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In the context of multi-vehicle formation, obstacle avoidance in unknown
environments presents a number of challenges, including obstacles near the
target, susceptibility to local minima, and dynamic obstacle avoidance. To
address these issues in multi-vehicle formation control and obstacle
avoidance within unknown environments, this paper uses PID control to
optimize the potential field function of the artificial potential field method and
conducts simulation experiments. The results demonstrate that the proposed
algorithm achieves reductions of 39.7%, 41.9%, 24.8% and 32.0% in four efficiency
functions (total iteration times, formation efficiency function value, energy
consumption and standard deviation of iteration times) compared to other
algorithms. The improved algorithm more effectively addresses the challenge
of slow obstacle avoidance when vehicles approach the target and can handle
unexpected situations such as local minima and dynamic obstacles. It achieves
energy-efficient optimization for multi-vehicle obstacle avoidance in complex
environments.
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1 Introduction

In the backdrop of global energy shortages and the adverse impacts on the ecological
environment, the automotive industry is rapidly shifting towards new energy, intelligence,
and energy-efficient directions. New energy vehicles, characterized by their intelligence,
energy efficiency, and environmentally friendly, pollution-free features, have become the
primary focus of the future automotive industry. There is an increasing emphasis on the
research and utilization of new energy, with active promotion of new energy vehicle
projects, leading to a swift expansion of the market. Currently, new energy vehicles in the
market primarily rely on electric power, significantly reducing dependence on gasoline, thus
lowering environmental pollution and meeting daily commuting needs. In this trend,
through the implementation of intelligent technology, vehicles have achieved path
planning, obstacle avoidance optimization, enhancing travel efficiency, and notably
achieving energy-saving goals. This intelligent development not only makes new energy
vehicles more efficient in energy utilization but also enhances driving safety and comfort,
laying a solid foundation for the sustainable development of the future automotive industry.

With the development of robot technology and the promotion of social demand,
people’s expectation for robots is no longer limited to a single individual, but more and
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more attention is paid to the system composed of multiple
robots. This change is not only due to the fact that complex
tasks often exceed the capabilities of a single robot. In practical
applications, the cost and time required to develop a single robot
are relatively high, while building a multi-robot system is more
economical, efficient and time-saving. This is because multi-
robot systems, through mechanisms such as resource sharing
and batch production, can effectively reduce overall costs,
making them more economical in practical applications. With
the rise of robot production line, people’s demand for robots has
gradually changed from a single individual to a multi-robot
system that can work autonomously and cooperatively (Dahiya
et al., 2023).

In recent years, scholars have carried out extensive research in
the field of multi-vehicle formation control (Oh et al., 2015),
focusing on the key aspects of formation establishment,
maintenance, switching, obstacle avoidance, adaptive process
and so on (Wang et al., 2023). Multi-vehicle formation control
aims to achieve collaborative operations among vehicles, forming
an organized structure to accomplish specific tasks or achieve
particular objectives. In view of the advantages and disadvantages
of different formation strategies, two or even more than three
formation strategies are usually combined in the formation
research to effectively improve the overall performance of the
formation system. Among them, the main algorithms used in
formation obstacle avoidance are leader-follower method and
artificial potential field method. In the leader-follower approach,
typically, one vehicle is chosen as the leader, responsible for
guiding the entire formation; the remaining vehicles act as
followers, adjusting their positions based on specific strategies
or algorithms to maintain the formation shape and performance.
However, the leader-follower method has a shortcoming, that
is, the formation system relies too much on the leader and is
almost completely dominated by the leader, which leads to its poor
robustness. As shown in Figure 1, the traditional artificial potential
field method also has some inherent problems (Fan et al., 2020):
(A) Goal Not Reachable or Not Obtainable (GNRON); (B)
Trapped in a Local Minimum Region; (C) Obstacle avoidance
in dynamic environment.

In order to address the issue of goal not reachable or not
obtainable of nearby obstacles, several approaches have been
proposed in the literature. Jia and Wang (2010) increased the
gradient of the attractive potential function around the target to
eliminate the GNRON problem. Yang et al. (2016) introduced an
additional potential field using the potential filling method in this
region. Sfeir et al. (2011) proposed a new repulsive potential field
that does not require prior knowledge of the environment. Zhang
(2018) revised the definition of the repulsion field by employing a
water flow field coordinate system.

To overcome being trapped in a local minimum region during
navigation, Matoui et al. (2019) utilized a non-minimum speed
algorithm. Sun et al. (2019) applied the dynamic window method to
resolve local minimum problems. Xian-Xia et al. (2018) introduced a
sector partition method that added virtual obstacles in an appropriate
range around the local minimum point. Li et al. (2012) defined the
potential function and established a virtual local target.Wu et al. (2023)
combined the simulated annealing algorithm and deterministic
annealing strategy to help robots escape local minimum points.

To address obstacle avoidance in dynamic environment,
Montiel et al. (2015) introduced the concept of parallel
evolutionary artificial potential fields. Cheng et al. (2015)
proposed an algorithm that combines velocity synthesis and
artificial potential fields. Cao et al. (2014) applied the limit cycle
theory to multi-vehicle obstacle avoidance and successfully
overcame the limitations of the artificial potential field method in
vehicle obstacle avoidance control. Zheng et al. (2022) presented a
formation method based on a fuzzy artificial potential field
approach, effectively solving the problem of multi-vehicle
formation control and obstacle avoidance in dynamic environments.

While previous studies primarily focused on limited
environmental conditions, they often neglected the complexity and
variability of environmental factors. Furthermore, the literature needs
more extensive research on unknown obstacle environments, multi-
vehicle formation maintenance, and parameter optimization.
Considering these gaps, this paper proposes a multi-vehicle
obstacle avoidance optimization algorithm based on PID control
and an improved artificial potential field function. The algorithm
is evaluated using four commonly used efficiency functions: total
iteration times of formation obstacle avoidance, formation efficiency
function value, energy consumption and standard deviation of
iteration times. The simulation results demonstrate that compared
to other algorithms, the proposed approach outperforms them in
terms of these three efficiency functions (by approximately 30%). It
effectively addresses the GNRON problem, alleviates speed problems
(both too small and too large), and achieves energy-efficient obstacle
avoidance in complex environments.

2 Improvements based on artificial
potential field method

In the artificial potential field method (Khatib, 1985), the
gravitational gain coefficient (katt) and repulsive gain coefficient
(krep) play a crucial role in determining the effectiveness of obstacle
avoidance. However, selecting these coefficients is typically based on
empirical experience, which may not necessarily be the optimal
choice for the given environment. Consequently, this can give rise to
various issues, such as the emergence of local minima, longer
obstacle avoidance paths, and challenges in obstacle avoidance in
dynamic environments. Additionally, other challenges have been
encountered in practical applications. Therefore, in the following
sections, we aim to enhance the classical artificial potential field
method based on existing research in order to address these
concerns. This includes introducing PID control in the process of
improving the gravitational function, incorporating a velocity-
repulsion function based on the position-repulsion function, and
innovating the approach to random perturbations.

2.1 Improvement of gravitational function

2.1.1 Improvements to long-distance gravity
In scenarios where the vehicle’s map is significantly large and the

target point is far away, the gravity formula indicates that gravity is
directly proportional to the distance. Consequently, the gravity force
becomes considerably strong, while repulsion force remains
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relatively small. As a result, the robot is prone to colliding with
obstacles during its movement. To mitigate this issue, an
optimization can be achieved by modifying the gravitational
function. Specifically, when the robot is far away from the target
point, the gravitational force should be reduced, and the degree of
reduction should be correlated with the distance.

Define the target distance difference e in Eq. 1:

e � qo − qg if leader
qi − qe if follower

{ (1)

In the proposed approach, several key variables are utilized: qo
represents the leader’s current position, qg is the leader’s target
position; qi denotes the follower’s current position, qe represents the
follower’s target position. Notably, the target position of the leader is
predetermined, whereas the target position of the follower is the
anticipated position based on maintaining the formation
corresponding to the leader’s current position.

The enhanced gravitational potential field formula is presented
as Eq. 2:

Uatt e( ) �
1
2
katte

2, e≤ d

dkatte − 1
2
kattd

2, e> d

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

where Uatt(e) represents the gravitational potential field; katt is a
gravitational gain coefficient greater than 0; d is the given constant,
in this case the distance factor.

The corresponding gravitational function is given in Eq. 3:

Fatt e( ) � −▽Uatt e( ) �
katte, e≤ d

−dkatt e

‖ e ‖, e>d
⎧⎪⎨⎪⎩ (3)

2.1.2 Improvement of gravitational function by
PID control

When the agent approaches the target position, the gravitational
force is relatively small. If obstacles are present near the target
location, the repulsive force might exceed the gravitational force.
This leads to prolonged iteration times and difficulties in reaching
the goal. To address these challenges, the gravitational function can
be further enhanced by incorporating PID control techniques.

The improved gravitational function is given in Eq. 4:

Fatt e( ) � kpe + ki∫t

0
edt + kd

de
dt

(4)

where kp, ki and kd represent the proportional, integral, and
derivative coefficients of the PID control, respectively. These
coefficients correspond to the proportional, integral, and
derivative items of the distance difference between the vehicle’s
current position and the target position.

The above formula represents the continuous expression of PID
control, and the discrete form is expressed as shown in Eq. 5:

Fatt ei( ) � kpei + ki∑N
i�1
ei + kd ei − ei−1( ) (5)

In the discrete formulation, the proportional term represents the
distance difference in the current iteration, while the integral term is the

accumulated sum of the distance differences throughout the iteration
process. In practical applications, it is not necessary to accumulate the
integral term from the initial iteration. In this study, the distance
differences of the last 10 iterations are summed. Incorporating the
cumulative integral term with the distance ensures that the vehicle’s
speed does not become excessively low as it approaches the target.
Simultaneously, the differential term accounts for the difference in
position difference between the current and previous iterations. This
differential term enables the vehicle to execute obstacle avoidance
maneuvers in the face of unexpected situations, such as confronting
local minima or encountering dynamic obstacles.

2.1.3 Improved gravitational function
Combining the two improvements of 2.1.1 and 2.1.2, the

improved gravitational function is obtained as shown in Eq. 6:

Fatt ei( ) �
kpei + ki∑N

i�1
ei + kd ei − ei−1( ), ei ≤ d

−dkatt ei
‖ ei ‖ + ki∑N

i�1
ei + kd ei − ei−1( ), ei > d

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (6)

2.2 Improvement of repulsion function

2.2.1 Improvement of position repulsion function
In traditional artificial potential field methods, there are certain

issues, such as unreachable target points.When a vehicle is positioned far
away from the target point, the gravitational force becomes
disproportionately strong compared to the weak repulsive force.
Consequently, the vehicle may encounter obstacles along its path.
Conversely, when obstacles are near the target point, the gravitational
force weakens, making it challenging for the vehicle to reach the target.
Moreover, at specific locations, the magnitudes of gravitational and
repulsive forces become equal but opposite in direction. As a result, the
vehicle is prone to getting stuck in local optima or oscillate close to a
particular position. To address these concerns, a new repulsion function
is introduced to improve the performance of the algorithm.

Define obstacle distance difference s in Eq. 7:

s � q − q0 (7)
where q represents the vehicle’s current position and q0 is the
obstacle’s current position. The obstacle distance difference
between follower and leader is calculated in the same way.

The position repulsion field function (Yang and Wang, 2013)
based on the distance difference between obstacles and targets is as
given in Eq. 8:

Urepx s( ) �
1
2
krep

1
s
− 1
ρ0

( )2

en, s≤ ρ0

0, s> ρ0

⎧⎪⎪⎨⎪⎪⎩ (8)

whereUrepx(s) represents the position repulsive potential field; krep is
a repulsive gain coefficient greater than 0; ρ0 is the influence distance
of obstacles; n is a given constant, and 2 is taken in this paper.

The negative gradient of the position repulsion field function
can be obtained, and the improved position repulsion function can
be obtained as shown in Eq. 9:
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Frepx s( ) � −▽Urepx s( ) � Frep1 + Frep2, s≤ ρ0
0, s> ρ0

{ (9)

Among them, Frep1 and Frep2 are:

Frep1 � krep
1
s
− 1
ρ0

( ) en

s2
(10)

Frep2 � n

2
krep

1
s
− 1
ρ0

( )2

en−1 (11)

In Eqs 10, 11, the direction of Frep1 points from the obstacle to
the vehicle, and the direction of Frep2 points from the vehicle to
the target.

It is worth mentioning that the calculation process of the
repulsion force of a single vehicle can be considered as the
obstacle avoidance process of leaders. In the case of multiple
vehicles, the calculation process of follower repulsion will
change. It is necessary to calculate the repulsive force between
followers and obstacles, aligning with leader’s obstacle avoidance
process. Subsequently, it is essential to calculate the repulsive
force between vehicles to prevent them from colliding with
each other.

FIGURE 1
Problems of traditional algorithms. (A) Goal Not Reachable or Not Obtainable (B) Trapped in a Local Minimum Region (C) Obstacle avoidance in
dynamic environment.

FIGURE 2
Random disturbance process.

FIGURE 3
Obstacle merging process.
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2.2.2 Improvement of velocity repulsion function
In the actual environment, obstacles are static and more

dynamic. When the vehicle runs on the planned route,
obstacles are also in motion and may move into the vehicle’s
planned route, leading to a potential collision. In order to address
the issue of obstacle avoidance in dynamic environments, it is
essential to consider not only the spatial position of moving
obstacles but also their velocity and direction. Consequently, a
velocity repulsion function is added to the original repulsion
function, and the relative velocity component between the
vehicle and the moving obstacle in the direction from the
vehicle to the obstacle is used for obstacle avoidance judgment.
The potential field function of the velocity repulsion (Cui and
Song, 2018) is defined as given in Eq. 12:

Urepv si( ) �
1
2
kv si − si−1( )2, si ≤ ρ0 ∩ α ∈ −π

2
,
π
2

( )
0, else

⎧⎪⎨⎪⎩ (12)

whereUrepv(si) represents the velocity repulsive potential field; kv is a
velocity gain coefficient greater than 0; the difference between two
iterations of si represents the relative velocity between the vehicle
and the obstacle; α is the angle between relative velocity and relative
position, that is, when α ∉ (−π

2,
π
2) , the obstacle is far away from the

vehicle, the effect of the velocity repulsive potential field is not
considered.

The velocity repulsion function is given in Eq. 13:

Frepv si( ) � −Urepv si( ) � kv si − si−1( ), si ≤ ρ0 ∩ α ∈ −π
2
,
π

2
( )

0, else

⎧⎪⎨⎪⎩
(13)

2.2.3 Improved repulsion function
Velocity repulsion function and the position repulsion function

have the same function, which is keep the vehicle away from
obstacles. Combine the two improvements of 2.2.1 and 2.2.2, the
improved repulsion function is obtained as shown in Eq. 14:

Frep si( ) �
Frepx si( ) + Frepv si( ), si ≤ ρ0 ∩ α ∈ −π

2
,
π

2
( )

Frepx si( ), si ≤ ρ0 ∩ α ∉ −π
2
,
π

2
( )

0, si > ρ0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (14)

2.3 Introduction of random disturbance

In the artificial potential field method, the vehicle is influenced
by obstacles, and the local minimum problemmay arise, resulting in
the uncertain occurrence of local oscillation of the vehicle.
Consequently, the vehicle often struggles to break free from the
loop through the original iteration. In such situations, external
action is necessary for the vehicle to overcome the local
minimum. The influence of the resultant force in the artificial
potential field method is directly manifested in the vehicle’s
velocity. Therefore, this paper enhances the velocity component
of the vehicle to address the local minimum problem of the artificial
potential field method, as depicted in Eqs 15, 16:

Vx � vx sin θrep + vy cos θrep (15)

Vx � vx sin θrep + vy cos θrep (16)

Among them: vx � α cos(2πβ)vr ; vy � (α sin(2πβ) − 0.8)vr
The formula applies to the local coordinate system of the vehicle,

which is a right-handed Cartesian coordinate system, with the
vehicle’s orientation defined as the vy axis forward. By randomly
generating the velocity components of the vx axis and vy axis, their
magnitudes and directions can be randomly generated and
eventually superimposed on the vehicle’s velocity. Here, vx and vy
represent the randomly generated velocity components of the X and
Y-axes, respectively, while vr denotes the upper limit of the random
velocity, presented as the circle’s radius in the figure. Additionally, α
and β are random numbers ranging from 0 to 1, ensuring that vx and
vy can assume random values within the circle. It is also important to
note that θrep refers to the angle between the connecting line linking
the vehicle and the obstacle and the X-axis, and not the rotation
angle of the coordinate axis. As demonstrated in Figure 2, the reason
for the different proportional coefficients of vx and vy is that the
random disturbance is expected to have a more significant impact in
the direction of moving away from the obstacle. This makes it easier

FIGURE 4
Multi-vehicle formation obstacle avoidance process.
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for the vehicle to escape the local minimum by changing its
speed direction.

2.4 Combination of obstacles

When the distance between two obstacles is too small, it
becomes easy for the vehicle to get trapped in a local minimum
while navigating between them, and as a result, it may fail to
complete the obstacle avoidance action. To address this issue,
when multiple obstacles are located too close to each other, they
are treated as a significant obstacle for overall obstacle avoidance, as
illustrated in Figure 3.

In this scenario, the merged center coordinates (Ox,Oy) and the
radius rv are given in Eqs 17–19:

Ox � 1
n
∑n
i�0
Oxi (17)

Oy � 1
n
∑n
i�0
Oyi (18)

rv � max Ox, Oy( ), Oxi, Oyi( )����� ����� + rvi{ }, i ∈ 2, n[ ] (19)

where Oxi and Oyi are the central coordinate values of each
superimposed obstacle; rvi is the obstacle avoidance radius.

3 Implementation of multi-vehicle
formation obstacle
avoidance algorithm

3.1 Control methods

The algorithm for multi-vehicle formation obstacle
avoidance, based on the improved artificial potential field
method, is implemented in MATLAB using the m language.
The program follows a modular design, enhancing the

system’s scalability. As shown in Figure 4, The main idea of
the algorithm is as follows: Firstly, the parameters are initialized,
and the initial obstacle avoidance formation is established. The
position of the target point is then confirmed to facilitate
gravitational calculation. Concurrently, the obstacle
environment is assessed to determine whether obstacle
merging is required, and boundary information of obstacles is
extracted to facilitate repulsion calculation. This is followed by
the start of the iterative cycle process to calculate the obstacle
avoidance process for the leader and the follower, respectively.
The obstacle avoidance process for the leader includes the
calculation of the leader’s angle distance, PID control of
gravity, calculation of position repulsion and velocity
repulsion, calculation of resultant force, and the update of
velocity and position. Upon completing the obstacle avoidance
process, it is necessary to assess whether the leader has fallen into
a local optimum and whether random disturbance is needed to
break out of it. Once the leader arrives at the next position, the
formation is accordingly adjusted, and the desired position
corresponding to the follower can be obtained. On this basis,
the obstacle avoidance process for the follower can be completed.
The obstacle avoidance process for the followers is essentially like
that of the leaders, with the difference lying in the fact that, earlier
mentioned leaders take the target point as the expected position
and need to complete the repulsion calculation between followers
to avoid collisions with each other.

3.2 Evaluation function

This paper uses three commonly used evaluation functions: the
total iteration times for formation obstacle avoidance, the formation
efficiency function, and the standard deviation of iteration times for
formation obstacle avoidance. The first two functions assess the
performance of the obstacle avoidance algorithm in a specific
obstacle environment. At the same time the latter is utilized for
evaluating the algorithm’s performance inmulti-obstacle environments.

FIGURE 5
Simulation experiment working condition environment. (A) Condition 1 Environment (B) Condition 2 Environment (C) Condition 3 Environment.
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During the formation obstacle avoidance process, the
completion of formation obstacle avoidance is determined when
the leader and all followers reach their respective desired positions.
The recorded time required for this is referred to as the total iteration
times of obstacle avoidance. The evaluation function f1 for the
obstacle avoidance algorithm can utilize the total iteration times,

denoted as J, for formation obstacle avoidance. A smaller value
indicates a higher efficiency in obstacle avoidance.

The formation efficiency function is used to evaluate the damage
degree of formation in the process of obstacle avoidance (Zhang
et al., 2019). The smaller the formation, the better. Their expressions
are as shown in Eqs 20, 21:

FIGURE 6
Comparison of movement paths under different operating conditions. (A) Operation 1 Path (B) Operation 2 Path (C) Operation 3 Path.

FIGURE 7
Environment 1 maps. (A) IAPF path map (B) IPID-APF path map (C) Deviation distance map (D) Energy consumption map.
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f2 � ∑N
n�1

∑I
i�1
e⎛⎝ ⎞⎠/I⎛⎝ ⎞⎠/N (20)

N � J/m (21)
where i represents the index of each follower, and e represents the
deviation between the follower’s actual position and the expected
position. J corresponds to the total iteration times of the formation
obstacle avoidance process. In order to reduce computational
complexity, a predetermined constant iterative interval, denoted
asm, is adopted in this study, with a value of 10. Sampling the data at
this interval significantly reduces the computational burden. The
total number of samples, represented by n, refers to the sequence
number of the samples.

The evaluation function f3 is designed to reflect the energy
consumption of the car during obstacle avoidance, including
operational and idle power consumption. Specifically, operational
energy consumption is associated with the total displacement during
the obstacle avoidance process, while idle energy consumption is
linked to the total number of iterations in the obstacle avoidance
process. The expression for the evaluation function f3 is as shown in
Eq. 22:

f3 � Eoc + Eic � koc · J + kic · s (22)
where Eoc represents the operational energy consumption, and Eic
represents the idle energy consumption. They are respectively

associated with the iteration numbers J and the obstacle
avoidance distance s. koc and kic are their correlation coefficients,
with specific values determined based on the relevant environment.

However, when dealing with multiple obstacle environments,
the aforementioned efficiency functions alone may not sufficiently
capture the adaptability of the formation obstacle avoidance
algorithm to the environment. Therefore, the standard
deviation of iterative times during the formation obstacle
avoidance process is employed as an additional efficiency
function to evaluate the effectiveness and rationality of the
algorithm (Yanbin et al., 2018). A smaller standard deviation
indicates better performance. The expressions for calculating
the standard deviation are as shown in Eqs 23, 24:

f4 �

������������∑K
k�1

Jk − �J( )2/K√√
(23)

�J � ∑K
k�1

Jk⎛⎝ ⎞⎠/K (24)

where k represents the number of simulation experiments, whereas
Jk represents the total iteration count for the formation obstacle
avoidance in the kth simulation. The aforementioned formulas
pertain to calculating the standard deviation and average of the
total iteration times. The standard deviation is utilized as an

FIGURE 8
Comparison of efficiency functions in environment 1 (10 times average). (A) f1 value of 10 experiments (B) f2 value of 10 experiments (C) f3 value of
10 experiments.
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efficiency function to assess the level of discreteness in the obstacle
avoidance results. A smaller value indicates a higher adaptability of
the obstacle avoidance algorithm to the environment.

4 Simulation experiments and analysis

4.1 Simulation environment and
parameter settings

To validate the effectiveness of the multi-vehicle formation
obstacle avoidance method proposed in this research, three sets of
comparative simulation experiments were conducted usingMATLAB
programming. The experiments involved comparing the traditional
algorithm (APF), the improved algorithm (IAPF), and the proposed
algorithm (IPID-APF) under various working conditions. Each
algorithm was evaluated within the same obstacle environment.

In all three sets of simulation experiments, the performance
parameters were uniformly set, including PID coefficients for leader
(Kp, Ki, Kd), PID coefficients for followers (kp, ki, kd), the repulsion
coefficients of velocity and position (krep, kv), maximum velocity (VM),
and disturbance velocity (VR). The details are provided in Table 1:

In the first group of experiments, single-vehicle obstacle
avoidance was simulated, with three specific obstacle working

conditions set as depicted in Figure 5. In the second group, the
obstacle avoidance performance of the algorithms was tested in
more complex environments by involving multi-vehicle formations
and complicating the obstacle layout. Lastly, in the third group,
random multiple obstacle environments were utilized, and the
efficiency function used to assess the algorithm’s adaptability was
the standard deviation of iteration times. This evaluation measured
the algorithm’s capacity to handle random environmental
conditions.

4.2 Obstacle avoidance process in setting
obstacle environment

In Experiment 1, three working conditions were set. Working
condition 1: In this condition, the coordinates of the obstacles were
set as (10, 10). This configuration simulates a scenario where the
starting point, obstacles, and target points are collinear. Working
condition 2: In this condition, the coordinates of the obstacles were
set as (10, 8.5) and (8.5, 10). This setup represents a scenario where
the vehicle encounters multiple obstacles and may face a local
minimum situation. Working condition 3: In this condition, the
coordinates of the obstacles were set as (18, 18). This configuration
simulates a scenario where obstacles near the target prevent the

FIGURE 9
Environment 2 maps. (A) IAPF path map (B) IPID-APF path map (C) Deviation distance map (D) Energy consumption map.
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vehicle from reaching its intended target location. The simulation
results of several methods under the above three working conditions
are as follows:

As observed in Figure 6, traditional APF method fails to
complete obstacle avoidance actions against the three specific
obstacles, whereas the improved IAPF method achieves obstacle
avoidance but with underwhelming effectiveness, failing to reach
the target point within the maximum iteration number of J = 300.
Upon introducing PID control, the intelligent surface manages to
reach the target under three working conditions with iteration
times of J = 143, 181, and 151 respectively. This demonstrates that
without altering the gravity and repulsion coefficients of the
artificial potential field, the introduction of PID control
accelerates the obstacle avoidance process of the vehicle and
optimizes the slow speed resulting from the small gravity when
approaching the target.

4.3 Obstacle avoidance process in a random
obstacle environment

Due to the inadequacy of traditional methods in complex
environments, experiment 2 focuses on studying the change in
algorithm efficiency before and after the introduction of PID
control. The formation consists of five vehicles, with Vehicle

1 serving as the leader and Vehicles 2 to 5 as followers, adopting
the common V-shaped formation. This involves adjusting the
influence of parameters on the obstacle avoidance efficiency of
multi-vehicle formation. Based on setting parameters, PID
control is introduced to adjust the remaining parameters, and the
algorithm’s performance change is observed. For Experiment 2,
three random environments are generated to illustrate the influence
of these parameters.

Environment 1:
In Environment 1, the aforementioned results were obtained

using two methods. Figure 7 displays the path diagram for vehicle
formation obstacle avoidance before and after the
implementation of PID control, as well as the diagram
indicating the deviation distance between the follower and the
leader. Due to the complexity of the obstacle avoidance
environment and the presence of random disturbances, the
experiment was run 10 times in this particular environment in
order to mitigate the impact of randomness.

After comparing and analyzing the data from the
10 experiments presented in Figure 8, it was observed that the
introduction of PID control resulted in a decrease in the average
number of iterative times (f1) for formation obstacle avoidance,
reducing it from 361.2 to 209.6. This indicates an acceleration in the
rate of formation obstacle avoidance, with an increase of 41.9%.
Moreover, the formation efficiency function value (f2) decreased

FIGURE 10
Environment 3 maps. (A) IAPF path map (B) IPID-APF path map (C) Deviation distance map (D) Energy consumption map.
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from an average of 16.3 to 10.0, representing a reduction of 38.7%.
This decrease in the function value indicates that the formation
remained tighter after the introduction of PID control. Furthermore,
the function value (f3) reflecting energy consumption exhibited a
notable decrease, dropping from an average of 562.0 to 337.2,
marking a significant 40.0% reduction. This underscores a more
energy-efficient obstacle avoidance process. Simultaneously, the
analysis of function values across the 10 experiments revealed
that random disturbances had a negligible influence.
Consequently, conducting multiple experiments in the same
environment for future research is deemed unnecessary.

Environment 2:
Comparing the experimental data, it is evident that in

comparison to the improved method, the iteration times (f1) for
formation obstacle avoidance decreased from 207 to 79, resulting
in a 61.8% increase in the formation obstacle avoidance rate. This
acceleration allows the completion of the formation obstacle
avoidance task at a faster pace. Additionally, the formation
efficiency function value (f2) decreased from 15.9 to 5.9,
marking a 62.9% decrease. This smaller formation damage
allows for passing through the obstacle area in a closer
formation. Simultaneously, the function value (f3) representing

FIGURE 11
Comparison of efficiency functions in random environment (average of 100 times). (A) f1 value of 10 experiments (B) f2 value of 10 experiments (C) f3
value of 10 experiments.

TABLE 1 Uniformly setting of performance parameters.

Parameter Kp Ki Kd kp ki kd krep kv VM VR

Value 2 0 0 5 0 0 1 0.1 50 30

TABLE 2 Setting parameters and corresponding function values in
environment 1.

Method Kp Ki Kd kp ki kd f1 f2 f3

IAPF 2 none none 5 none none 356 15.6 534.2

IPID-APF 2 4 0 5 1 0 169 9.0 370.0

TABLE 3 Setting parameters and corresponding function values in
environment 2.

Method Kp Ki Kd kp ki kd f1 f2 f3

IAPF 2 none none 5 none none 207 15.9 351.8

IPID-APF 2 4 0 5 5 1 79 5.9 251.5
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energy consumption decreased significantly by 28.5%, dropping
from 351.8 to 251.5.

Based on the obstacle foundation of environment 2, environment
3 increased the number of obstacles from 10 to 15. This is done to
further explore the impact of introducing PID control on algorithm
performance in a more complex obstacle environment.

Environment 3:
By analyzing the data in Table 4, it is observed that,

compared to the proposed method, the improved method
shows a decrease in the iteration times (f1) from 232 to 199,
with a change rate of 14.2%. And the formation efficiency
function value (f2) decreases from 16 to 8.4, indicating a
reduction of 47.5%. Additionally, the function value (f3)
reflecting energy consumption dropped from 423. 9 to 380.8,
marking a significant 10.2% reduction. Due to the increased
complexity of the obstacle environment, the simulation results
in environment 3, compared to Environment 2, show a less
pronounced change in the evaluation function values. However,
in environment 3, all evaluation function values (f1, f2, f3) have
significantly decreased. This indicates that the proposed method
performs well in more complex obstacle environments,
improving obstacle avoidance efficiency.

4.4 Obstacle avoidance experiment in
100 times random obstacle environment

To further confirm the adaptability of the multi-vehicle
formation obstacle avoidance method in a random obstacle
environment, following the analysis of two kinds of random
obstacle environments in Experiment 2, 100 experiments were
conducted in Experiment 3 to observe the changes in efficiency
function values f1, f2, and f3, in order to verify the reliability of
this method.

The change curves of function values f1 and f2 of the improved
algorithm in 100 experiments are compared as follows:

After calculation and statistics, the efficiency function values of
100 experiments f1, f2, f3 and f4 those of 100 experiments can
be obtained.

4.5 Discussion

In this paper, three sets of simulation experiments are conducted
to thoroughly compare the performance of the traditional algorithm
(APF), the improved algorithm (IAPF), and the proposed algorithm
(IPID-APF) in various obstacle environments.

Experiment 1 involves three specific obstacle scenarios designed
to expose the limitations of the traditional algorithm. As depicted in
Figure 6, it is evident that the traditional algorithm fails to complete
the obstacle avoidance task. Consequently, for subsequent
experiments, the comparison of traditional algorithms is omitted
to ensure a more objective and targeted performance evaluation.
Experiment 2 encompasses two random obstacle environments,
while Experiment 3 entails multiple experiments in complex
environments. Most of the algorithms presented in this paper
demonstrate superior performance compared to others, as
evidenced by the comparison images in Figures 7–11 and the
data analysis presented in Tables 2–5. This superior performance
is reflected in terms of iteration times, formation maintenance
degree, and efficiency function value. These results underscore
the significance of incorporating PID control to enhance the
algorithm’s performance.

In summary, the proposed algorithm exhibits enhanced
formation stability, exceptional obstacle avoidance efficiency, and
strong adaptability to environments with random obstacle
distribution, as demonstrated by the experimental results. The
findings not only showcase the performance advantages of IPID-
APF over other algorithms but also offer a reliable and efficient
solution to address the obstacle avoidance problem in a random
obstacle environment. These insights provide valuable guidance for
future research, such as further validation of the effectiveness of
IPID-APF in other application scenarios or the finer optimization of
PID parameters.

5 Conclusion

This paper proposes a multi-vehicle formation obstacle
avoidance algorithm that integrates PID control and an improved
artificial potential field method. By incorporating PID control into
the potential field function calculation process of the artificial
potential field method and introducing an enhanced random
disturbance model, issues such as unattainable targets, falling into
local optima, and navigating obstacles in a dynamic environment
can be effectively addressed. The proposed algorithm is compared
with traditional and improved algorithms through simulation
experiments conducted in multiple random obstacle scenarios.
Four commonly used evaluation functions—total iteration times,
formation efficiency function value, energy consumption and
standard deviation of iteration times—are employed to assess the
algorithm’s performance. The results demonstrate that the efficiency
function values of the proposed algorithm are 39.7%, 41.9%, 24.8%
and 32.0% higher than those of the other algorithms, respectively.
Thus, the proposed algorithm effectively resolves the challenges of
multi-vehicle formation control and obstacle avoidance in complex
environments.

TABLE 4 Setting parameters and corresponding function values in
environment 3.

Method Kp Ki Kd kp ki kd f1 f2 f3

IAPF 2 none none 5 none none 232 16.0 423.9

IPID-APF 2 0 0 5 1 0 199 8.4 380.8

TABLE 5 f1, f2, f3 and f4 of 100 experiments.

Method f1 f2 f3 f4

IAPF 250.1 14.83 423.9 51.88

IPID-APF 150.9 8.63 318.1 35.30
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