.2.4 Data acquisition
The data derived from the sensor measurements for the

temperatures (Tin, Tout, Ttw, Tenv), the hot water demand
(Q̇dem = V̇WρWcW(Tout −Tin)) and the electric power (Pel) is stored
directly on the SD card of the Raspberry Pi with a resolution of
1 minute. The constants cW (J/kg/K) and ρW (kg/m3) refer to the
water’s specific heat capacity and density, respectively. In the case of
temperature sensors, the average of all measured values occurring
in the current minute is saved. The sum of all occurring pulses per
minute is counted and stored for the volumetric flow (water) meter
and the electricity meter.

2.2.5 Model
For system identification, state estimation, and optimization,

the change in energy stored within the heater has to be described.
Therefore, we assume a uniform average temperature T̄. Then, the
transient energy balance for the DHWHbeing an open system reads

CdT̄
dt
= −Q̇dem (t) + Ẇel (t) −UA(T̄ (t) −T∞) . (1)
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TABLE 3 Sensor devices used in the field test, including information on measured quantities and variables, types, manufacturer, protocol, accuracy, and
references.

Device Variables Type Protocol/Unit Acc. Manufacturer.

Flow Meter V̇W ET KI 4 Imp/l 1% Metherm

Energy Meter Pel eacWSZ-50A Imp/Wh 1% SMS Guard

Thermocouple Tin, Tout, Ttw, Tenv Type K mV 1.5°C Olmatic GmbH

AD-Converter Tin, Tout, Ttw, Tenv MAX31850 I2C (−) Adafruit IndustriesLLC

FIGURE 3
Main processes and data streams of the control routine. The measured data is preprocessed (temperature compensation) and stored locally (data
acquisition). The historic data is used to identify optimal model parameters (system identification) of the DHWH. In turn, the model is used to estimate
the current system state (state estimation) using the data from the measurements, providing an estimated average temperature inside the tank. Future
hot water demand by the user is predicted based on historic data. Based on an MPC algorithm incentivized by the RTP signal (optimization) ensuring
legionella prevention, the optimal switch state is derived and the relay is controlled.

Here, Q̇dem describes the power extracted due to hot water demand,
Ẇel refers to the power supplied by the resistive heating element.
The overall heat transfer coefficient UA describes the dynamics due
to heat loss to the surroundings, and C refers to the thermal capacity
of the DHWH. Assuming constant heating rate and energy demand
for a given time interval [t0, t0 +Δt], the analytic solution of Eq. 1
setting the initial condition T̄(t0) = T̄0 is then given by

T̄(t0 +Δt) = T̄0e
(− UA

C
Δt)

+ (1− e(−
UA
C

Δt))[
Ẇel

UA
−
Q̇dem,i

UA
+T∞]. (2)

2.2.6 System identification
We assume a uniform temperature distribution in the tank

according to the model (cf. 2.2.5) to be reached as soon as the
heating increased the thermal well temperature above the last hot

water draw temperature at the outlet, i.e., Ttw(tuni) > Tout(tdraw).
This assumes stratification to be negligible, and, therefore, a single
homogeneous temperature distribution inside the tank, i.e., T̃(t) =
Ttw(t). Here, T̃(t) refers to the estimated average temperature in the
tank.The uniform temperature distribution is assumed until the first
hot water draw event after a heating cycle at t = tcool, i.e., the end
of a heating-up-cooling-off process. Defining TUNI to be the set of
all times assuming a uniform temperature distribution, i.e., the set
consisting of several heating-up-cooling-off processes, the estimated
system parameters ̃UA, C̃ are derived via minimization of the RMSE
as follows.

ŨA, C̃ = argmin
UA,C

√
∑

t∈TUNI

(T̃ (t) −Ttw (t))
2

|TUNI|
. (3)

Here, T̃ is calculated using Eq. 2. In our previous
publication (Kepplinger et al., 2019), we were able to show that
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this model provides reasonable estimates for the average tank
temperature at low computational costs. This model is referred
to as the single node uniform temperature distribution model (1N
UTD) with initialization at the end of the heating cycle (toff).

2.2.7 State estimation
Using the system parameters resulting from Eq. 3, the state

of the heater, i.e., the average tank temperature, is estimated
by forward calculation of the model (Eq. 2) from the last end
of a heating cycle, i.e., toff. For optimization, this estimated
average temperature serves as an input, cf. Figure 3. To solve
the optimization procedure as described in Section 2.2.8, also the
nominal power P̄el has to be estimated. To this end, the maximum
one-minute average value of the recorded electrical power is
considered.

2.2.8 Optimization
We assume that the resistive heating element has a nominal

power rating of P̄el and the incentive is provided as vector c =
(c1,…,cN). Then, given the predicted hot water demand Q̇dem by the
user for the future time steps i ∈ {1,…,N}, the optimization problem
can be formulated as follows, by keeping the temperature at all times
below Tmax and above Tmin in case of hot water demand.

min
u

N

∑
i=1

ci ⋅ ui ⋅ P̄el s.t.

Tmax ≥ Ti ∀i ∈ {1,…,N} ,

Tmin ≤ Ti ∀i ∈ {1,…,N:Q̇dem,i > 0} . (4)

By using the analytic solution of the bulk model as described in
Eq. 2 of the heater, the constraints are linear (recursive solution),
leading to a binary integer linear optimization problem, as derived
already in (Kepplinger et al., 2015).

min
u

N

∑
i=1

ci ⋅ ui ⋅ P̄el s.t.

Au ≤ a,Bu ≥ b, (5)

λ = e(−
UA
C

Δt)

Aij = (1− λ)λi−1−j
P̄el

UA
,

ai = Tmax − T̄0λ
i −

i−1

∑
j=0
[(1− λ)λi−1−j(T∞ −

Q̇dem,j

UA
)],

Bij =
{
{
{

Aij, Q̇dem,i > 0

0, Q̇dem,i = 0
,

bi =
{
{
{

Tmin −Tmax + ai, Q̇dem,i > 0

0, Q̇dem,i = 0
. (6)

The hot water demand is predicted based on the recorded
historic time series of demand via the DAQ. The future demand
Q̇dem(t) is determined using a Euclidean distance-based k-nearest
neighbor algorithm (KNN) (Friedman et al., 1977). Here k refers
to the number of best matches considered. To this end, the
hot water demand of the past 12 hrs. is compared to the
demand at the same time windows of historic days and the
best k = 5 matches (daily demand profiles) are selected. The
resulting prediction contains the matched historic data series for

the optimization time window considered, which depends on
the price signal available at the time of optimization, cf. 2.2.8.
The optimization problem as stated in Eq. 4 thereby is subject
to a maximum of 2N ⋅ k constraints (number of temperature
constraints per timestep × number of time steps × number of
nearest neighbors). If the optimization problem is infeasible due to
the constraints imposed by the demand predicted, the number of
nearest neighbors is reduced in steps of one, until a feasible solution
is attained.

As Legionella pneumophila can thrive in hot water storages
between 32°C and 42°C (Armstrong et al., 2014), an additional
Legionella prevention is integrated into the optimization procedure.
If, at the time of optimization, the measured thermal well
temperature Ttw has not exceeded 55°C for the last 7 days, the heater
is switched on until the set temperature is reached. As all heaters
in the field test showed set point temperatures Tmax above 60°C
(cf. Table 2), sterilization time can even be expected to be below
10 min according to (Armstrong et al., 2014).

The spot market prices of the electricity exchange
market in Austria are used as the price signal c of the
optimization routine. These prices are published on a quarter-
hour basis the day before at noon and are available online
(EXAA Abwicklungsstelle für Energieprodukte AG, 2019). The
existing data server automatically retrieves this data every day and
distributes it to the individual DHWH control units via the GSM
network. Every quarter hour the optimization routine is run to
adapt to deviations of the user behavior from the prediction. Due
to the fact that the next-day prices are available around noon and
transmitted to the devices as soon as possible, the optimization
time window varies between eight and 36 h. The optimization
routine is run every quarter-hour solving the optimization
problem given in Eq. 4, considering a discretization time
step of Δt = 15 min.

2.3 Standard operation modes

To compare the results gathered in the field test to classic
operation modes, we mimic the behavior of three standard
modes of operation by simulation. The classic modes of operation
of DHWHs exhibiting a storage volume are either time-of-
use tariff-driven hysteresis, represented here by the night-only
operation mode (NO), or a permanent hysteresis (HYS) control.
Both controls reflect a hysteresis-based control that leads to
an activation of the resistive heating element as soon as the
measured temperature falls significantly below the temperature
set point, defined by the hysteresis dead band. For both of
these controls (NO, HYS), the same set point temperature Tset
and dead band ΔThys are assumed as observed in the field test
installations. For NO, an additional time window is set, which
deactivates the resistive heating element completely outside of
this time window. Within the time window, the heater works
in hysteresis.

These two standard modes of operation (NO, HYS) are
simulated using the bulk model solution (Eq. 1), using the same
systemcharacteristics as observed in the field (same capacitiesC, loss
characteristics UA as well as set point temperatures Tset, hysteresis
dead band ΔThys, and electric power rating of the resistive heating
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elements P̄el). The NO time window simulated is defined to match
those applied in the area of the field test by the distribution system
operator (from 10:30 p.m. to 06:00 a.m.), as to serve as a comparison
mode to MPC. Measured data are used for hot water consumption
Q̇dem (defined by the water flow V̇, as well as the temperatures at
inlet Tin and outlet Tout), and the environment temperature Tenv.
Thereby, we are able to compare the output with respect to power
consumption Wel(t), resulting costs, and DHWH system state, but
match the other influences to those in the field.

Another solution to deliver domestic hot water at a single
conduit are instantaneous water heating (IH) systems. These
represent an extreme case for comparison, as no storage is needed.
Therefore, the flexibility for load shifting is zero, but the thermal
efficiency can be assumed to be perfect. For the simulation of the
IH system, we set the electricity consumption equal to the hot water
demand for simulation, i.e., Wel(t) = Qdem(t).

2.4 Error estimation

The operation mode in the field test represents a specific
approach to implement an autonomous price optimal control of
the DHWHs. As can be seen in Figure 3, several processes are
executed, which influence the decision on the relay state in the field
(system identification (cf. 2.2.6), state estimation (cf. 2.2.7), demand
prediction (cf. 2.2.8). To distinguish and compare the magnitude of
those influences, several simulations are conducted.

These simulations can be understood as idealized operation
modes of the DHWH. They use a subset of the data measured in
the field, namely, the hotwater consumption (based onwater volume
flow V̇, temperatures at inletTin and outletTout) and the temperature
of the environment Tenv. The simulation mimics the DHWH’s
behavior by using the same capacities C, loss characteristics UA as
well as the electric power rating of the resistive heating elements P̄el.
But the simulations differ in mode of operation, and, thus, lead to a
differing output with respect to power consumptionWel(t), DHWH
system state, and costs. For all the simulations, a single-layer bulk
model is used, where the system state is described by the average
temperature T̄ only.

Each quarter-hour, the user prediction and optimization
routines are executed as in the field test, but instead of using state
estimation, the average temperature of the simulation is used as
the current system state, representing perfect system knowledge.
Two simulation studies are conducted to investigate the effect of
errors due to state estimation and user prediction: 1) Optimal
autonomous control (OPT) assumes perfect knowledge of the
system state at all times as well as the future hot water demand.
This is achieved by feeding the “future” hot water demand as a
prediction to the optimization routine. 2) KNN-based autonomous
control (KNN) only assumes perfect knowledge of the system states
but includes the prediction of the user based on a KNN approach
exactly as implemented in the field test, cf. 2.2.8. By comparison
of the simulation results to those results achieved in the field,
the performance of the methods used is evaluated. Moreover, the
simulations allow us to relate and compare the results using real-
world demand data to those found in simulation studies from the
literature.

2.5 Evaluation

The evaluation of the data gathered in the field test aims to
allow for 1) a comparison with existing results from the literature;
2) the quantification of the benefits of the method proposed with
respect to energy efficiency and load shifting; and 3) an analysis
of the effects due to state estimation and demand prediction.
In the following, the data handling and preparation process is
explained first.

Table 2 gives an overview of the participants evaluated in
the field test. Not all evaluations show the same time window;
first of all, due to varying duration in the installation of the
in-house build hardware at the sites; Secondly, data showing
acquisition gaps due to software or hardware issues were
excluded. Taking these two aspects into account, the maximum
possible time window of continuous operation has been selected
for each participant to allow for a fair comparison and full
analysis.

The data collected in the field test comprise results gathered
in very heterogeneous settings, such as: A) the makeup of the
households results in different hot water demands (usage times
and amounts); B) the available hot water capacities are different
depending on the type of the heater (120–150 l); and C) the data
collected differs with respect to the evaluation period (duration and
start/end date). To establish an evaluation that allows for comparison
among this set of data and also with results from existing literature,
quantities and indicators are used that are.

A) analyzable on arbitrary periods of time (e.g., days or months);
B) transferable between different setups (e.g., heaters of different

volumes); and
C) applicable to the results of the simulated modes of operation

(HYS, NO, IH, OPT, KNN).

The quantities derived are introduced and their significance
explained hereafter, assuming a specific time period [t1, t2].

Thermal efficiency for a DHWH is defined by

ηth =
∫
t2

t1
Q̇dem (t) dt

∫
t2

t1
Ẇel (t) dt

, (7)

which by definition fulfills 0 ≤ ηth ≤ 1. For the instantaneous heating
(IH) operation mode, the thermal efficiency always equals one.

Specific costs per consumed electricity (electric energy demand)
and hot water (thermal energy demand) can be calculated by.

cel =
∫
t2

t1
c (t)Ẇel (t) dt

∫
t2

t1
Ẇel (t) dt

and (8)

cth =
∫
t2

t1
c (t)Ẇel (t) dt

∫
t2

t1
Q̇dem (t) dt

, respectively. (9)

These quantities, both in (EUR/MWh), allow us to evaluate the
performance of operation modes regarding their suitability to
the real-time pricing regime. The simulated optimal operation
(OPT) will provide the best result possible with respect
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to these specific costs, as it minimizes the real-time costs
(nominator of Eq. 8) while assuming perfect demand prediction and
system knowledge.

An important indicator to relate the domestic hot water usage
(user dependent) and the system properties (capacity and set-point
temperature) can be defined as the degree of utilization:

q =
∫
t2

t1
Q̇dem (t) dt

(t2−t1)
tday

C
, where (10)

C = VcWρW (Tmax −Tmin) (11)

defines the total exploitable heat capacity. The constants cW
(J/kg/K) and ρW (kg/m3) refer to the water’s specific heat capacity
and density, respectively. The degree of utilization is based on a daily
evaluation, thus, the total time considered is divided by the number
of seconds per day tday (s).

Additionally, we will examine the maximum heating cycle
capacity, i.e., the maximum heat that ideally could be stored by fully
heating theDHWHonce from average inlet temperature T̄in toTmax:

Cmax = VcWρW (Tmax − T̄in) . (12)

In accordance, the total exploitable heat capacity C will also be
referred to as the minimum heating cycle capacity.

3 Results and discussion

3.1 Field test results

First, we analyze the data collected in the field test for the
different 17 users, equipped with the control unit. Figure 4 shows
a 3-day period of measurements as collected in the field for user 4.
It serves as an example to illustrate the data collected in the field
test and explain the typical behavior of the MPC implemented. All
measured quantities are depicted, including measured temperatures
as well as the power and the RTP signal, which serves as an incentive
for the optimization. It can be observed that the control based on
quarter-hour RTP and demand prediction leads to short heating
cycles as described in detail in our previous work (Kepplinger et al.,
2019). Furthermore, it can be noticed that the heating cycles
coincide with relatively low RTP values. The example data shows
the effect of hot water being pushed back into the inlet pipe
during heating cycles due to expansion, recorded by the inlet
temperature sensor Tin positioned between the cold water inlet
and the safety valve. This effect has also been discussed in detail
based on lab experiments in our previous work (Kepplinger et al.,
2019), as it might be a source of additional information to
estimate the temperature distribution inside the storage tank. A
large hot water draw-off event on the evening of August 21st
can be observed, resulting in a thermal well temperature Ttw
below the minimum set temperature Tmin = 38°C. However, the
outlet temperature Tout still shows values above the minimum set
temperature.

To analyze the differences in usage, we compared the hot water
demand to minimum (Eq. 11) and maximum heating cycle capacity
(Eq. 12) in Figure 5 (left). User behavior has a substantial impact

on the performance of the DR MPC approach. This is why strongly
changing user behavior poses a significant challenge. To analyze
the different users with respect to variance between single days, we
calculated the classified days according to the degree of utilization q
as defined in Eq. 10. Figure 5 (right) shows the relative share of days
by the degree of utilization for all the users. From these two graphs,
it can be seen that:

• 4 DHWHs are highly underused (3, 13, 14, 17),
• 3 DHWHs match the demand for the NO mode perfectly

(2,12,16),
• 10 out of 17 (1, 4–11, 15) will not fulfill demand in NO mode.

This is due to the fact that NO mode assumes a single heating
cycle during the night. These users would experience tap
temperatures below the minimum temperature limit Tmin in NO
mode. This has to be taken into account, if the NO mode is
compared to the MPC mode, as the optimization will adapt to
higher demands by prediction and, thus, result in higher energy
demand and costs.

3.2 Comparison to standard operation
modes

To illustrate the behavior of the standard modes of operation
(NO, HYS, IH) and compare it to the MPC implemented in
the field test, Figure 6 shows the simulated tank temperatures
and power for the same user and time window already
considered before (Figure 4). The HYS mode results in demand-
dependent heating of the storage as soon as the lower threshold
value (set point temperature minus dead band) is reached. In the
case of the NO mode, this hysteresis is only applied during night-
time. It is clearly visible that the MPC results in shorter heating
cycles strongly depending on the RTP value being the incentive for
the optimization.

Figure 7 shows the change in specific costs for electricity and
hot water consumption compared to the field test, if standard
control strategies are considered (NO, HYS, IH). The results
differ significantly for the different users. In most cases (14 of
17), instantaneous heating shows the highest specific costs for
electricity, followed by standard hysteresis control. Thus, in all
cases, the implemented MPC approach reduced electricity costs
compared to the standard hysteresis control. Compared to NO
control, MPC shows higher or lower specific electricity costs.
This can be contributed to two factors mainly: First, the MPC
control will always fulfill predicted hot water demands, thereby
adapting to the user behavior, which might lead to higher energy
consumption than in the case of the NO control. Second, the
NO mode leads to heating cycles within the predefined time
window at night, which at the RTP market considered are
generally low.

To take the different usage patterns into account, we analyzed
the results for the standard control modes (IH, HYS, NO) and the
field test (MPC) dependent on the degree of utilization. Results
are shown in Figure 8. We classified all monthly data points,
(t2 − t1 ≜ 1 month) of all DHWHs into 5 equidistant usage bins.
If days or weeks are analyzed, the amount of energy stored in
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FIGURE 4
3-day example showing the measured temperatures, power, and the RTP signal of User 4 in the field test.

FIGURE 5
Usage of the different field test users. Left: Distribution of the daily hot water demand, compared to minimum and maximum heating cycle capacity of
the single heater, C and Cmax, respectively. The minimum and maximum heating cycle capacity reflect the energy that can be stored by fully heating the
DHWH with reference to the minimum temperature limit or inlet temperature, respectively. These two quantities are dependent on heater volume, set
point, and inlet temperature, as defined in Eqs 11, 12. Right: Relative share of days recorded classified by the degree of utilization q, as defined in Eq. 10.

the DHWHs at the beginning or end of the period is significant
compared to demand. To avoid these effects, we considered single
months of DHWHs as one data point. By this, the averaging

effect leads to results of higher quality but still creates a bigger
set of data to be evaluated depending on the degree of utilization.
For low degrees of utilization, the tested MPC approach achieves
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FIGURE 6
3-day example (identical time window and user as in 4) showing the simulated (OPT, KNN, HYS, NO) and measured power and storage temperatures.
Please note that the thermal well temperature and electrical power are measured quantities reflecting the MPC field test mode. The hot water demand
(which equals the power for instantaneous heating) and the RTP are shown in one plot.

lower specific costs and higher thermal efficiencies compared to
all standard control methods. As the use increases, NO mode
on average becomes cheaper and more efficient compared to the
MPC approach. Nevertheless, as explained before, NO mode may
lead to cold tap events. The field test outperforms the classic HYS
control mode, although the benefit regarding the specific electricity
costs and thermal efficiency decreases with an increasing degree
of utilization.

3.3 Model and prediction error analysis

To illustrate the behavior of the optimization-based modes
of operation (MPC, KNN, OPT), Figure 6 shows the measured

or simulated tank temperatures and power. It is clearly visible
that MPC, KNN, and OPT differ in switching times, as these
depend on the specific results of state estimation and user demand
prediction.

The MPC control of the field test relies on a state estimation
and a user prediction. To study the effects of model and prediction
inaccuracies on the results achieved, we analyze the difference in
cost and efficiency improvements reached by the field test and
the optimal MPC control strategies (KNN, OPT) simulated. As a
basis for comparison, we use the simulation results of the hysteresis
operation mode (HYS), as this is the most common control in
current real-world systems. Figure 9 shows the relative change in
electricity costs and thermal efficiencies compared to the HYS
standard control mode.
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FIGURE 7
Specific electricity costs cel (top) and specific thermal costs cth (bottom) of standard control strategies (simulated) compared to the MPC field test
results (measured). Left: Shown separately for all the different test field users. Right: Distribution of specific electricity costs for the different control
strategies.

The cost achievable in a perfect and idealized setting are lowered
significantly by assuming perfect prediction capabilities and state
estimation. Or - to change the perspective: The technically feasible
MPC solution in the field reaches significantly lower reductions in
costs due to the errors contributed by demand prediction and state
estimation.Theoptimal solution (OPT) leads to reductions of at least
50% for all degrees of utilization, and, due to negative RTPs, even can
reach reductions of over 100% in case of extremely low user demand
(0%–20% DoU). However, the control implemented in the field can
only achieve around 40% reduction in average. For those periods of
time and DHWHs where sizing matches user demand (60%–100%),
sometimes even less than 20% are realized. Comparing the three
optimization-based modes (MPC, KNN, OPT) shows that the error
due to state estimation clearly has a larger impact than the error due
to user prediction.

Increased thermal efficiency is a side-effect of optimization-
based control, as the cost function of optimization reflects the
product of price and electricity consumption. If the optimization
procedure is based on perfect system knowledge and user prediction
(OPT), an increase in thermal efficiency of at least 5% and up
to about 25% for a low degree of utilization could be reached.
In the field test, the thermal efficiency is slightly improved in

average (1–7%), but in some cases is even lower than in standard
operation mode.

3.4 Summary of results and discussion

To summarize the results observed in the field test and the
simulation studies conducted, all performance indicators are provided
ina single table (Table 4).Thetablealsogivesanoverviewof the sample
size in the single degree of utilization classes.

Compared to NO operation mode, the results in the field test
reduce the average specific electricity costs from 25.21 EUR/MWh
(NO) by only 3%, whereas the optimal MPC modes reach average
reductions of 30% (KNN) and 50% (OPT). According to our results,
this is hard to be reached in real-world conditions with state-of-the-
art methods, due to prediction and estimation errors.

Based on the average values, MPC lowers the average specific
electricity costs by 34% from 37.3 EUR/MWh (HYS) to 24.52
EUR/MWh (MPC). In this case, the average specific electricity costs
for the optimalMPCmodes even decline to 17.45 EUR/MWh (53%)
for KNN and to 12.63 EUR/MWh (66%) for OPT, respectively.
The results also provide an explanation of the expected savings
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FIGURE 8
Specific electricity costs cel (left) and thermal efficiency ηth (right) categorized by degree of utilization q for standard control modes (IH, HYS, NO) and
the MPC field test. Every data point reflects a single consecutive month of user data.

FIGURE 9
Relative change in the total electricity costs (left) and change in thermal efficiency ηth (right) reached by the optimization-based modes (MPC, KNN,
OPT) compared to the hysteresis mode (HYS).

by MPC of DHWHs reported in the literature on simulation
scenarios. Furthermore, it shows that the model inaccuracies and
the prediction errors significantly reduce the technically achievable
potential. The results suggest that the influence of the state
estimation error is much more important than the error due to

user prediction. As the latter is considered in many studies, but
state estimation is mostly neglected, this result clearly suggests that
further research needs to be focused on solutions for technically
feasible state estimation concepts. As state estimation and the
optimization model can not be considered independently from
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TABLE 4 Average (standard deviation) in specific electricity costs (cel), specific thermal costs (cth), and thermal efficiency specific electricity costs (ηth)
for all modes of operation considered and separately listed for different degrees of utilization (DoU). # refers to the number of monthly data points
in the bin.

Indicator DoU # IH HYS NO MPC KNN OPT

cel (EUR/MWh)

(0,100] 137 38.70 (5.10) 37.30 (4.58) 25.21 (5.39) 24.52 (5.98) 17.45 (7.99) 12.63 (8.59)

(0,20] 24 38.34 (5.28) 35.41 (4.06) 26.38 (4.97) 22.16 (7.49) 10.44 (9.69) 5.68 (10.06)

(20,40] 38 37.86 (4.69) 37.11 (4.73) 25.56 (5.14) 23.80 (4.84) 16.80 (6.15) 11.90 (6.82)

(40,60] 34 38.54 (4.70) 37.02 (3.81) 24.16 (5.54) 23.87 (5.24) 17.63 (7.58) 12.54 (8.08)

(60,80] 29 39.81 (5.92) 38.56 (5.14) 24.63 (5.56) 26.19 (5.49) 21.26 (5.08) 16.71 (6.84)

(80,100] 12 39.82 (5.11) 39.38 (4.71) 26.17 (6.25) 29.39 (6.21) 23.84 (5.99) 19.26 (5.47)

cth (EUR/MWh)

(0,100] 137 38.70 (5.10) 71.43 (34.15) 46.74 (29.51) 42.75 (17.36) 26.78 (13.82) 17.33 (13.44)

(0,20] 24 38.34 (5.28) 130.95 (43.55) 96.82 (38.85) 64.91 (28.49) 27.08 (26.57) 11.91 (24.27)

(20,40] 38 37.86 (4.69) 64.17 (11.21) 42.34 (10.26) 40.39 (8.47) 25.62 (9.60) 16.50 (9.45)

(40,60] 34 38.54 (4.70) 56.82 (7.94) 34.30 (8.07) 35.91 (8.37) 24.92 (10.68) 16.48 (10.46)

(60,80] 29 39.81 (5.92) 54.96 (10.32) 31.46 (7.61) 36.44 (7.86) 28.30 (7.11) 21.04 (8.19)

(80,100] 12 39.82 (5.11) 56.59 (6.26) 32.70 (7.99) 40.47 (8.68) 31.42 (7.68) 24.26 (6.72)

ηth (−)

(0,100] 137 1.00 (0.00) 0.59 (0.16) 0.64 (0.18) 0.61 (0.14) 0.66 (0.14) 0.70 (0.14)

(0,20] 24 1.00 (0.00) 0.30 (0.09) 0.30 (0.09) 0.36 (0.08) 0.41 (0.10) 0.46 (0.10)

(20,40] 38 1.00 (0.00) 0.59 (0.07) 0.61 (0.07) 0.59 (0.05) 0.66 (0.07) 0.72 (0.06)

(40,60] 34 1.00 (0.00) 0.66 (0.06) 0.71 (0.06) 0.67 (0.03) 0.71 (0.05) 0.76 (0.04)

(60,80] 29 1.00 (0.00) 0.71 (0.07) 0.79 (0.07) 0.72 (0.07) 0.76 (0.06) 0.79 (0.06)

(80,100] 12 1.00 (0.00) 0.70 (0.08) 0.80 (0.08) 0.73 (0.07) 0.76 (0.07) 0.79 (0.07)

one another for a viable solution (cf. (Kepplinger et al., 2019)),
further research should evaluate the suitability of different modeling
approaches in the field.

4 Conclusion

To pave the way for scalable and sustainable MPC solutions
for DHWHs, long-term field tests of prototypes under real-world
environments are needed. We presented the results from a field
test, where 16 DHWHs (comparably over 12 years of usage data)
have been equipped with in-house developed hardware for an
RTP-driven control, viable for a retrofitting solution. The software
developed comprises routines for all processes necessary, from data
acquisition, through state estimation and demand prediction, to
optimization and operation.

To conclude on the realized load shift potential, and investigate
estimation errors due to user prediction and model inaccuracies,
we used the data gathered in the field test in simulation runs. We
introduced indicators, which can be applied to different settings
(prices, time periods, system parameters) and allow for comparison
to simulated operationmodes.Thereby we analyzed the dependence

of specific electricity and thermal cost, as well as thermal efficiency
on the degree of utilization.

The results show that the potential for load shifting is high
enough to realize savings on the RTP market of 30% on average
compared to hysteresis, which is themost common operationmode.
However, the benefit of MPC with respect to costs and thermal
efficiency declines as usage increases. This highlights the necessity
in the field of DR to provide information on the degree of utilization
underlying the studies presented.

Compared to the NO operationmode, which can be understood
as a static DR approach being used in many Western countries
for more than 30 years, the MPC-driven approach only showed
economic benefits (specific electricity cost reduction based on RTP)
for a low degree of utilization. However, it improved service quality
through user prediction. Very importantly, it performs comparably
but also allows for dynamically changing circumstances (e.g., strong
fluctuation of renewable generation).

The investigation of the errors due to user prediction and state
estimation showed that the error with respect to state estimation has
a significantly higher impact on the cost reduction achieved than
the error due to user prediction. As most literature on simulation
studies considers user prediction but neglects state estimation,
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our results suggest that simulation studies so far overestimated
the cost reduction and efficiency increase. This suggests that
further research needs to be focused on solutions for technically
feasible state estimation concepts. As state estimation and the
optimization model can not be considered independently from
one another for a viable solution, further research should
evaluate the suitability of different modeling approaches in the
field.

For the first time, we could verify the real potential of an MPC-
based approach for DHWHs in the field and evaluate the impact
of errors in demand prediction and state estimation. The approach
proposed could serve the scientific community to gather more
reliable and comparable results in both, reproducible simulation and
lab environments, as well as in field test settings.

Future solutions proposed to integrate DHWHs for DR by
MPC should focus on the evaluation of economic and energy
conservation benefits in dependence on the degree of utilization.
Errors from assumptions of perfect knowledge on disturbances
(demand prediction) and system behavior (state estimation) need
to be taken into account to allow for a fair comparison of the
approaches discussed.
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