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The construction of modern power system is key to achieving dual carbon goals,
where non-intrusive loadmonitoring (NILM) plays a vital role in enhancing energy
utilization efficiency and energymanagement. For example, to enable prosumers
to better understand the extent of their flexible loads for demand response and
peer-to-peer trading, it is essential to be aware of the types and states of loads
using the method of NILM. To improve the predictive accuracy and
implementation effectiveness of NILM technology, this paper proposes a
novel NILM method integrating meteorological and calendar features. It
delves deeply into the close connection between external factors such as
temperature, precipitation, wind speed, and holidays, and the energy
consumption of electrical appliances, constructing additional associative
mappings in the training of the Denoising Autoencoder (DAE) model. Test
results on the UK-DALE public dataset show that the NILM method proposed
in this paper has significant advantages over traditional NILM methods that
consider only single-dimensional electrical data features, in terms of load
pattern recognition and accuracy in load energy consumption monitoring.
This confirms the potential of multi-dimensional feature fusion technology in
the application of NILM.
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1 Introduction

With the advancement of smart grid technologies and the transformation of global
energy structures, the construction of modern power system has become key to achieving
decarbonization goals (Sepulveda, 2016). Modern power system leverages up-to-date
information technology and communication technology to enable real-time monitoring
and management of electrical appliances, characterized by digitalization and
decentralization (Voropai, 2020). The characteristics of modern power system have
promoted an interactive electricity consumption mode between grid operators and
users, where load monitoring plays the critical role (Najmeddine et al., 2008; Abubakar
et al., 2017). Load monitoring technology enables grid operators to better understand and
predict load variations, optimizing the allocation and utilization of electric power resources.
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By gaining deeper insights into user habits, this technology also aids
in identifying opportunities for energy saving and emission
reduction, thereby enhancing energy efficiency. Meanwhile, to
facilitate prosumers in effectively gauging their variable load
capacities, crucial for engaging in demand response and peer-to-
peer transactions, knowledge about the variety and current
conditions of loads is vital. The Hybrid Appliance Load
Monitoring System (HALMS) represents a new field in load
monitoring research, dedicated to accurately tracking and
analyzing energy using at the device level. The establishment of
this system is driven by the urgent need for a more connected,
efficient electrical grid and an advanced energy infrastructure
capable of meeting future energy challenges. With the rapid
development of direct current microgrids, standalone energy
systems, and distributed energy resources, deploying HALMS has
become crucial for effective energy management (Suryadevara and
Biswal, 2019).

The Appliance Load Monitoring (ALM) technology encompasses
two approaches: Intrusive Load Monitoring (ILM) and NILM. ILM
technology requires entering the interior of buildings or homes to
gather data. The common approach is to install sensors and
communication modules on each electrical device. Sensors are used
to collect real-time electrical information of the device, such as current,
voltage, and power, while communication modules are responsible for
transmitting the collected data. On the other hand, NILM technology
does not require entering the interior of buildings. It only involves
collecting aggregated electrical information (current, voltage, power,
etc.) of the building. By processing and analyzing the collected
aggregated data, it is then possible to predict the operational status
of the electrical devices inside the building, including the on/off status
and power consumption of devices. The advantages and disadvantages
of the ILM and NILM systems can be summarized below: ILM is more
like straightforward engineering problem, as it only involves the
collection and transmission of information without the need for
complex computational processing. Furthermore, due to the direct
collection of signals from the electrical devices themselves, ILM boasts
high accuracy and real-time monitoring capabilities. However, the
intrusive method requires the installation of additional transmission
and collection devices on each electrical device, making the operation
complex, costly, andmaintenance difficult. Faults are hard to detect, and
even if detected, they are difficult to locate. On the other hand, NILM
requires the installation of only a few collection devices outside the
building or home, significantly reducing costs compared to the intrusive
method. The data collection operation is simpler, and the privacy inside
the building is better preserved. However, since the non-intrusive
method predicts the condition of electrical devices inside the
building through collected aggregated information, its monitoring
accuracy is not very high. In terms of practical application, given the
large number of electrical devices within buildings, the cost and
maintenance difficulties of the intrusive method make it less
valuable. In contrast, the NILM system is much more cost-effective,
and with the development of algorithms and the advent of neural
networks, the accuracy of NILM systems has been increasing. Some
models can even achieve real-time monitoring standards, making them
increasingly valuable for practical applications.

In 1982, Professor Hart first introduced the concept of NILM. In
the early stage, researchers mainly employed mathematical
optimization algorithms to transform non-intrusive load

monitoring into a mathematical problem-solving exercise. This
approach involves calculating the best combination of appliance
signals from the aggregated signal data collected, aiming to closely
match the actual total measured electricity power. Hart and his
colleagues utilized combinatorial optimization algorithms to
categorize electrical devices into multiple states, assigning a
specific power value to each state. They were the first to propose
a method based on the clustering of appliance characteristics for
decomposing electrical loads (Hart, 1992). Reference (Lin et al.,
2016) presents a NILMmethod based on quadratic programming to
provide adequate load identification accuracy for residential energy
monitoring. Reference (Kong et al., 2016) proposes a hierarchical
hidden Markov model framework to model home appliances. The
model provides better representation for those appliances that have
multiple built-in modes with distinct power consumption profiles,
such as washing machines and dishwashers. Reference (Chang et al.,
2013) utilized particle swarm optimization techniques to optimize
the parameters of training algorithms in artificial neural networks
for NILM tasks. Reference (Lin and Tsai, 2013) combined transient
feature extraction schemes of multi-resolution S transform with an
improved 0–1 multi-dimensional knapsack algorithm for load
identification, proposing a NILM method based on ant colony
optimization algorithm for combinatorial search. Reference (Piga
et al., 2015) assuming that the power consumption curves of
unknown appliances are piecewise constant, framed the load
decomposition problem as a minimization of least square errors,
proposing a sparse optimization-based algorithm that provides very
accurate estimates of appliance aggregate consumption and
accurately characterizes the appliance power consumption curves.
However, NILM based on mathematical optimization faces two
major challenges: 1) When processing complex electrical load data,
mathematical methods often encounter issues with accuracy and
robustness, and struggle to perform real-time monitoring as the
volume of data increases. 2) Mathematical methods require manual
extraction of appliance features, posing challenges in the
characteristic identification for electrical appliances with diverse
types and multiple states.

As machine learning technology advances, many scholars have
also begun to explore the resolution of NILM through pattern
recognition methods. Reference (Rahimpour et al., 2017)
introduces a Sum-to-k constrained Non-negative Matrix
Factorization (S2K-NMF) approach, which represents the
aggregated signal as a linear combination of basis vectors within
a matrix decomposition framework. Reference (Lin and Tsai, 2014)
proposes a novel NILM technique featuring a hybrid classification
technology. This method combines fuzzy C-Means clustering,
guided Particle Swarm Optimization, and a neural fuzzy classifier
that considers uncertainty, addressing the issue of fuzziness in
electrical characteristics. Reference (He et al., 2016) designs a
NILM approach based on Graph Signal Processing (GSP),
offering fresh perspectives for NILM research. Compared to
optimization algorithms, these pattern recognition-based NILM
algorithms have achieved improvements in identification
accuracy. However, they transform the classification problem into
a mapping relationship issue of input and output. With the
increasing number of devices, the volume of mapping
relationships rapidly grows, significantly reducing
recognition accuracy.
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With the advancement of deep learning technologies, algorithms
based on deep neural network models have been proposed and
applied to load decomposition, achieving performance superior to
traditional optimization algorithms. These algorithms offer
improved prediction accuracy and is capable of real-time
monitoring in the face of massive data sets. Also, deep neural
networks can automatically extract key features from electricity
data, enabling intelligent recognition of electrical appliances.
Kelly and others (Kelly and Knottenbelt, 2015a) were pioneers in
solving the NILM problem using deep learning methods. They
applied deep networks such as denoising autoencoders and Long
Short-Term Memory (LSTM) networks to NILM tasks. Reference
(Zhang et al., 2018) proposes sequence-to-point learning, where the
input is a window of the busbar electricity data and the output is a
single point of the target appliance. Researchers use convolutional
neural networks to train the model and systematically show that the
networks can inherently learn the characteristics of the target
appliances, which are automatically added into the model to
reduce the identifiability problem. Reference (Rafiq et al., 2018)
presents two deep recurrent neural networks models: LSTM and
GRU and introduces regularization to improve proposed models’
performance. Researchers have achieved promising results with
proposed regularized LSTM model in terms of accuracy, F1 score
and mean absolute error. Reference (Yue et al., 2020) proposes
BERT4NILM, an architecture based on bidirectional encoder
representations from transformers (BERT) and an improved
objective function designed specifically for NILM learning. With
the adjusted loss function and masked training, BERT4NILM
outperforms state-of-the-art models across various metrics on the
two publicly available datasets UK-DALE and REDD. Inspired by
the Fully Convolutional Networks (FCN) proposed by Shelhamer
and others (Long et al., 2015), reference (Brewitt and Goddard,
2018) further introduced an FCN for sequence-to-subsequence
learning, achieving better decomposition performance
compared to S2P.

Although deep learning methods have achieved commendable
results in NILM, existing algorithms still exhibit shortcomings in the
aspect of feature extraction. Specifically speaking, current algorithms
typically extract features solely from single-dimensional electrical data,
such as active power (Dinesh et al., 2016), reactive power (Valenti et al.,
2018), and current waveforms (Shareef et al., 2023), while overlooking
the correlations of weather and calendar factors with the energy usage of
electrical appliances. For instance, colder weather will increase the usage
of heating appliances, and holidays generally lead to more energy
consumption in household devices. This neglect of feature
interrelation leads to an inadequate mapping between inputs and
outputs, ultimately resulting in suboptimal prediction accuracy of
deep learning models in NILM, thus influencing the effectiveness of
load monitoring and energy management.

In this paper, advanced deep learning technology is utilized to
conduct NILM research, employing the DAE as the main model. A
notable innovation of this paper is the integration of weather and
calendar information into the feature selection process, aiming to
expand the application potential of deep learning methods in NILM.
This approach overcomes the limitation of deep learning models in
NILM that solely consider electrical data features. We explore the
interrelation between weather, calendar information, and the energy
consumption of electrical appliances. The UK-DALE public dataset is

selected as the testing platform for this study. The results demonstrate
that our proposed NILM method with multi-dimensional features
significantly outperforms traditional NILM methods that consider
only single-dimensional electrical data features. This is evident in
metrics such as the R2 score, Explained Variance Score, Mean
Absolute Error (MAE), and Normalized Mean Square Error
(NMSE), in the NILM performance of various household electrical
appliances. NILM considering meteorological features, compared to
NILM without such features, has an R2 Score increase of 0.008, an
Explained Variance Ratio increase of 0.008, a decrease in MAE by
0.117, and a reduction in NMSE by 0.008 for the fan appliance test.
For the kettle appliance, the inclusion of calendar features resulted in
an increase of 0.008 in the R2 Score and 0.008 in the Explained
Variance Ratio, while the Mean Absolute Error (MAE) decreased by
0.231, and the Normalized Mean Square Error (NMSE) decreased by
0.007. This study provides a novel perspective and tools for applying
deep learning methods and selecting multi-dimensional features in
NILM research.

2 Deep learning model architecture for
NILM task

2.1 The basic autoencoder

An autoencoder processes an input vector x within the range
[0, 1]d by initially mapping it to a latent representation y ∈ [0, 1]d′
using a deterministic function, with parameters given by weight
matrix W and bias b, the formula is y � fθ(x) � s(Wx + b). The
resulting latent representation is then mapped back to a
reconstructed vector z within the range [0, 1]d, the
corresponding formula is z � gθ′(y) � s(W′x + b′). W′ equal to
WT, in which case the autoencoder is said to have tied weights. Each
training x(i) is thus mapped to a corresponding y(i) and a
reconstruction z(i). The parameters of this model are optimized
to minimize the average reconstruction error (Vincent et al., 2008).

θ*, θ′* � argmin
θ,θ′

1
n
∑n
i�1
L x i( ), z i( )( )

� argmin
θ,θ′

1
n
∑n
i�1
L x i( ), gθ′ fθ x i( )( )( )( )

Where L represents the loss function. Considering x and z as bit
vectors or vectors of bit probabilities, an alternative loss function
proposed is the reconstruction cross-entropy.

LH x, z( ) � H Bx| Bz| ) � −∑d
k�1

x[ klogzk + (1 − xk
⎛⎝ ⎞⎠log 1 − zk( )]

If x is a binary vector, LH(x, z) is a negative log-likelihood for
the example x, given the Bernoulli parameters z. Equation with L �
LH can be written by:

θ*, θ′* � argmin
θ,θ′

Eq0 x( ) LH X, gθ′ fθ X( )( )( )[ ]
Where q0(x) denotes the empirical distribution associated to

our n training inputs. This optimization will typically be carried out
by stochastic gradient descent.
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2.2 The denoising autoencoder

DAE is an advanced neural network architecture that extends
the traditional autoencoder (AE) concept. Unlike standard AEs
that focus on learning compressed representations of input data
through an encoder-decoder framework, DAEs introduce a
significant twist: they are trained to reconstruct original, clean
data from corrupted inputs, as shown in Figure 1. In this
research, our selection of the DAE model instead of other
models is driven by its specific advantages for the NILM task,
particularly in handling noisy data and efficiently incorporating
external features.

2.2.1 Input corruption process
The first step in DAE involves corrupting the original input data

x. This is achieved through a stochastic process, which can be
denoted as:

~x � qD ~x x|( )
Here, ~x represents the corrupted version of the original input x,

and qD is the corruption process.

2.2.2 Encoding process
The corrupted input ~x is then mapped to a hidden

representation h using the encoder. The transformation is given by:

h � σ W · ~x + b( )
Here, W represents the weight matrix of the encoder, b

represents the bias vector of the encoder, σ represents non-linear
activation function, using ReLU, and h represents encoded
representation of the corrupted input.

2.2.3 Decoding process
The hidden representation h is transformed back to reconstruct

the input data. The decoding transformation is:

r � σ′ W′ · h + b′( )
Here, W′ represents the weight matrix of the decoder, b′

represents the bias vector of the decoder, σ′ represents the

activation function for the decoder, which is different from σ, r
represents the reconstructed data, aiming to be as close to the
original uncorrupted input x as possible.

2.2.4 Loss function
The objective of the DAE is to minimize the reconstruction

error. The loss function used is the Mean Squared Error (MSE):

L x, r( ) � x − r‖ ‖2

This function calculates the square of the Euclidean distance
between the original input x and the reconstructed input r.

2.2.5 Optimization
The DAE model undergoes training through backpropagation

and optimization algorithms to adjust the weights W, W′ and
biases b, b′ to minimize the loss function. Backpropagation is a
method used in artificial neural networks to calculate the gradient
of the loss function with respect to the weights by propagating the
error backward through the network. It helps in updating the
weights to minimize the loss. Backpropagation
computes gradients:

∂L
∂W

、
∂L
∂W′、

∂L
∂b

、
∂L
∂b′

Stochastic Gradient Descent (SGD) is an optimization method
used to update the weights and biases of a neural network iteratively.
It calculates the gradient of the loss function for a randomly selected
subset of data rather than the entire dataset, making the
computation more efficient. SGD updates parameters:

W � W − δ
∂L
∂W

W′ � W′ − δ
∂L
∂W′

b � b − δ
∂L
∂b

b′ � b′ − δ
∂L
∂b′

Where δ is the learning rate.

FIGURE 1
Schematic diagram of the DAE deep learning model.
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2.2.6 Feature extraction
Through this process, DAE learns to extract robust features from

noisy data. The learned weights and biases encapsulate these
features, which are crucial for tasks like NILM, where
distinguishing between different appliance signatures from noisy
aggregate data is essential.

Generally speaking, the application of DAE in NILM is rooted in
their proficiency in handling and interpreting noisy, high-
dimensional data. NILM tasks involve disaggregating total energy
consumption into individual appliance loads, which is inherently a
noisy and complex problem. The DAE’s capability to denoise input
data and extract relevant features is crucial in accurately identifying
unique appliance signatures from aggregate energy data. This
process involves not only recognizing patterns in the
consumption data but also effectively filtering out irrelevant noise
and distortions.

3 Experiments and results

3.1 Data preparation

3.1.1 Electricity data preparation
The UK Domestic Appliance-Level Electricity (UK-DALE)

dataset (Kelly and Knottenbelt, 2015b) is a significant resource in
the field of NILM. It provides high-resolution energy usage data
from domestic environments within the United Kingdom. This
dataset is instrumental for us working on algorithms and models
to disaggregate total energy consumption into appliance-specific
usage. The key characteristics of UK-DALE is: 1) data granularity:
UK-DALE offers exceptionally fine-grained power usage data,
recorded at a 1/6 Hz temporal resolution. This enables detailed
analysis of appliance usage patterns and energy consumption
behaviors. 2) duration and diversity: The dataset encompasses a
considerable duration, spanning from the year of 2012 to the year of
2015. It includes data from a diverse range of households, thus
offering a broad perspective on domestic energy usage. 3) appliance-
level detail: It provides disaggregated energy consumption data of
five houses in London for individual appliances.

In this paper, four typical appliances from house one are
selected: fan, solar thermal pumping, kettle, and dish washer, to
investigate the effectiveness of NILM with single-dimensional
feature and multi-dimensional features. The dataset for the deep
learning model comprises the total electricity consumption data of
house one and the consumption data of each appliance, spanning
from 15 June 2013, to 20 July 2013. The training and testing sets are
divided in a 4:1 ratio.

3.1.2 Meteorological data preparation
The National Oceanic and Atmospheric Administration

(NOAA), a key agency within the United States Department of
Commerce, specializes in the study and monitoring of atmospheric
and oceanic conditions. Known for its extensive meteorological data
collection, NOAA is instrumental in weather forecasting, climate
change research, and environmental stewardship. Its comprehensive
data repositories, gathered through advanced monitoring
technologies like satellites and radar systems, are invaluable for a
myriad of scientific endeavors. For NILM research, NOAA’s detailed

meteorological data is particularly useful, offering critical insights
that can enhance the accuracy of energy usage predictions and
analysis, especially in relation to environmental variables.

In this study, due to the location of house one in the UK-DALE
dataset being in London, historical meteorological data from the ST
JAMES PARK weather station in London was selected (NOAA
National Centers for Environmental Information, 2013). ST JAMES
PARK station is the nearest station to our test homes within the UK-
DALE dataset that offers hourly resolution data encompassing
temperature, precipitation, and wind speed. These data points are
crucial for our study, and the completeness and clarity of the records
at ST JAMES PARK made it the most suitable choice for our
research needs. The temporal scope of the data extends from
15 June 2013, to 20 July 2013. The meteorological data types
covered include temperature, precipitation, and wind speed. As
depicted in Figure 2, during this period, the highest recorded
temperature was 30°C, the maximum precipitation reached
71 mm/h, and the highest wind speed was 10.5 m/s.

Besides, due to the inconsistency in time scale of meteorological
data and electricity data, we apply cubic spline interpolation to the
meteorological data to generate interpolated values at a 6-s
resolution, aligning with the electricity consumption data from
the UK-DALE dataset. This method allowed us to construct a
uniform time scale for both data types, ensuring that our DAE
model could effectively incorporate and learn from the
combined dataset.

3.1.3 Calendar data preparation
The UK-DALE dataset explicitly specifies the time periods for

the electricity data, allowing us to reference the British calendar for
June and July 2013 based on these time stamps when conducting
deep learning training and testing. This enables the determination of
calendar data, including whether the day is a weekday or weekend, a
holiday or not, the day of the week, and the week of the month. By
selecting these calendar features, we can enrich and refine the
original single-dimensional electricity feature.

3.2 Evaluation metrics

Assessment is carried out using R2 Score, Explained Variance
Score, Mean Absolute Error (MAE) and Normalized Mean Square
Error (NMSE) as four evaluation metrics to compare the
performance differences between NILM with multi-dimensional
features and NILM with single-dimensional feature. We
thoroughly evaluate their accuracy and ability to recognize
load patterns.

3.2.1 R2 score
This metric is used to measure the degree to which the model

explains the variance in the dependent variable. Its value ranges
from 0 to 1, with values closer to 1 indicating better explanatory
power of the model in terms of the dependent variable.

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − �y( )2

Where n is the number of samples, yi is the actual value, ŷi is the
predicted value, and �y is the mean of the actual values.
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3.2.2 Explained variance score
This metric measures the degree to which the model explains

the variance in the data. Its value also ranges from 0 to 1, with
values closer to 1 indicating better explanation of the
data variance.

EVS � 1 − ∑n
i�1Var yi − ŷi( )∑n

i�1Var yi( )
Where Var represents variance.

3.2.3 MAE
This metric measures the average magnitude of the errors in a set

of predictions, without considering their direction. It is the average
over the test sample of the absolute differences between prediction
and actual observation where all individual differences have
equal weight.

MAE � 1
n
∑n

i�1 yi − ŷi

∣∣∣∣ ∣∣∣∣
3.2.4 NMSE

This metric evaluates the predictive error of a model relative to
the variance of the observed data. It is a normalized measure that
provides insight into the error size in comparison to the variability of
the dataset.

NMSE �

∑n
i�1 yi − ŷi( )2∑n

i�1 ŷi( )2
√√

These metrics provide a comprehensive assessment of model
performance, including aspects such as model explanatory power,
data variance, and prediction error.

3.3 Results and discussion

Our experiments initially conducted a comparative study of the
NILM implementation effects considering both meteorological and
electrical features versus considering only electrical features. We
selected fan and solar thermal pumping as the two types of electrical
appliances and utilized the DAE as the deep learning model. As
shown in Figure 3, the blue line represents the actual power
consumption of the fan and solar thermal pumping in the test
set, while the orange line represents the NILM effect considering
both meteorological and electrical features. From the blue line, it is
evident that the fan is used infrequently, and data analysis reveals
that the fan is only activated at moments of higher temperature. On
the other hand, the solar thermal pumping exhibits relatively regular
power consumption. However, statistical data indicates that the
duration and power consumption of solar thermal pumping are
significantly higher on sunny days compared to rainy days. The
orange line shows that NILM, when considering both
meteorological and electrical features, can closely follow the
actual power variations and accurately predict the start and stop
states of the fan and solar thermal pumping appliances. Although
there are some minor deviations between the predicted power and
the actual power, overall, this method has shown fairly good results
in NILM tasks.

We also conducted a comparative study of NILM considering
multi-dimensional (electricity and weather) versus single-
dimensional (electricity) feature. Table 1 presents the results of
NILM with and without weather features. The evaluation results
indicate that NILM considering meteorological features
(temperature, precipitation, and wind speed), compared to NILM
without such features, has an R2 Score increase of 0.008, an
Explained Variance Ratio increase of 0.008, a decrease in MAE
by 0.117, and a reduction in NMSE by 0.008 for the fan appliance

FIGURE 2
The overview of meteorological data.
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test. In the solar thermal pumping appliance test, NILM considering
meteorological features saw a significant improvement in both R2

Score and Explained Variance Ratio over NILM not considering
meteorological features, with a notable decrease in both MAE and
NMSE. This demonstrates that the NILM approach proposed in this
study, which takes into account meteorological features, can achieve
higher prediction accuracy and more precise non-intrusive load
monitoring effects compared to traditional NILM methods.

Hence, from the above experiments, we can conclude that for the
two types of electrical appliances, fan and solar thermal pumping,
NILM that considers both meteorological and electrical features as
opposed to just electrical features is better at capturing the
characteristics of load variations, achieving superior prediction
accuracy, and is more conducive to the implementation of energy-
saving, emission reduction, and energy management strategies. The
reason for this outcome is that traditional NILM, which only considers
electrical features, overlooks the correlation between household
electrical appliances and meteorological factors. Consequently, a
deep learning model constructed solely from electrical features has
an incomplete and insufficient mapping relationship between its inputs
and outputs, thus limiting the predictive accuracy of NILM based on
deep learning methods. By considering the three categories of
meteorological features—temperature, precipitation, and wind
speed—during feature selection, the model training can account for
the relationship between meteorological factors and energy
consumption, thereby better implementing NILM. This conclusion is
not only applicable to the two types of typical electrical appliances
proposed but also to high-power appliances such as air conditioners and

heaters in users’ homes. The novel NILM approach based on
meteorological and electrical features can further enhance predictive
performance over traditional NILM methods.

In our subsequent investigations, we expanded our focus to
explore the effectiveness of NILM when integrating both calendar
data and electrical consumption metrics as opposed to solely relying
on electrical data. For this purpose, kettle and dish washer were
chosen as the representative appliances, with DAE continuing to
serve as our chosen deep learning framework. The data, as illustrated
in Figure 4, reveals through a blue line the real-time consumption
patterns of these appliances within the test dataset. In contrast, the
orange line denotes the outcomes of NILM when it synthesizes
information from both calendar events and electrical usage. A
notable observation from the blue line is the heightened use of
these appliances, particularly during holidays, suggesting a marked
uptick in energy usage compared to regular workdays. The orange
line, on the other hand, showcases NILM’s adeptness at mirroring
these consumption patterns, precisely indicating the operational
status of kettle and dish washer. While minor variances are noted
between the forecasted and actual energy usage, the overall results
point to the robustness and effectiveness of this approach in NILM
applications, especially in capturing regular energy use behaviors
linked to calendar-specific influences.

Table 2 presents the results of NILM implementation with and
without calendar features. For the kettle appliance, the inclusion of
calendar features resulted in an increase of 0.008 in the R2 Score and
0.008 in the Explained Variance Ratio, while the Mean Absolute
Error (MAE) decreased by 0.231, and the Normalized Mean Square

FIGURE 3
Effect of NILM when considering weather factors (fan and solar thermal pumping).

TABLE 1 Results of NILM with and without weather features.

R2 score Explained variance ratio MAE NMSE

Fan with weather features 0.982 0.982 0.323 0.017

Fan without weather features 0.974 0.974 0.440 0.025

Solar thermal pumping with weather features 0.946 0.946 1.688 0.037

Solar thermal pumping without weather features 0.936 0.938 2.395 0.045
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Error (NMSE) decreased by 0.007. In the case of the dish washer
appliance, incorporating calendar features led to an increase of
0.004 in the R2 Score and 0.004 in the Explained Variance Ratio,
with a decrease of 0.075 in MAE and 0.005 in NMSE. This
demonstrates that for these two types of appliances, considering
calendar features enhances the accuracy and reliability of NILM
implementation, marking a significant advancement over traditional
NILM methods.

In summary, NILM implementation considering calendar
features further captures the relationship between users’ daily
routines and power consumption of electrical appliances.
During holidays and weekends, users spend more time at home
compared to workdays, leading to more frequent use of various
household appliances and consequently higher electricity
consumption. This conclusion is not only applicable to kettle
and dish washer appliances but also extends to a broader range
of household devices.

It is evident that the improved NILM method outperforms the
traditional approach across all evaluation metrics for the four types
of electrical appliances we focused on (fan, solar thermal pumping,
kettle, and dish washer). In fact, the start-stop actions and energy
consumption of household appliances are closely linked to user
activities, which in turn are significantly influenced by external
factors. Therefore, our proposed NILM method, incorporating
meteorological and calendar features, can more comprehensively
capture the factors influencing household appliance energy
consumption and accurately establish correlations. By conducting

training and testing in this manner, we achieve superior load
monitoring results compared to the traditional NILM approach.

4 Conclusion

The NILM method proposed in this paper, integrating
meteorological and calendar features, surpasses traditional non-
intrusive load monitoring techniques in capturing load characteristics
and establishing comprehensive energy consumption correlations for
tested appliances. Specifically, for the fan, enhancements include a
0.008 increase in both R2 Score and Explained Variance Ratio, with
MAE decreasing by 0.117 and NMSE by 0.008. For the kettle, the
addition of calendar features similarly boosts the R2 Score and Explained
Variance Ratio by 0.008 each, while MAE and NMSE decrease by
0.231 and 0.007, respectively. This approach offers a novel perspective
and tools for research in the NILM domain and provides more reliable
and efficient technical support for energy management and demand
response in smart grids.

In future research, we will consider integrating the NILM software
algorithms proposed in this paper with advanced hardware
measurement technologies (such as smart plugs) to further enhance
the effectiveness and capabilities of loadmonitoring. Smart plugs act as a
complementary innovation, improving the cost-effectiveness and
precision of energy monitoring. The potential functions of smart
plugs to benefit load monitoring and management include
(Suryadevara and Biswal, 2019): 1) device identification. 2) device

FIGURE 4
Effect of NILM when considering calendar features (kettle and dish washer).

TABLE 2 Results of NILM with and without calendar features.

R2 score Explained variance ratio MAE NMSE

Kettle with calendar features 0.834 0.834 7.349 0.165

Kettle without calendar features 0.826 0.826 7.118 0.172

Dish washer with calendar features 0.735 0.736 11.543 0.262

Dish washer without calendar features 0.731 0.731 11.618 0.267
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scheduling and control. 3) occupancy detection. 4) thermal and overload
safeguards. By combining advanced software algorithms with hardware
devices, we will achieve improved energy management efficiency.
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