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In the evolving landscape of power systems, the integration of various
renewable energy resources (RERs) introduces complex challenges, particularly
in maintaining power quality, which are paramount for system stability. To
address this issue, an adaptive power quality disturbance (PQD) detection
framework is implemented in this paper. First, the optimal mode decomposition
(OMD) is developed to decompose the compound PQDs into sub-ingredients
to make them more visible based on the optimal energy ratio. Subsequently,
we propose an improved attention convolutional neural network (IACNN), an
advanced neural network architecture that leverages an enhanced attention
mechanism to expedite the identification of PQDs. Importantly, the sub-
ingredients can be strengthened based on the established PQD detection
framework. Finally, a series of experiments are conducted under different
noise levels and various types of PQDs. The results demonstrate that the
proposed framework has profound detection effectivity with about 99.2%
accuracy under the simulation condition of 20 dB noise level. In addition, the
experimental verification analysis proves a satisfactory real-time performance.
This underscores the potential of the proposed framework as a significant
advancement in the realm of power quality management, offering a robust
solution to the challenges posed by the integration of RERs into modern power
systems.

KEYWORDS

renewable energy resources, power quality disturbances, optimalmode decomposition,
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1 Introduction

The integration of renewable energy resources (RERs) into the power grid has a
significant impact on the stability and operation of the power system (Chawda et al., 2020).
Specifically, it is imperative to implement precise controlmechanisms for RERs to effectively
manage and mitigate power quality disturbances (PQDs). Employing technologies such as
grid-synchronization and grid-forming control strategies (Xiao et al., 2023b) is essential to
ensure the seamless integration of RERs, thereby maintaining the stability and reliability
of the power grid. For instance, the power output from solar and wind resources can
fluctuate significantly due to changes in weather conditions, leading to voltage variations,
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frequency deviations, and harmonic distortions in the power grid.
Moreover, the use of power electronic converters in RERs for
converting DC to AC power can also generate harmonics and
cause power quality issues (Xiao et al., 2023a). This highlights the
importance of advanced power quality disturbance detection and
mitigation techniques in the era of renewable energy. The accurate
and timely detection of power quality disturbances is essential to
prevent these issues, enabling prompt corrective actions to be taken.
It also aids in maintaining the stability and reliability of power
systems, ensuring uninterrupted power supply, and enhancing the
overall performance and efficiency of electrical systems.

PQDs are the result of a variety of power electronic devices
operating within the grid, leading to complex and compound types
of disturbances. Recognized standards such as IEEE Std 1159,
which delineates practices for monitoring electric power quality,
and IEEE 519-2022, which specifies guidelines for limiting electrical
harmonic contributions, provide crucial benchmarks for managing
PQ issues. For example, the total demand distortion (TDD), as
defined by IEEE 519, considers harmonic components up to the 50th
order, highlighting the comprehensive nature of these standards
(Sabin et al., 2022). Such criteria underscore the increasing necessity
for enhanced detection efficiency and precision.

To address the abovementioned problem, some recent studies
have elaborated the method to detect the power quality signals.
These approaches are typically segmented into three distinct phases:
the identification of sub-components within the PQDs, extraction
of salient features from the signal components, and subsequent
detection of PQD characteristics.

The initial phase of PQD analysis involves the dissection of
complex signals into discernible sub-components or domains, such
as the frequency domain. To this end, methodologies such as
variational mode decomposition (VMD) are utilized, facilitating
the breakdown of PQDs into several intrinsic mode functions
(Zhao et al., 2019). Next, a Wigner–Ville distribution (WVD)
technique is developed to transfer the PQD into the time–frequency
domain (Cai et al., 2019). Then, the PQD can be identified from a
graphical perspective. Some other technologies include ensemble
empirical mode decomposition (EMD) (Hukampal and Mohanty,
2020), Stockwell transform (ST) (Kumar et al., 2020; Panigrahi et al.,
2022), and short-time Fourier transform (STFT) (De Frein and
Rickard, 2011). Similar to VMD, the EMD decomposes the PQDs
into multiple modes. The advantage of EMD is its fast execution
time (Jalilian and Samadinasab, 2021). One of the limitations is
the modal aliasing and end effects. Additionally, it can only extract
temporal information. In contrast, time–frequency transformative
methods, such as the ST (Cui et al., 2022) and the adaptive ST,
leverage window-matching spectrum techniques to address the
issue of time–frequency resolution (Pan et al., 2023). Despite their
utility, these time–frequency-based algorithms are characterized by
computational intensity, which may result in delays when detecting
high-frequency PQDs, an aspect that demands consideration in
their application.

In the pursuit of expediting PQD detection in systems with high
penetration of RERs, the extraction of distinctive features from the
decomposed sub-components is a critical step. As demonstrated by
Yılmaz et al. (2022), five features are extracted from the decimated
wavelet transform, including themean, standard deviation, variance,

entropy, and energy. In addition, 24 features were derived from the
discrete wavelet transform for each PQD case by Shafiullah et al.
(2021). It will highly speed up the detection of PQDs. However,
this efficiency may come at the cost of comprehensiveness, as
the condensed information within the extracted features may not
encapsulate the full spectrum of PQD data.

Based on extracted features, the PQD feature detection is
implemented as the last stage. In this stage, the conventional
methods and the advanced methods are used. Aiming at feature
processing at the second stage, the kernel support vector machine
method was proposed by Tang et al. (2020). The method named
adaptive k-nearest neighbor with excluding outliers was developed
by Liu et al. (2021). Some typical methods consist of the decision
tree and artificial neural network (ANN) (Igual and Medrano,
2020). However, the limitation of conventional methods is their
insufficient learning ability. To mitigate this problem, deep learning
methods are developed. For example, a novel sequential, non-
parametric, and supervised disturbance detector is proposed to
facilitate cooperative detection with only 0.61 cycles, corresponding
to 0.0123s (Mozaffari et al., 2022). In addition, the ensemble deep
learning is applied for the automated classification of PQDs
(Wang et al., 2022). A method called end-to-end PQD detection is
achieved based on the integrated conventional neural networks and
gate recurrent unit (Xiao and Li, 2021). It can detect the PQDs
without the need to perform feature extraction to achieve real-time
detection. Furthermore, the deep conventional neural networks are
combined with the WVD (Cai et al., 2019). Adaptive and hybrid
deep learning methods (Sindi et al., 2021) are proposed against the
noise.The primary limitation is that the importance of the features is
not strengthened, and therefore, they need to consume more layers
to learn more distinguishing characteristics.

To address the challenges associatedwith the real-time detection
and identification of compound PQDs, this paper introduces a
groundbreaking method, whose efficacy is underpinned by the
following significant contributions:

1. To accurately distinguish different disturbance components,
optimal mode decomposition (OMD) is developed based
on ensemble empirical mode decomposition. An innovative
energy ratio metric is formulated to mitigate the influence of
decomposition parameters within the OMD.

2. To highlight the importance of the disturbance features, an
improved attention convolutional neural network (IACNN)
is proposed to learn the critical information from PQDs
automatically. This model enables the autonomous learning
of vital information from PQDs, thus enhancing feature
recognition capabilities.

3. Integrated with the OMD and IACNN, a compound PQD
detection framework is proposed to eliminate the impact of
the irrelevant disturbance features. This integration facilitates
real-time PQD detection and obviates the necessity for manual
feature engineering.

The structure of this paper is organized as follows. Section 2
presents the principle of OMD. Then, the details of the IACNN are
given step by step in Section 3. Next, the conducted experiments
are explained in Section 4. Finally, the conclusion is given
in Section 5.
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2 Optimal mode decomposition

2.1 Principle of ensemble empirical mode
decomposition

The sophisticated nature of PQD signals, characterized by
their nonlinearity and non-stationarity, necessitates a robust feature
extraction method to yield accurate disturbance identification. The
empirical mode decomposition (EMD) technique is widely utilized
for this purpose, enabling the extraction of multiple intrinsic mode
functions (IMFs) from PQD signals.These IMFs are instrumental in
isolating various frequency components, thereby providing detailed
insights into disturbances and facilitating the analysis of non-
stationary signals. Nevertheless, a significant limitation of the EMD
method is its susceptibility to mode mixing, a phenomenon that
can introduce errors in the decomposition of complex PQD signals.
To mitigate this issue and enhance the accuracy of EMD, the
ensemble empiricalmode decomposition (EEMD) is developed.The
EEMD approach augments the decomposition efficacy by averaging
the results from numerous EMD iterations, each with a unique
instantiation of white noise added to the PQD signal.

For the PQD signal x(t), the EMD is carried outM times. In each
EMD trial, x(t) is superimposed with an independent white noise
wm(t), which can be expressed as shown in Eq. 1.

xm (t) = x (t) +wm (t) , m = 1,2,…,M. (1)

After the EMD operation, xm(t) is decomposed into multiple
IMFs Imp(t) and a residual rm(t). The number of IMFs is denoted
byK, and the decomposition result can be described as shown in Eq.
2.

xm (t) =
K

∑
p=1

Imp (t) + rm (t) . (2)

Then, to eliminate the influence of white noise on real IMF
components, the mean values of the corresponding IMFs and
residuals are computed, as shown in Eqs 3, 4, respectively.

IMFp (t) =
1
M

M

∑
m=1

Imp (t) , (3)

re (t) = 1
M

M

∑
m=1

rm (t) , (4)

where IMFp(t) denotes the pth IMF component after the
EEMD operation.

Based on these IMF components and the residual, the EEMD
result of the original PQD signal x(t) can be further obtained as
shown in Eq. 5.

x (t) =
K

∑
p=1

IMFp (t) + re (t) . (5)

Relative to the EMD method, the EEMD technique offers
an enhanced ability to diminish noise impact and alleviate the
mode mixing issue, leading to a more precise extraction of
PQD signal modes. However, the typical empirical approach to
determining the number of IMFs can introduce artifacts or omit vital
information when handling complex PQD signals. To address this,
the novel optimized mode decomposition strategy is introduced.

This method adaptively configures the number of IMFs based on
the specific characteristics of the PQD signal, thereby optimizing
the decomposition process and ensuring a more accurate signal
representation.

2.2 Proposed OMD

In essence, EEMD builds upon the foundation of the EMD
method, with each IMF correlating to a specific frequency range.
Within this range, EEMDeffectively extracts the inherent oscillatory
elements of the PQD signal (Prosvirin et al., 2019). Consequently,
EEMD’s operation can be likened to a form of band-pass filtering,
where signal energy divergent from the central frequency is
attenuated. It follows that the cumulative energy across all IMFsmay
decrease if the number of decompositions is either excessively high
or low. Furthermore, the aggregate energy of the IMFs is invariably
less than that of the original PQD signal.

Considering this analysis, an effective selection method of
the decomposition number is presented. This method involves
comparing the total energy of all IMFs subsequent to the EEMD
process. The cornerstone of the optimized mode decomposition
technique is the dynamic adjustment of the decomposition number
K, aiming to maximize the total IMF energy. This enhancement
renders the original EEMD more adaptable, thereby significantly
bolstering the precision of disturbance identification across a
spectrum of complex PQD signals.

The PQD signal is denoted as x(t), and the initial total energy
can be defined as follows:

E (x) =
S

∑
j=1

x2 (j) , (6)

where S represents the number of sampling points and x(j)
represents the amplitude of x(t) at different sampling points.

After the EEMD operation, multiple mode signals are obtained,
and the total energy of these IMFs can be expressed as follows:

E (IMF) =
K

∑
p=1

E(IMFp) , (7)

and there is

E(IMFp) =
S

∑
j=1

IMF2p (j) , (8)

where E(IMF) represents the energy summation of the IMF signals
when the corresponding decomposition number is K and IMFp(t) is
the pth IMF signal.

Based on Eqs 6–8, the energy ratio between the IMFs and the
original PQD signal can be further computed, which is given as
shown in Eq. 9.

ξ =
E (IMF)
E (x)
× 100%. (9)

In OMD, when the sampling frequency and sampling period are
determined, the corresponding sampling points S are fixed. Namely,
the original disturbance energy E(x) is a fixed value.Therefore, once
the energy ratio ξ reaches the maximum, the corresponding total
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energy of all IMFs also obtains the maximum, which demonstrates
that the decomposition number K is optimal.

After the OMD-based feature extraction process, an improved
attention convolutional neural network model is further proposed
to identify different complex PQD signals based on the IMFs
provided by OMD.

3 Improved attention convolutional
neural network for PQD identification

3.1 Principle of the convolutional neural
network

As a quintessential archetype of deep learning, convolutional
neural networks (CNNs) are distinguished for their superior
feature extraction proficiency. The CNN architecture uniquely
integrates feature extraction with classification, thereby optimizing
the utilization of informational resources. This dual capability has
propelled its adoption across a broad spectrum of applications,
including image recognition, fault diagnosis, and natural language
processing. Complementing its practical applications, scholarly
inquiries have substantiated CNNs’ effectiveness in PQD signal
identification, consistently delivering a commendable performance.
Consequently, this paper selects the CNN as the primary model for
PQD signal classification, leveraging its validated strengths in this
specialized area of study.

Generally, the CNN contains the input layer, convolutional
layer, pooling layer, fully connected layer, and output layer.
When it is used for PQD identification in this article, the
input layer is the IMFs of the PQD signals. The feature
information of IMFs is extracted by the convolutional
layer. Then, the pooling layer is utilized to reduce feature
dimensions to improve network efficiency. Thus, the pooling
layer is also called the downsampling layer. The classification
performance of the CNN is usually reflected by combining
multiple convolutional layers and pooling layers. The fully
connected layer is used to combine the extracted features in
a nonlinear manner and then transfer the feature information
to the output layer. Namely, the fully connected layer is not
expected to have feature extraction ability, but it attempts to
use existing higher-order features to complete the identification
goal. Finally, the output layer outputs the classification result
of the CNN.

For some simple PQD signals, a traditional CNN can
typically yield satisfactory classification outcomes by increasing
the count of the convolutional and pooling layers. However,
this approach tends to escalate processing time, making it
challenging to fulfill the real-time processing demands of
PQD detection. Furthermore, when it comes to complex PQD
signals, classification accuracy may suffer. To achieve a balance
between high identification accuracy and expedient detection
time, this work introduces an advanced attention convolutional
neural network. This innovative model intends to significantly
amplify the inherent feature extraction prowess of the CNN.
This approach aims to deliver precise classification of PQD
signals while adhering to the time-sensitive requirements of
real-time detection.

3.2 Proposed IACNN

In the improved attention convolutional neural network, the
enhancement of feature extraction is approached from two strategic
angles. First, the deployment of multiple convolutional kernels of
varying sizes supplants the traditional singular kernel, enabling the
capture of both global and local signal characteristics. This variety
allows for the integration of diverse feature sets, culminating in a
composite feature that encapsulates more detailed information.

Second, the integration of an attention module subsequent to
the convolutional layers serves a pivotal role. Its primary function is
to direct the IACNN’s focus toward salient features of disturbances
while diminishing the influence of non-essential elements. The
objective is to streamline the flow of pertinent information within
the model. The configuration of the proposed IACNN architecture
is illustrated in Figure 1, with an in-depth exposition provided in the
subsequent sections.

Instead of the single convolution kernel, the sizes of 3× 3
and 7× 7 are used to obtain the local and global information,
respectively. Taking the 3× 3 convolution as an example, the output
of the convolutional layer can be determined as shown in Eq. 10.

Zc3 = f (Wp ∗ X+ bp) , (10)

whereWp denotes the weight of the convolutional kernel in the pth
layer, bp is the corresponding bias, X is the input, ∗ denotes the
convolution operator, and f is the activation function. In this article,
the scaled exponential linear unit (SELU) activation is used in both
the convolution layers and fully connected layers.The description of
SELU can be expressed as shown in Eq. 11.

SELU (x) = λ
{
{
{

x, ifx > 0

αex − α, ifx ≤ 0,
(11)

where λ = 1.0507 denotes the scale constant and α is a constant.
In addition, to increase the convergence speed and accelerate the

network stability, batch normalization is added in the convolutional
layer, and the convolution result is normalized to a Gaussian
distribution before the activation operation.

After the convolutional layer, motivated by the work of
Woo et al. (2018), the attention modules are placed to emphasize
the important disturbance feature. The attention modules consist
of channel attention and spatial attention modules, where channel
attention is used to reflect ‘what’ is meaningful, and spatial attention
is used to find ‘where’ is an informative part. These two attention
modules are placed as shown in Figure 2.The PQD feature extracted
by the convolutional layer is first processed by the channel attention.
The description of the channel attention can be expressed as shown
in Eq. 12.

Mc (Zc3) = σ(MLP(AvgPool(Zc3)) +MLP(MaxPool(Zc3))) , (12)

where Zc3 is the output of convolution 3× 3, AvgPool and MaxPool
represent the average-pooling and max-pooling operations,
respectively, MLP denotes the multi-layer perceptron, and σ
represents the sigmoid function.

After the channel attention, the output of the disturbance feature
is adjusted as shown in Eq. 13.

Zc3
′ =Mc (Zc3) ⊗Zc3, (13)
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FIGURE 1
Structure of the proposed IACNN.

FIGURE 2
Operation process of attention modules.

where ⊗ represents the element-wise multiplication.
Next, the new disturbance feature is processed by the spatial

attention, which can be described as shown in Eq. 14.

Ms (Zc3
′) = σ(Convn×n ([AvgPool(Zc3

′) ;MaxPool(Zc3
′)])) , (14)

where Convn×n denotes the convolutional layer with the size of n× n.
The attention layer output can be obtained after the spatial

attention, which can be expressed as shown in Eq. 15.

Zc3
′′ =Mc (Zc3

′) ⊗Zc3
′. (15)

Then, the pooling layer is deployed for downsampling, and
the pooling size is 2× 2. The convolution, attention, and pooling
are carried out twice in the proposed IACNN. After that, the
features from convolutions 3× 3 and 7× 7 are fused to provide more
comprehensive disturbance information. In this way, the IACNN
can further improve its classification performance. Finally, the
IACNN can output the classification result after the fully connected
(FC) layer. The number of FC layers is set to five in the proposed
IACNNmodel.

4 Illustrative example

To evaluate the efficacy of the proposed OMD–IACNNmethod
for PQD classification, a series of comparative experiments are

conducted. These experiments are designed in accordance with the
IEEE (2019) and draw upon findings by Tang et al. (2020). A total of
28 PQD types are examined, which include nine categories of single
PQDs and 19 variations of complex PQD signals. The PQD signals
under test are cataloged in Table 1. In the experimental setup, each
PQD category is represented by a dataset of 2,000 samples generated
in MATLAB. The datasets are partitioned into three subsets: 60%
for training, 20% for validation, and the remaining 20% for testing
purposes. Furthermore, the PQD signals are characterized by a
fundamental frequency of 50 Hz and a sampling frequency of
3,200 Hz, with a sampling duration set to capture 640 data points
per PQD sample, equivalent to a 10-s observation window.

4.1 Feature extraction using OMD

The features extracted by the OMD method directly affect the
classification accuracy. In OMD, the decomposition number ranges
from 6 to 10, and the specific number is determined based on the
energy ratio of IMFs. Taking one complex PQD signal C27 as an
example to explain the set of decomposition numbers for OMD,
when the decomposition number ranges in OMD, different energy
ratios of IMFs are listed in Table 2.

From Table 2, it can be seen that the energy ratio has a lower
value when the IMF number is small, which demonstrates that the
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TABLE 1 Twenty-eight types of PQD signals.

Class Types Class Types

C1 Normal C15 Spike + harmonics

C2 Sag C16 Sag + transient

C3 Swell C17 Swell + transient

C4 Interrupt C18 Interrupt + transient

C5 Harmonics C19 Spike + transient

C6 Flicker C20 Sag + transient + harmonics

C7 Transient C21 Swell + transient + harmonics

C8 Spike C22 Interrupt + transient + harmonics

C9 Notch C23 Flicker + transient + harmonics

C10 Sag + harmonics C24 Spike + transient + harmonics

C11 Swell + harmonics C25 Sag + flicker + harmonics

C12 Interrupt + harmonics C26 Swell + flicker + harmonics

C13 Flicker + harmonics C27 Spike + harmonics + sag

C14 Transient + harmonics C28 Spike + harmonics + swell

TABLE 2 Energy ratios of IMFs under different decomposition numbers.

PQD type IMF number Energy ratio (%)

C27

6 60.38

7 61.19

8 62.05

9 62.02

10 61.98

PQD signal is not fully decomposed. When the IMF number is over
eight, the energy ratio decreases with the increase in its number,
indicating some false components are generated. Therefore, the
optimal number of OMD is set to eight for proper decomposition.
The corresponding decomposition result is shown in Figure 3. It is
worth mentioning that IMF0 denotes the original C27 signal and
RES denotes the residual. In this way, different PQD signals can be
set the optimal decomposition number.

4.2 Verification for OMD and the IACNN

In addition, to verify the improvement of OMD and the
IACNN for the PQD classification performance, the accuracy

of OMD–IACNN is compared with other combination methods,
including EEMD–IACNN, OMD–ACNN, and EEMD–CNN. It is
important to note that the ACNN model differs from the IACNN
in that it utilizes a singular convolutional approach as opposed
to the latter’s advanced attention-fused convolutional strategy.
For the input features of the various CNN architectures, a fixed
dimension of 640× 10 was established, where 640 represents the
length of IMFs and 10 represents the highest decomposition level.
In instances where the decomposition level of OMD fell short of
10, null values were padded with zeros to maintain a consistent
input size. The comparison results under different noise levels are
presented in Figure 4.

Figure 4 shows that both the feature extraction and the classifier
have an obvious effect on PQD identification. On the one hand,
the OMD–IACNN has higher classification accuracy compared to
the EEMD–IACNN under different noise levels. This demonstrates
that the OMD can provide more reliable disturbance feature
information by adjusting the decomposition number adaptively,
proving its effectiveness. Furthermore, the superior performance of
OMD–IACNN over OMD–ACNN and EEMD–CNN underscores
the advantages of incorporating an attention mechanism and
a convolution fusion strategy into the CNN framework. This
combination bolsters the CNN’s ability to discern disturbancesmore
accurately. Notably, the OMD–IACNN maintains a high accuracy
rate of 99.2% evenunder 20 dBnoise, affirming its robustness against
noise interference. In addition, Figure 4 also shows an increase in
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FIGURE 3
Decomposition result of OMD for C27.

FIGURE 4
Accuracy comparison under different noise levels.

model accuracy when the noise level shifts from 40 dB to 20 dB;
the reason is that the PQD signals are changeable before the noise
is added, which can reflect the randomness of the classification
result. Such results are indicative of the model’s strong anti-noise
capabilities, making it a suitable tool for PQD identification under
challenging conditions.

4.3 Comparison with other PQD
classification frameworks

To further verify the proposed OMD–IACNN, some existing
PQD detection frameworks are selected for a comprehensive
comparison. The comparison result is given in Table 3.

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1363028
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wu et al. 10.3389/fenrg.2024.1363028

TABLE 3 Comparison with some existing frameworks.

Framework Type of PQD Noise (dB) Accuracy (%)

ACMP + SVM Z.T.; Motlagh et al. (2021) 16 20 97.13

HT + Slip-SVDNSA; Wang et al. (2019) 11 20 98.45

OST + KSVM; Tang et al. (2020) 24 20 98.82

ICEEMDAN + AdaKNNEO; Liu et al. (2021) 21 30 96.10

EITD + GSCNN; Zhu et al. (2023) 27 20 98.56

OMD + IACNN 28 20 99.20

FIGURE 5
Hardware platform. (A) Experimental PQD collection process. (B) PQD identification flowchart.

TABLE 4 Accuracy of experimental PQD signals.

Type Accuracy
(%)

Average
accuracy

(%)

Test time
(ms)

C1 100

97.37 115

C2 98.75

C3 99.375

C4 93.75

C5 95

It can be seen from Table 3 that the proposed OMD–IACNN
model has a higher PQD identification accuracy compared with
some other popular detection frameworks. First, more PQD types

are considered in our OMD–IACNN, which is important to address
the challenges of power grid complexity. In addition, under the
same noise level, the proposed OMD–IACNN can obtain the
highest accuracy. For example, the accuracy of the OST–KSVM
and the EITD–GSCNN is 98.82% and 98.56%, respectively, while
that the OMD–IACNN is 99.20%. The result demonstrates that the
optimal mode decomposition and improved network structure can
significantly enhance disturbance detection performance.Therefore,
the proposed OMD–IACNN is more suitable for complex PQD
identification.

4.4 Experimental verification analysis

To further ascertain the practical applicability of the proposed
methodology, a hardware experimental platform was employed to
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capture authentic PQDs signals.The hardware platform is presented
in Figure 5.

Figure 5 shows that the hardware platform is based on the
AC6801 series AC power source. After the experimental PQD
signals are collected, they can be identified by the proposed
OMD–IACNN model in PC. The experiment encompasses a
suite of PQD scenarios: C1 (normal), C2 (sag), C3 (swell), C4
(interrupt), and C5 (harmonics). We adhered to a sampling
frequency of 3,200 Hz and a total sampling duration of 10 s. To
reinforce the robustness of the identification process, each PQD
category was subjected to 160 random tests, with the results
presented in Table 4.

The data in Table 4 attest to the resilience of the OMD–IACNN
approach when applied to experimental PQD signals. An
average classification accuracy of 97.37% was achieved with
the OMD–IACNN, underscoring its efficacy in accurate
detection. Moreover, the average time taken to test each
PQD sample was less than the time required for signal
sampling, highlighting the model’s commendable real-time
performance. Collectively, these experimental findings reinforce the
OMD–IACNN model’s superiority in the identification of multiple
PQD types.

5 Conclusion

In this paper, a compound power quality disturbance detection
framework is proposed to improve the identification performance
in power systems with high penetration of RERs. The optimal
mode decomposition is first deployed to select the optimal
decomposition parameters. The performance under various energy
ratios and different numbers of mode components demonstrated
that a better parameter can be successfully selected with a strong
anti-noise ability. Then, an improved attention-based CNN is
implemented to identify the PQDs based on the results from
OMD. The experiment comparison reveals that the useful feature
information can be incorporated into the IACNN model, resulting
in improved accuracy. The experiments under different noise
levels and numbers of PQDs reveal that the proposed framework
has profound detection performance, with approximately 99.2%
performance, which is better than some state-of-the-art approaches.
The test based on the emulator indicates that the real-time
performance can be satisfied. However, the convolution process
is still time consuming, and some more complex and unknown
PQD signals may be produced with the development of the RERs
system. Further research can focus on the network parameter
simplification method and explore more possible complex PQD

signals. We will also focus on the PQD control using the advanced
grid-synchronization-based inverter control method to eliminate
the PQD issues.
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