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To address the challenges posed by the fast-charging demand of electric
vehicles, causing feeder load and voltage imbalances during operation, this
paper introduces a spatio-temporal pricing strategy tailored to enhance
feeder operation equilibrium. This approach facilitates the spatio-temporal
guidance of fast-charging loads for electric vehicles in operation. This paper
begins by formulating a spatio-temporal distribution model for electric vehicle
fast-charging loads, considering owners’ preferences. It further develops a
behavioral model for the travel choices of electric vehicles, illustrating the
impact of spatio-temporal electricity pricing at fast-charging stations on load
distribution. Next, it proposes a multi-objective spatio-temporal pricing model
and its solution method specifically designed for feeder-balance-oriented fast-
charging stations. This model targets the minimization of the spatio-temporal
imbalance in feeder voltage and load. It takes a comprehensive approach,
considering the constraints of the spatio-temporal load distribution model
and optimal power flow model. The resulting spatio-temporal pricing model
for fast-charging stations is effectively solved using the extended Pareto
evolutionary algorithm. To validate the effectiveness of the proposed method
in achieving feeder balancing, this paper analyzes two examples: a self-built 29-
node road network and a 9-node distribution network, as well as a 66-node road
network and a 33-node distribution network in the Xinjiang region. The results
show that the proposed method can effectively guide the charging of electric
vehicles and make the load distribution more balanced.
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1 Introduction

With the advancement of low-carbon economy construction, electric vehicles (EVs) are
rapidly replacing gasoline vehicles. According to the statistics of the Ministry of Industry
and Information Technology of China, the number of pure EVs in China has exceeded
1,310 units by the end of 2022 (The Central People’s Government of the People’s Republic
of China, 2023). Large-scale EV appear to the distribution network has become an inevitable
trend that can be predicted in the short term. The huge charging demand of EVs will lead to
a rapid and unbalanced growth of regional loads in a short period, which will have a
significant impact on the safe and economic operation of the distribution network (Chen
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et al., 2018; Lei et al., 2020; Mei et al., 2020). Under the uncontrolled
access of EVs, the distribution network often needs to carry out
super-redundant capacity expansion and reconstruction of some
distribution substations to ensure the peak charging demand of EVs.
However, due to urban road construction and other reasons, the
distribution of EV charging loads shows serious uneven
characteristics, which results in the inefficient phenomenon of
redundant construction of some stations and incomplete capacity
utilization of some stations (Liu et al., 2012; Cao et al., 2021; CUI
et al., 2021).

Therefore, the optimization of EV charging loads has become a
hot topic in the current distribution network research. Many studies
have obtained information such as the start and end time of
charging, state of charging, and expected power of EVs through
the statistical analysis of the historical travel pattern of EVs (Kang
et al., 2004; Yao et al., 2007; WANG et al., 2019). Then, the
adjustable boundaries of EVs were determined and used as
constraints to optimize the EV charging power (ChenPan and
Yu, 2019; Pan et al., 2019). These studies have considered only
the temporal tunability of EV charging loads and neglected their
spatial flexibility. In addition, these works require the EV dwell time
to be longer than the minimum charging time for charging to the
desired power level, which is more suitable for slow-charging
scenarios such as homes or commercial buildings. In fact, the
impact of EV charging loads on the distribution network comes
more from operating vehicles, which frequently have fast-charging
needs. Operational vehicles are usually expected to complete
charging in a short period, and their charging options are highly
autonomous, with large power impacts and little adjustable space.
However, due to its profitability, this type of vehicle usually
considers the charging price and geographical location when
choosing a charging station, which is highly flexible in both time
and space dimensions. Therefore, knowing how to rationally
consider the spatial location of fast-charging stations and the
temporal characteristics of grid loads to effectively set price and
realize the guidance of temporal and spatial flexibility of operating
vehicles is important to reduce the load imbalance phenomenon in
the transformer stations.

Among them, time flexibility has been discussed by the
engineering and academic communities for a long time. In
engineering, the current charging price composition of
mainstream service providers such as “Special Calls” and “XiaoJu
Charging” is composed of time-of-use electricity prices and service
fees, and the time guidance for EV access is realized through the
electricity price setting of three periods of peaks and valleys.
However, in the actual research, it is found that these service
providers have greater autonomy in setting the price and have
not been effectively regulated. The service charge depends on the
price of urban lots, which, to some extent, realizes the guidance of
EV spatial flexibility, but it fails to consider the load distribution of
the grid and may instead exacerbate phenomena such as the
imbalance of the transformer stations. In the academic
community, a wide range of scholars have discussed the
development of time-of-use charging price for various scenarios
(LI et al., 2022; WANG Jun et al., 2023; WANG Yifei et al., 2023). LI
et al. (2022) used time-of-use electricity prices to guide EV charging
in residential areas for a long time to reduce the peak-to-valley
difference. WANG Jun et al. (2023) took the carbon price into

account and designed the transfer response function of EV charging
load, to optimize the EV charging cost and the carbon emission cost
of power generation at the same time. On the other hand, WANG
Yifei et al. (2023) designed a game model for distribution network
operators and charging service aggregators to simplify the EV
charging selection process using virtual energy storage for time-
of-use price development. It can be seen that the above studies are
generally for EV charging loads with long access times, and the
simplified expression of the EV charging load transfer process as a
supply and demand function is only applicable to non-fast-charging
demand scenarios such as home-based charging piles.

Spatial flexibility has gradually become a hot topic of academic
discussion in recent years with the deepening of the coupling of the
transportation network and the power grid. The current research
can be further divided into two directions: marginal pricing (Li et al.,
2013; Liu et al., 2016; Xie et al., 2021) and integrated pricing. The
former uses the distribution locational marginal power price
(DLMP) as the basis price (Li et al., 2013), which solves the
distribution optimal power flow (DOPF) to determine the
constraint multipliers and serves as the shadow price to realize
spatial pricing (ALIZADEH et al., 2016; Wei et al., 2018). This
approach is a good representation of the marginal cost of node
charging when blockage occurs in the distribution network
(ALIZADEH et al., 2016). Furthermore, at the present stage
when the distribution network is operated in a radial shape and
the phenomenon of large-scale current reversal does not appear
widely, the blockage phenomenon of the distribution network can
usually be solved by the expansion and reconstruction project. At
this time, the method can only reflect the marginal network loss cost
brought by each node and cannot play a role in promoting regional
load balance. As for integrated pricing (Cai et al., 2022; XIE et al.,
2022), pricing is discussed to be achieved through an interactive and
iterative pricing approach of traffic and power simulation systems,
led by integrated grid demands such as peak–valley differentials and
economic dispatch. Unlike slow-charging scenarios for EVs in
households or commercial buildings, the charging behavior of
operating vehicles with fast-charging loads is influenced by a
combination of factors such as the current location of the EV,
charging station fees, EV user charging preferences, and road
congestion. Therefore, the prediction of the EV charging
behavior needs to be based on the coupling of distribution
network–road network–EVs (Shao et al., 2017). On the one
hand, the travel and charging behavior of EVs are influenced by
road traffic flow and charging costs. On the other hand, the travel
and charging behavior of EVs also have a reverse effect on changes in
road traffic flow and distribution network trends. Reasonable
guidance methods can improve the trend of road and
distribution grids (Li et al., 2023). Therefore, it is crucial to
accurately characterize EV travel behavior, predict changes in
road traffic flow, and propose reasonable guidance methods. In
existing studies, the elasticity matrix (Cai et al., 2022), static traffic
equilibrium model (XIE et al., 2022), and semi-dynamic traffic
equilibrium model have been used to portray the EV charging
load-shifting process under the guidance of price, achieve the
evaluation of price, and carry out iterative optimization. Most of
these studies still focus on simulating the interaction of non-
dynamic traffic flows in fixed scenarios, which, to some extent,
ignores the stochastic nature of EV traveling. In addition, these
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studies usually take the traditional distribution system as the object
of discussion, ignoring the active support capability of distributed
resources in distribution networks.

Therefore, in Section 2, this article first constructs a spatio-
temporal pricing framework based on the interaction process
between the transportation system and the power system. In
Section 3, the EV driving path and its fast-charging station
selection process are simulated dynamically by constructing a
spatio-temporal distribution model for fast-charging loads
considering the owner’s preference. Then, in Section 4, the
distribution optimal power flow model considering the energy
resource is introduced to realize the calculation of the voltage
and load ratio imbalance under the price-guided EV charging.
Furthermore, a fast-charging station pricing method oriented to
the load balance is further proposed to realize the spatio-temporal
power pricing and reduce the load ratio imbalance of transformer
stations. Specifically, it is based on the improved Strength Pareto
Evolutionary Algorithm (SPEA2) (Shao et al., 2017), which
accomplishes the interaction between the spatio-temporal
distribution model for fast-charging loads and the optimal power
flow model to realize the iterative search of spatio-temporal prices.
Finally, in Section 5, the validity and laudability of the proposed
methodology are verified on a self-built small-scale test case and a
real road network case in a region of Xinjiang.

2 A spatio-temporal pricing framework
for fast-charging stations

The spatio-temporal pricing problem for fast-charging stations,
which is essentially a power system optimization problem based on
dynamic traffic flow, can be decomposed into the power system
pricing optimization problem at the upper level and the traffic flow
solving problem considering the impact of electricity price at the
lower level, whose relationship is shown in Figure 1. At the lower
layer, the traffic flowmodel is introduced to portray the EV traveling
path cost. The subjectivity of EV traveling path selection is described
by the owner’s preference model, to incorporate the pricing strategy
into the traffic flow solving problem. Furthermore, the randomness
of EV traveling choice is ensured using the stochastic Monte Carlo
probability sampling method, and the shortest circuit method is
used to solve the traveling paths of the final EV monoliths, which

form the spatio-temporal fast-charging loads of EV in the day ahead.
In the upper layer, the distribution network operator relies on the
SPEA2 to generate the spatio-temporal pricing population to be sent
down to the lower layer of the problem. After obtaining the
corresponding charging loads, the optimal power flow is solved
by using the second-order conical planning, and the overall spatio-
temporal imbalance of the voltage and load for the transformer
station is then calculated. The price population is updated according
to the obtained results. The above process is repeated until
acceptable spatio-temporal price results are obtained.

3 The spatio-temporal distribution
model for fast-charging loads
considering EV owners’ preferences

To reflect the dynamic impact of different prices on the spatio-
temporal distribution of EV loads, the preference of vehicle owners for
road access time and price is modeled to simulate the driving behavior
choices of EV owners. Thus, it indirectly reacts to the influence of price
on road flow and power grid currents and assists in accomplishing the
spatio-temporal pricing for charging stations. The road network is a
typical graph structure, which can be represented as Gr(Vr, Er), where
Er is the set of road segments andVr is the set of road network nodes. In
addition, a road weight matrixD of size |Er| × |Er| is set to describe the
length of each road segment and the connection relationship between
nodes. When there is no road segment in road network nodes i, j,
D(i, j) takes the value of infinity. Otherwise, D(i, j) takes the value to
indicate the length of road segments i, j.

3.1 EV travel patterns and speed
modeling methods

In the urban road network, there are mainly two types of
vehicles: private vehicles and operating vehicles. First, to simulate
the traveling pattern and dynamic driving process of EVs, EV travel-
return probability distribution, EV destination dynamic selection,
and EV dynamic speed calculation models are constructed.

In terms of the probability distribution of EV travel-return trip,
according to the statistical fitting of the traveling pattern, the EV
driving traveling time approximately obeys the normal distribution,

FIGURE 1
Spatio-temporal pricing framework.
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and its return time approximately obeys the Cauchy distribution.
The corresponding distribution of the probability density function is
shown as Eqs (1)–(3):

ft1 t( ) � 1���
2π

√
*0.6

e−
t−8.75( )2
2*0.62 , 0≤ t≤ 24, (1)

ft2 t( ) � 1

0.75π 1 + 3 t − 17.2( )2[ ], t1 ≤ t≤ 24, (2)

ft3 t( ) � 1

0.25π 1 + 16 t − 22( )2[ ], t1 ≤ t≤ 24, (3)

where the demand for commuting trips by a private vehicle is
obtained from the probability distribution of t1, t2. The operation
start time and operation end time of the operating vehicle are
obtained from the probability distribution of t1, t3, respectively.
In addition, according to the 2011 Beijing Transportation
Development Annual Report, the fitting of data on the
commuting time of Beijing citizens on weekdays could
be obtained.

In addition, for the dynamic selection of EV destinations, it is
necessary to determine the origin–destination (O–D) of EVs at
different moments (Zhang et al., 2017). In fact, there are significant
functional differences between different areas of the urban road
network. According to the functional classification in the
government control plan, urban areas can be roughly divided
into three types: residential areas, work areas, and commercial
areas. Different EV traveling directions are closely related to the
functions of the areas. Private cars usually travel in the direction of
“residential area–work area” during commuting time. Operational
vehicles are more flexible as they usually undertake multiple
consecutive trips, but their choice of traveling area also has a
typical temporal distribution. In order to realize the simulation of
EV trips and charging loads of operating vehicles, it is necessary to
determine the function of the area to which the nodes belong.
Therefore, the residential area node set Vr,R, the work area node set
Vr,W, and the commercial area node set Vr,B are set. Specifically, the
operating vehicle needs to select the next destination according to
the passenger demand after the execution of the O–D pair. To reflect
the time distribution characteristics of regional function selection
and the randomness of passenger selection, the weight wi,t of node i
being selected as the new destination at moment t is described as the
sum of the discrete probability values of node function attributes and
white noise. Then, the probability Pi,t of node i being selected
according to the obtained weight is calculated, as shown in
Eqs (4)–(9).

wi,t � fEr,R t( ) +Wi,t, i ∈ Er,R , (4)
wi,t � fEr,W t( ) +Wi,t, i ∈ Er,W, (5)
wi,t � fEr,B t( ) +Wi,t, i ∈ Er,B, (6)

fEr,B t( ) + fEr,W t( ) + fEr,B t( ) � 1, (7)
0≤Wi,t ≤ 1, (8)

Pi,t � wi,t∑
i∈Vr,R

wi,t + ∑
i∈Vr,W

wi,t + ∑
i∈Vr,B

wi,t
, (9)

where fEr,R(t), fEr,W(t), a fEr,B(t) represent the discrete probabilities
of nodes with different functional attributes, and their sum is 1.Wi,t

is the white noise with values from 0 to 1, which represents the
randomness of node i being selected. Pi,t is the probability that node

i is selected as the new starting point, which is equal to the ratio of
the selected weight of node i to the total weight of all nodes.

After specifying the EV travel options, the speed of road network
traveling also needs to be considered to dynamically simulate the EV
travel. The EV traveling speed is affected by the road class and traffic
volume of the road section, which can be portrayed using the speed-
flow utility model (Shao et al., 2017) as follows:

vij t( ) � vij,m/ 1 + qij t( )/Cij( )( β), (10)
β � a + b qij t( )/Cij( )n, (11)

where vij,m represents the zero flow velocity of the EV in the directly
connected road section (i, j); Cij represents the traffic capacity of
road section (i, j), which depends on the road grade; qij(t)
represents the traffic rate of road section (i, j) at time t; the ratio
of qij(t) toCij represents the saturation of road section at time t; and
a、b、n represent the adaptive coefficients at different road grades.

3.2 EV owner path selection
preference model

The path selection of operational EVs is usually affected by
several aspects, which can be divided into the following: 1) when the
power is sufficient, the path communication time is usually the most
concerned factor for operational vehicles; 2) when the power is
insufficient, the vehicle owner needs to recharge the vehicle as
quickly as possible to continue the operation at the lowest
possible price, in which case the access time and the cost of
recharging together become the most important factors affecting
their decision.

It can be seen that for the simulation of operating vehicle path
selection, the influencing factors can be summarized into two
aspects: path travel time and charging cost. The path traveling
time is decomposed into the traveling time of the multiple road
sections passed through, which, in turn, depends on the length of the
road sections and the traveling speed of the road sections. The length
of the road section is characterized by D(i, j), and the road section
traveling speed can be calculated by (4). Therefore, the road section
passage delay matrix Tt can be formed at any moment t, and the
passage time of its road section (i, j) is calculated as follows:

Tt i, j( ) � D i, j( )/vij t( ). (12)

For each fully charged EV owner, the route selection is
dynamically adjusted at each moment according to the real-time
traffic flow and roadway passing time. At this point, the O–D pair
and delay matrix Tt are known to any EV owner. Therefore, EV
traffic path selection can be abstracted into the global shortest path
problem of the weighted graph Gr(Vr, Er,Tt), and its travel time
Ct(OEV,t, DEV,t) is characterized as follows:

Ct Ot, Dt( ) � min
xt i,j( ) ∑i ∑j Tt i, j( ) × xt i, j( ), (13)

where OEV,t represents the starting point of the EV owner at time t
(or the end point of the road section if it is in the road section);DEV,t

represents the end point of the EV owner at time t; and xEV,t(i, j)
represents the path selection of the EV owner at time t, which is the
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0–1 variable, and when the car owner selects the road section from i
to j, its value is 1; otherwise, it is 0. At the same time, the path
selection of the owner’s EV needs to satisfy the following constraints:

∑
i

xt i, j( )≤ 1,∀j ∈ Vr, (14)

∑
j

xt i, j( )≤ 1,∀i ∈ Vr, (15)

∑
i

xt i, j( ) −∑
k

xt j, k( ) � 0,∀j ∈
Vr

Ot, Dt{ }, (16)

∑
j

xt Ot, j( ) � 1, (17)

∑
i

xt i, Dt( ) � 1, (18)

where Eqs 14–15 indicate the radial constraint of the path; i.e., any
node can only be used as a starting and ending point once. Equation
16 indicates the connectivity of the intermediate segment selection
of a non-starting node. Equations 17–18 indicate that the starting
node must be passed once as the starting and ending points.

Notably, this problem belongs to the integer programming
problem, which will be difficult to solve under larger road
networks. Therefore, Dijkstra’s algorithm, which is widely used in
graph theory (Zhang et al., 2017), is used here to solve it, and the
path selection with sufficient power can be obtained.

As for EVs with charging needs, they need to target several
nearby fast-charging stations for destination selection. In this case,
the EV’s path selection needs to solve the globally shortest path
problem for several O–D pairs and calculate its traveling time and
charging cost. An example of a fast-charging station c located at
node Dc is illustrated.

First, according to Eqs 13–18, the traveling time Ct(Ot, Dc) can
be calculated as follows:

Ct Ot, Dc( ) � min
xt i,j( ) ∑i ∑j Tt i, j( ) × xt i, j( )

s.t. 14( ) − 18( )
⎧⎪⎨⎪⎩ . (19)

Based on the results obtained, the cost of its charging is further
calculated as follows:

Cp Ot,Dc( ) � ∑tc,max

tc�ta,c
ρDc,tc

× Etc, (20)

ta,c � t + ⌈Ct Ot, Dc( )⌉, (21)

tc,max � ⌈Eexp ,c

Ac
⌉, (22)

Eexp ,c � lSOC,pre − lSOC,c( ) × Emax, (23)
lSOC,c � lSOC,t − Ct Ot, Dc( ) × Eper

Emax
, (24)

Etc � Eexp ,c − Ac × tmax − 1( ), if tc � tmax

Ac ×Δt, else{ , (25)

where Cp(Ot,Dc) represents the charging cost of the EV at the fast-
charging station c; tc is the charging time at the fast-charging station
c at this time; and ρDc,tc

, Etc represent the charging price at the node
and the charging power of EV at time tc, respectively. ta,c is the time
when the EV arrives at the fast-charging station c; tc,max is the
charging end time at the fast-charging station c; Eexp ,c is the expected

charging power of the EV after it reaches c; Ac is the charging power
per unit time of the fast-charging station c; lSOC,pre, lSOC,c are the
expected state of charge of the EV and the state of charge when it
reaches c, respectively; lSOC,t is the state of charge of the EV at time t;
Emax is the EV capacity; Eper is the power consumption per unit time
of EV driving; Δt is the simulation time interval; and �•� is an
upward rounding operation.

Considering the different sensitivities of different EV owners to
time and electricity price, this paper sets the distance loss weight ω1

and charging electricity price weight ω2 to measure the willingness
of different EV owners in charging station selection. At this time, the
fast-charging station choices of each EV owner are as follows:

D*
c � argmin

c
ω1Ct Ot, Dc( ) + ω2Cp Ot, Dc( ) c ∈ C|{ }, (26)

where C represents the set of fast-charging stations to be selected;D*
c

is the node where the selected fast-charging station is located.

3.3 Simulation of the spatio-temporal
distribution of fast-charging loads based on
the Monte Carlo method

After completing the construction of the relevant model for the
dynamic simulation of EV travel, the stochastic simulation of the
electricity price’s guidance on the spatio-temporal distribution of
regional fast-charging loads is realized based on the Monte Carlo
method, the steps of which can be summarized as follows:

Step 1: The time is initialized to 0, and each EV is assigned an
initial location Oi, an initial travel-return time t1, t2, t3, an
initial state of charge lSOC,t, a spatio-temporal price, and
other relevant parameters based on the type of car using
random sampling.

Step 2: The state of each EV is iterated at time t, and O–D pairs
are formed according to the EV type. For the private car, it
has a fixed O–D pair and only needs to determine whether
its time is t1, t2 to be clear; for the operating car, on the
basis of the private car, it also needs to determine whether
it completes the current order trip, i.e., whether it arrives at
the end point of the current O–D pair, and if it does, then
the current node is taken as the starting point, and
according to the results obtained from (9), random
sampling generates the destination of its trip in order
to update the O–D pairs.

Step 3: If the O–D pair of the EV is confirmed, its path selection is
dynamically updated at the moment t. Equations 13–18
and 19–26 are solved to develop optimal traveling paths
for different EVs with sufficient power and charging
demand for EVs, respectively.

Step 4: At the same time, we iterate over all EVs and combine the
velocity-flow model (10–11) to calculate and update the
state of each EV at moment t.

Step 5: We determine whether the moment t reaches the
simulation maximum moment. If not, we update t =
t+1 and re-enter Step 2; if yes, we end the computation
and output the driving behavior of each EV at the
simulation moment, as well as output the spatio-
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temporal distribution of fast-charging loads according to
each fast-charging station accessing the distribution
network node.

4 The spatio-temporal pricing model of
fast-charging stations for load balance

4.1 Spatio-temporal pricing model
construction

Large-scale demand for fast-charging loads will exacerbate the
degree of load imbalance among transformer stations and
consequently bring about serious redundancy in grid investment
and construction. Distribution network operators should endeavor
to set reasonable spatio-temporal price for fast-charging stations to
effectively guide the orderly access of fast-charging loads by
stimulating vehicle owners’ preferences. The necessity of spatio-
temporal guidance is illustrated in the previous section. In a single
time section under the effect of time-guided signaling such as time-
of-day price, the load balance of each station is difficult to be taken
into account. The charging price is generally determined by
combining the time-of-use electricity price and charging service
fee, which is determined by the location of the charging station. To a
certain extent, it is possible to guide the selection of charging sites for
EVs, but in the pricing mechanism of spatial service fees, time is
directly decoupled, and insufficient consideration is given to the
short-term impact of distribution system loads. Therefore, the article
simultaneously calculates the price from two perspectives, time and
space, to achieve balanced operation of transformer stations in the
spatio-temporal dimension.

The power distribution system can be represented as a strong
connection graph G � N ,L{ }, where N is the set of nodes of the
distribution system and L ⊆ N × N is the branch (i, j) between the
two nodes. In fact, the spatio-temporal price will affect the spatio-
temporal distribution of the load, which is reflected in the spatio-
temporal voltage balance fV and the spatio-temporal load balance
fP, which can be expressed as shown in the following equation:

fV �
∑H
t�1
∑
i∈N

Vi,t − ~V( )2( )
H × N∣∣∣∣ ∣∣∣∣( ) , (27)

fP � ∑H
t�1
∑

i∈N /S
Pi,t

∣∣∣∣ ∣∣∣∣ − ~P( )2/H × N∣∣∣∣ ∣∣∣∣ − S| |( )⎛⎝ ⎞⎠, (28)

~V �
∑H
t�1
∑
i∈N

Vi,t( )
H × N∣∣∣∣ ∣∣∣∣( ) , (29)

~P �
∑H
t�1
∑
i∈NS

Pi,t

∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠
H × N∣∣∣∣ ∣∣∣∣ − S| |( )( ), (30)

where H represents the number of scheduling intervals; Pi,t and Vi,t

are the injection power and the voltage of node i at time t,
respectively, where Pi,t is a positive number that represents the
node as a load node, and a negative number represents a power
generation node; and S represents the power supply node of the

upper power grid, and it is mostly a radial network in the
distribution system, so |S| � 1. In addition, considering that the
upper power supply node bears the load demand of the whole area,
the power supply node is ignored when calculating the imbalance of
the station area. For the possible bidirectional power flow problem,
the absolute value |Pi,t| is used to analyze the calculation process,
and ~V and ~P represent the average absolute values of all node
voltages and node power during the scheduling time, respectively.

In fact, the spatio-temporal tariff will affect the load spatio-
temporal distribution. Representing the spatio-temporal tariff vector
by a matrix ρ � [ρi,t] of size |N | × H, the spatio-temporal
distribution of fast-charging loads will be obtained by the
stochastic simulation of the model developed in Section 3, and
then, Pi,t can be expressed as a function of the tariff and stochastic
parameters.

Pi,t � Pi,t ρ, γ( ) � M ρ, γ( ) + Pi,t,Base ρ( ), γ ∈ Γ. (31)

In the formula, the parameters determined by random sampling,
such as the starting point of EVs in the charging load distribution
model, are defined as vector γ; Γ represents the distribution space of
random parameter γ; M(ρ, γ) represents the spatio-temporal
distribution of the fast-charging load under electricity price ρ and
random parameter γ (a simplified expression of the Monte Carlo
calculation in Section 3); and Pi,t,Base(ρ) is used for the basic node
load of a non-EV. In fact, the distribution of the spatio-temporal
price at the nodes also affects the load of the customers, but this is
not the focus of the discussion here, so this part is treated as a
constant only.

The spatio-temporal tariff affects the loads and then changes the
current distribution, causing a change in the voltage spatio-temporal
distribution. Among them, considering the economic requirements
of the distribution system operation, the node voltage is formulated
to rely on the DOPF calculation. The DistFlow model (DIJKSTRA,
1959), which is the most widely used model in distribution systems,
is used here, and based on the second-order cone to achieve
convexity, the DOPF can be expressed as follows as the solution
to the following optimization problem:

l, p, q,U � argmin∑H
t�1

∑
i,j( )∈L

rijlij,t

s.t. 33( ) − 40( )

⎧⎪⎪⎨⎪⎪⎩ , (32)

∑
k: j,k( )∈L

pjk,t � ∑
i: i,j( )∈L

pij,t − rijlij,t − Pj,t( ), (33)

∑
k: j,k( )∈L

qjk,t � ∑
i: i,j( )∈L

qij,t − xijlij,t − Qj,t( ), (34)

Uj,t � Ui,t − 2 rijpij,t + xijqij,t( ), (35)
Ui,t � Uref , i ∈ S, (36)
p2
ij,t + q2ij,t ≤Ui,tlij,t, (37)

Ui,min ≤Ui,t ≤Ui,max, (38)
pij,min ≤pij,t ≤pij,max, (39)
qij,min ≤ qij,t ≤ qij,max, (40)

where pij,t and qij,t represent the active power and reactive power of
the branches between nodes i and j at time t, respectively; rij and xij

are defined as resistance and reactance of branch ij ; Pj,t, Qj,t, Uj,t,
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and lij,t are defined as the active power, reactive power, voltage of
node j and the square of the current of branch ij at time t,
respectively; Uref represents the square of the reference voltage at
the upper grid access point, and the reference voltage is set to 1.05 in
this paper; Ui,min and Ui,max represent the upper and lower bounds
of the square of the voltage of node i, respectively; and Pij,min,
Pij,max, Qij,min, and Qij,max represent the active and reactive power
boundaries of the branch ij. l, p, q,U are the vector expressions of
related variables.

Combining Eqs 27–32, the optimization problem for the spatio-
temporal price can be formulated as the solution process of the
following equation:

min
ρ,l,p,q,U

fV, fP[ ]
s.t. 27( ) − 32( ) . (41)

4.2 Spatio-temporal pricing model solution

Notably, Eq. 31 couples the EV travel simulation model in
Section 3, possessing stochasticity and non-linearity. There are
many recent studies that have thoroughly discussed the EV travel
simulation model and tried to equate it to a mathematical planning
model. However, due to its nature being the same as the traveler
problem, which belongs to the same NP-hard problem, the
computational efficiency of these studies cannot be effectively
guaranteed when the network size becomes larger. Therefore, in
order to obtain an acceptable suboptimal solution in an efficient
time, this article still uses a heuristic algorithm in conjunction with
the simulation model in Section 3.

At the same time, considering that the voltage balance is not
equivalent to the balance of loads, problem 41 cannot be simply
transformed into a single-objective problem to be solved. Therefore,
the classical multi-objective optimization algorithm SPEA2 is
chosen here to solve the problem iteratively. The solution process
is shown below (mainly for the determination of the day-ahead
spatio-temporal price).

Step 1: The road network information and topology information
of the power system of the regional transportation system
before the day is imported, and the spatio-temporal
electricity price population before the day is initialized.

Step 2: This step involves entering the traffic system simulation
link. The start and end points and state of charge of EVs
are randomly generated according to the probability, and
the spatio-temporal electricity price information in the
population is imported into the spatio-temporal
distribution simulation model of EV load considering
the preference of vehicle owners so as to obtain the
nodal load distribution under the current spatio-
temporal electricity price.

Step 3: This step involves entering the optimal power flow
solution of the power system. The nodal load
corresponding to each spatio-temporal electricity price
in the current population is taken as the input of DOPF in
Eq. 32, and the power flow distribution of each electricity
price is calculated separately.

Step 4: This step involves entering the calculation of the
imbalance in the station area. Based on the power flow
results of each spatio-temporal price, Eqs 27–30 are used
to obtain the voltage balance degree and the spatio-
temporal load balance degree under each electricity price.

Step 5: The Pareto surface is updated according to the obtained
results, and it is determined whether the maximum
number of iterations has been reached. If so, the
spatio-temporal electricity price with the smallest sum
of the two targets in the current Pareto surface is selected
as the output, and if not, the SPEA2 will update the
population and enter a new iteration, repeating
Step 2–Step 5.

It should be noted that the solution of the proposed framework
can be based on similar multi-objective heuristic optimization
algorithms, and only SPEA2, which performs consistently in the
example, is chosen for the analysis.

5 Case studies

5.1 Experimental environment

All the algorithms in this article were written in Python 3.9 on a
personal computer with a CPU configuration of Intel® Core (TM) i7-
10700F CPU@ 2.90 GHz and 16 GB of RAM and were simulated
using the Spyder compilation platform. The mathematical
optimization problems involved in the algorithms are all solved
based on the Gurobi 9.5.2 solver.

5.2 Case settings

To verify the effectiveness of the proposed fast-charging station
spatio-temporal price on the load and voltage balance aspects of the
station, simulation cases are set up as follows:

Case 1: Based on the proposed method and DLMP method, the
spatio-temporal pricing results of fast-charging stations are
calculated in the self-built 9-node distribution power network
and 29-node road network, and the total load, load voltage
distribution, and electricity price distribution are compared
and analyzed.
Case 2: Based on the proposed method and DLMP method, the
spatio-temporal pricing results of fast-charging stations are
calculated in the self-built 33-node distribution network and
the real 66-node road network system in a certain region of
Xinjiang, and the total load, load voltage distribution, and
electricity price distribution are compared and analyzed.

5.3 Case analysis

5.3.1 Analysis results in case 1
Case 1 compares the proposed pricing algorithmwith the DLMP

algorithm. It consists of a 29 node road network and a 9 node power
network, as shown in Figure 2. The area type of each road node is

Frontiers in Energy Research frontiersin.org07

Guo et al. 10.3389/fenrg.2024.1362343

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1362343


shown in Table 1. Road nodes 5, 14, and 28 are equipped with fast-
charging stations, which are connected to nodes 2, 6, and 8 of the
power network, respectively.

Considering the power purchase cost of the grid-connected
nodes considered in the DLMP follows the setting of the time-of-
use (TOU) tariff of the upper grid, TOU prices are set here as shown
in Table 2.

5.3.1.1 Comparative analysis of EV with different charging
preferences for case 1

To verify the different sensitivities of different EV users to
charging costs and time costs, which lead to changes in the road
network traffic flow, we now simulate the changes in the traffic
flow under different charging strategies for two types of charging
users. Two roads near the charging station in the commercial area
are randomly selected for display. Assuming that all charging
users are time-sensitive, the changes in the road traffic flow are
shown in Figure 3A. Assuming that all charging users are price-
sensitive, the changes in the road traffic flow are shown in
Figure 3B. Comparing the difference in the traffic flow
between the two charging strategies, it can be seen that
compared to price-sensitive users, time-sensitive users have a
significant reduction in their traffic flow curves. During the
period from 17:00 to 20:00, there is a significant peak in the
traffic flow. For time-sensitive charging users, they will choose to
avoid this section of the road and choose charging stations that
are far away but require less time for charging, resulting in a
reduction in the traffic flow on that road.

5.3.1.2 Comparative analysis of the total distribution
network load for case 1

The total loads of the proposed method with DLMP and
uncontrolled charging are demonstrated in Figure 4. It can be
seen that both tariff setting methods have limited effects on peak
shaving and valley filling of the fast-charging load for EVs. The
reason is that the distance between different fast-charging stations
on the mini road network is small, and EVs with fast-charging needs
do not have a huge difference in access time when choosing different
fast-charging stations, so their overall time-adjustable margin
is small.

5.3.1.3 Comparative analysis of load and voltage
distribution in the distribution network of case 1

The load distribution of each node of the DLMP algorithm and
themethod proposed in this paper is calculated as shown in Figure 5.
It can be seen that, compared with the DLMP method, the method
proposed in this paper can reduce the heavy-load problem at end
node 8 to a certain extent and transfer the fast-charging load of EVs
to node 6, which has a lower load, so as to achieve a certain degree of
balancing the uneven spatial distribution of the load of
the power grid.

In terms of voltage, the voltage distribution at each node of the
DLMP algorithm and the proposed method is shown in Figure 6. It
can be seen that the proposed method is slightly better than the
DLMP method in improving the voltage at the end node (node 8)
and the overall voltage spatio-temporal average. However, due to the
small topology of the distribution network in case 1, the overall
solution space is limited, and there is no significant difference in the
voltage distribution under the two methods, and the advantage of
the proposed method is not reflected. In fact, this advantage will be
exploited on a larger-scale network, which is also proven by the
subsequent analyses in case 2.

Furthermore, end nodes 6–8 of the network during the peak
load hours 7:30–15:00 are selected to be analyzed to compare the
voltage distribution of the proposed spatio-temporal tariff
method with the DLMP, and the results are shown in
Figure 7. It can be seen that although voltage security can be
ensured under both methods, the proposed method enhances the
voltage magnitude when the load is heaviest and is able to
attenuate the voltage fluctuation over a short period of time.
This shows the effectiveness of the proposed method in the
spatial balancing of voltage in the station area.

5.3.1.4 Comparative analysis of the spatio-temporal price in
the distribution network for case 1

The finalized prices of cases 1 and 2 are displayed in the form of
heat maps, as shown in Figures 8, 9. As shown in Figure 8, the
proposed method can effectively achieve differential pricing in terms
of spatio-temporal pricing. In terms of time, the pricing during the
peak load period is generally higher than the tariff performance
during the load valley period. In terms of space, there is a significant

FIGURE 2
Test case 1: 9-node distribution network topology and 29-node road network.
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difference in the price of electricity at different fast-charging stations
within the same time period. Combined with Figure 5 and its
analysis results, it can be seen that the spatio-temporal pricing
results of the proposed method have a significant positive
correlation with the spatial loads, and the results obtained by the
proposed method can effectively realize the guidance of EVs.

Specifically, the load of fast-charging station 1 located at node
2 is generally lower, and its tariff results are significantly lower
than those of fast-charging stations located at nodes 6 and 8. In
addition, the tariff of node 5, where a new energy generator set is
deployed, is significantly lower than that of the other nodes. This
suggests that the proposed pricing methodology, in the medium-to-
long-term application, can guide the siting of new fast-charging
stations toward the nodes with new energy generating sets to a
certain extent.

In contrast, the pricing of DLMP shown in Figure 9 relies on the
time-of-day pricing setting for temporal flexibility, while the spatial
aspect is largely ineffective. In fact, the DLMP algorithm is
composed of a marginal power purchase cost and a network loss
cost when there is no network congestion. Of these, the network loss
cost is usually small. Therefore, in the absence of network
congestion, there is usually no significant difference in the spatial
pricing differences of the DLMP. On the other hand, in time, the
DLMP relies on time-of-day tariff settings (the marginal cost of
purchasing and selling electricity from the upper grid). Specifically,
time-of-day pricing is usually set based on the trend of the unified
load, which makes it difficult to provide good peak shaving and
valley filling in local distribution network areas. As a result, the price
obtained by the DLMP has a significant gap in spatial and temporal
guidance compared to the proposed methodology and is difficult to
be used to guide the work of balancing in the station area.

FIGURE 3
Traffic flow for different charging users. (A) Traffic flow for time-sensitive users. (B) Traffic flow for time price users.

TABLE 2 Peak, normal, and valley tariff settings.

$/kWh Time period

Peak tariff: 1.4 10:00–12:00、14:00–19:00

Normal tariff: 1.0 8:00–10:00、12:00–14:00、19:00–24:00

Valley tariff: 0.68 0:00–8:00

TABLE 1 Area type of each road network node in the self-constructed
example.

Area type Road node

Residential area 1、2、3、4、5、6、7、8、9、10、11、22、23、24

Commercial area 12、13、14、15、16、21、25、26、27、28、29

Work area 17、18、19、20
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5.3.2 Analysis results in case 2
In order to verify the scalability and applicability of the

proposed method in the actual system, a larger scale of the
arithmetic example is selected for verification. In this case, the
traffic road network is modeled according to the 66-node actual
road network in a region of Xinjiang shown in Figure 10 and
associated with the IEEE 33-node network, as shown in Figure 11.
Among them, the whole system is set up with eight fast-charging
stations, whose road network and power grid locations are detailed
in Figure 11.

5.3.2.1 Comparative analysis of the total distribution
network load in case 2

The results of the total load of the distribution network under
different pricing methods are shown in Figure 12. The results show
that the proposed spatio-temporal tariff method is significantly
better than the DLMP pricing method in smoothing out the
peak-to-valley difference of the total load in a larger-scale system.

The spatio-temporal tariff developed using the proposed
methodology enables the steering of EV charging loads in terms
of timing flexibility and effectively shifts the loads from peak
distribution network loads to off-peak hours.

5.3.2.2 Comparative analysis of load and voltage
distribution in the distribution network in case 2

As shown in Figure 13, the load profile of each node of the
distribution network is analyzed. It can be found that compared to
the original DLMP algorithm, the proposed method cuts the three
load spikes present in the most heavily loaded grid node into one
and allocates the load to another charging station with a lighter load,
while there is a time lag in this part of the shifted load due to the fact
that the charging station chosen by the EV after responding to the
spatio-temporal tariff will be farther away from the charging station
than the charging station chosen in case of non-response. This again
explains the source of the temporal flexibility of the fast-
charging load.

FIGURE 5
Load distribution in distribution networks under different pricing methods (case 1). (A) Load distribution in distribution networks under the DLMP. (B)
Load distribution in distribution networks under the proposed method.

FIGURE 4
Total distribution network load under different methods (case 1).
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Furthermore, the nodal voltage distribution on the trunk
lines (nodes 0–17) in the distribution network is calculated,
and the results are shown in Figure 14. As in the case of
experiment 1, the voltage drops and is more pronounced in
experiment 2 during peak loads. Compared with the notable
voltage drop at the end nodes (nodes 15–17) in the DLMP
algorithm, the proposed method is still able to effectively

reduce the degree of low voltage at peak load, which fully reflects
the ability of the proposed method to guarantee the voltage support.

5.3.2.3 Comparative analysis of the road traffic flow of
case 2

Figures 15A, B illustrates the traffic flow on selected roads,
comparing the outcomes between the DLMP and the proposed

FIGURE 7
Voltage distribution at end nodes under different pricing methods (case 1, 7:30–15:00). (A) Voltage distribution at end nodes under the DLMP. (B)
Voltage distribution at end nodes under the proposed methodology.

FIGURE 6
Distribution network voltage distribution under different pricing methods (case 1). (A) Distribution network voltage distribution under the DLMP. (B)
Distribution network voltage distribution under the proposed method.
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method. Notably, these selected roads represent the highest
traffic volumes in the Case 2. It can be seen that during the
peak electricity consumption period, road 150 presents a peak,

and road 150 happens to be the road leading to fast-charging
station 3. The power grid node connected to fast-charging
station 3 is node 20, and the branch node where node 20 is
located has fewer branch nodes, resulting in lower energy supply
demand. By guiding EVs to charge toward fast-charging station
3, the power supply pressure of other branches can be reduced,
thereby increasing the voltage at the end nodes of other branches
in order to achieve the goal of balancing the voltage in the
substation area. Therefore, the spatio-temporal electricity
pricing method proposed in this article can effectively balance
the substation voltage of the power grid by guiding the selection
of charging stations for EVs.

5.3.3 Results of station balance analyses for cases
1 and 2

To further quantitatively compare the effectiveness of the
proposed method and DLMP in terms of a station balancing
degree, the node power and voltage variance under experiments
1 and 2 are calculated according to Eqs 27–28, as shown in Table 3.
The results show that the proposed methods all achieve effective
improvement in the balance degree, and the improvement effect is

FIGURE 10
Map display of a region in Xinjiang.

FIGURE 9
DLMP pricing results (case 1).

FIGURE 8
Spatio-temporal pricing results of the proposed method (case 1).
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more notable on larger-scale arithmetic cases. In summary, the
spatio-temporal pricing approach described in this paper well takes
into account the spatial sensitivity of fast-charging loads, effectively
optimizes the peak-to-valley difference of the grid by guiding the
selection of EV charging stations, attenuates the problem of notable
voltage reduction at the end grid nodes during the peak loads, and
effectively brings into play the voltage-supporting capability of fast-
charging EVs.

Furthermore, a comprehensive comparison of different
algorithms, including SPEA2, NSGA-II (Deb et al., 2002),

R-NSGA-II (Kalyanmoy and Sundar, 2006), U-NSGA-III (Seada
and Deb, 2016), and AGE-MOEA (Panichella, 2019), is performed
using case 1 as the target. Specifically, we chose as the optimal
outcome the individual with the largest average value of each
objective on the Pareto surface. As shown in Table 4, the
SPEA2 outperforms the other algorithms and shows its
superiority in our problem setting.

It is crucial to highlight that, while SPEA2 exhibited better
performance, the differences in the results’ order of magnitude
among algorithms were not substantial. This underscores

FIGURE 11
Test case 2: 33-node distribution network and 66-node road network.
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FIGURE 12
Total distribution network load under different methods (case 2).

FIGURE 13
Load distribution in distribution networks under different pricingmethods (case 2). (A) Load distribution in distribution networks under the DLMP. (B)
Load distribution in distribution networks under the proposed method.

FIGURE 14
Trunk node voltage distribution under different pricingmethods (case 2). (A) Trunk node voltage distribution under the DLMP. (B) Trunk node voltage
distribution under the proposed methodology.
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FIGURE 15
Traffic flow under different pricing methods (case 2). (A) Traffic flow under the DLMP. (B) Traffic flow under the proposed methodology.

TABLE 3 Nodal voltage and power variance under the proposed method with the DLMP.

Method Power variance (kW2) Voltage variance (kV2)

Case 1 DLMP 28,519,544 0.0467,442

Proposed method 26,673,724 0.0383,601

Case 2 DLMP 69,799,988 0.058982

Proposed method 62,459,511 0.046803
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our work does not hinge on the intricacies of complex
algorithms.

6 Conclusion

In this paper, a fast-charging pricing strategy considering load
spatio-temporal equilibrium and elastic response is proposed, and
the conclusions obtained are as follows:

(1) A spatio-temporal distribution model of EV fast-charging
load considering the vehicle owner’s preference is designed.
The EV travel law and speed modeling method and EV owner
path selection preference model are constructed to form a
mapping of the dynamic impact of electricity price on EV
charging loads.

(2) A multi-objective spatio-temporal pricing model for fast-
charging stations oriented toward station balancing is
proposed. The two objectives of voltage balance and
load balance are considered comprehensively, and the
impact of price on the dynamics of EV charging loads is
mapped in the form of constraints so that the obtained
tariff results have a guiding effect on EV fast-
charging loads.

(3) An enhanced Pareto evolutionary algorithm is used to solve
the model efficiently, and the results show that the proposed
method has stronger spatio-temporal guidance compared to
the DLMP pricing method and is more effective when applied
to large-scale systems.

However, it should be noted that the larger the system scale, the
longer the simulation time of the spatio-temporal distribution
model of the fast-charging load of EVs, and the cost of solving will
increase. Therefore, how to simplify the fast-charging load
distribution model and realize the fast calculation of large-scale
applications in the future is an important extension of this research
in the future. Indeed, we hold the conviction that adopting a data-
driven approach serves as a crucial method to strike a balance
between the accuracy and speed of traffic flow simulation. This
represents one of our key priorities moving forward.
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