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To achieve frequency stability and economic efficiency in isolated microgrids,
grid operators face a trade-off between multiple performance indicators. This
paper introduces a data-driven adaptive load frequency control (DD-ALFC)
approach, where the load frequency controller is modeled as an agent that
can balance different objectives autonomously. The paper also proposes a
priority replay soft actor critic (PR-SAC) algorithm to implement the DD-ALFC
method. The PR-SAC algorithm enhances the policy randomness by using
entropy regularization and maximization, and improves the learning
adaptability and generalization by using priority experience replay. The
proposed DD-ALFC method based on the PR-SAC algorithm can achieve
higher adaptability and robustness in complex microgrid environments with
multiple performance indicators, and improve both the frequency control and
the economic efficiency. The paper validates the effectiveness of the proposed
method in the Zhuzhou Island microgrid.

KEYWORDS

load frequency control, island microgrid, frequency stability, priority replay soft actor
critic, data-driven

1 Introduction

Traditional islanded energy systems mainly rely on diesel generators, wind turbines
(WT), photovoltaic (PV) and energy storage facilities to provide power supply. Diesel
generators, as representatives of traditional energy sources, have the advantages of stability
and robustness, but they also have the disadvantages of high operating cost, slow response,
and serious environmental pollution. Therefore, their share of power generation is gradually
decreasing. Wind turbines and photovoltaic, as representatives of distributed renewable
energy sources, have the advantages of safety, flexibility and low pollution, but they are also
highly dependent on external factors such as weather, temperature and light, resulting in
strong fluctuations and time-varying characteristics. This may cause power shortage or
surplus, leading to system imbalance and frequency instability. To address the energy
balance problem between the demand side and the supply side of the islanded energy
system, improve the operational reliability of the system, and ensure the quality of energy,
the hybrid energy system that combines diesel generators and distributed renewable energy
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sources has become the mainstream of future development.
Therefore, it is of great significance to develop advanced energy
storage systems (ESS) and corresponding energy management
systems (EMS), to achieve the coordinated control of traditional
energy and distributed renewable energy, and ultimately realize the
optimal control of energy. When the microgrid is disconnected from
the main grid, it enters the islanded operation mode, in which the
microgrid needs to independently establish the voltage and
frequency reference, and maintain the power balance and
frequency stability within the system. This requires the secondary
frequency control of the microgrid, that is, based on the primary
frequency control, the microgrid central controller or distributed
controller coordinates the distributed power generation and energy
storage devices within the system to control the frequency, so that
the frequency of the microgrid is restored to the rated value, and the
economic operation of the microgrid is achieved.

Load frequency control (LFC) of microgrids is a challenging
problem that has been addressed by various control methods, from
the classical Proportional Integral Derivative (PID) control to
advanced control theories. PID control is a traditional control
policy that was widely adopted in the early studies of LFC (Xi
et al., 2022; Li and Zhou, 2023a; Li and Zhou, 2023b). However, PID
control has some limitations, such as the continuous change of
parameters and some constraints in the power system, which affect
the control performance and the dynamic index of the system (Li
et al., 2023a; Li et al., 2023b). A method that combines integral
compensation and state feedback was applied to the LFC system in
(Xi et al., 2020).With the development of various agent optimization
algorithms, the traditional control algorithm was improved by
integrating agent control method with classical control method to
enhance the control effect of LFC. For example, Cavin and Calovic
et al. (Cavin et al., 1971; Calovic, 1972) applied the optimal control
method based on the traditional PID control and proposed the
controller parameter design of agent optimization algorithm. Wang
et al. (2018) proposed a design method based on model predictive
control, which can improve the frequency response of the system
when the load changes. More advanced control strategies were also
applied in the LFC system with the development of control method.
For the study of adaptive control, Xie et al. (2023) designed a
decentralized adaptive control method to ensure that the
frequency fluctuation of each region converges to an acceptable
range and the deviation range is maintained in a very small range.
Deng et al. (2022) proposed a virtual inertia and virtual damping
parameters adaptive control policy, which can better track the
frequency changes and set the action threshold of adaptive
control. In the study of sliding mode variable structure control,
Chen et al. (2018) designed the control policy of modular multilevel
converter under unbalanced grid voltage according to the principle
of sliding mode variable structure control. Dong et al. (2019) also
considered the system parameter uncertainty, energy storage system
and traditional unit control channel delay problem, reduced the
capacity configuration of the energy storage system, and proposed a
sliding mode LFC controller and energy storage coordination
control policy for the LFC model containing wind storage. In
terms of predictive control, Elmouatamid et al. (2021) proposed a
Generalized Predictive Control (GPC) policy for energy
management in Micro-Grid (MG) systems. Qian et al. (2016)
proposed a robust distributed predictive control algorithm based

on linear matrix inequality with adjustable parameters, considering
both generators change rate constraints and valve position
constraints, and transforming the solution of a set of convex
optimization problems into a linear matrix inequality solution. In
the robust control, Toghani Holari et al. (2021) considered Input
Output Feedback Linearization (IOFL) and Sliding Mode Control
(SMC) under load variations and parameter uncertainties for AC-
DC hybrid microgrid systems. Su et al. (2021) proposed a structural
singular value based design methodology for robust decentralized
automatic power generation controllers for deregulated multi-area
power systems.

Traditional methods for load frequency control (LFC) of
islanded microgrids also face some challenges, which include the
following aspects:

(1) It is challenging to improve the frequency control
performance of microgrids. Due to the low inertia of the
microgrid and the large fluctuations of the load and renewable
energy, the frequency of the microgrid is prone to large
deviations, which affect the frequency quality and stability
of the microgrid. Therefore, microgrids need effective
frequency control strategies to suppress frequency
deviations, restore the frequency to the rated value, and
ensure the normal operation of microgrids. However, the
existing frequency control methods, such as constant power
control, constant frequency control, constant virtual inertia
control, sliding mode control, fuzzy control, neural network
control, etc., have certain limitations and drawbacks, such as
fixed control parameters, unsatisfactory control effect,
complex control logic, and non-robust control system.

(2) It is challenging to consider the multi-objective synthesis of
microgrids. Since frequency control and optimal operation of
microgrids are two interrelated problems and involve
multiple performance indicators, such as frequency
deviation, operating cost, renewable energy utilization, etc.,
microgrids need to consider these performance indicators
comprehensively to achieve multi-objective optimization of
microgrids. Therefore, microgrids need effective multi-
objective optimization methods to balance the performance
indicators of microgrids and achieve comprehensive
optimization of microgrids. However, existing multi-
objective optimization methods, such as weighted sum
method, ideal point method, fuzzy set method, hierarchical
analysis method, and multi-objective evolutionary algorithm,
have certain limitations and drawbacks, such as subjective
selection of weights, difficulty in determining the ideal point,
difficulty in constructing fuzzy sets, complexity of hierarchical
analysis, and slow convergence of multi-objective
evolutionary algorithm.

Artificial intelligence algorithms have emerged as a promising
technique for LFC of islanded microgrids with a high penetration of
renewable energy sources. Many AI methods have been proposed to
address the challenges of LFC, especially the reinforcement learning
method, which can significantly improve the CPS performance.
Zhang et al. (2021) applied Q-learning to solve the LFC problem and
demonstrated its robustness. Zhang et al. (2023) proposed Q
methods with a “relaxation” policy, which effectively dealt with
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the large time lag of thermal power units, and reduced the frequent
regulation and inversion issues caused by improper LFC control
strategies. Yin et al. (Linfei et al., 2017) combined the “human
emotion” function with Q-learning to form an emotion
reinforcement Learning, and modified the Q-learning parameters
of “learning rate, reward function, and action selection” by
simulating the nonlinear emotion function of humans in complex
situations, which greatly enhanced the index. Yu et al. (Li et al.,
2023c) proposed an agent controller that uses double deep
Q-learning to operate energy storage elements in islanded
microgrids. This controller minimizes the power loss in the grid
even under the influence of intermittent energy sources. However,
the controller is designed for steady state operation and hence
transient stability is not considered. In another study, Li et al.
(2022) proposed a dual deep Q-network (DDQN) controller for a
microgrid energy storage system that reduces the power used from
the main grid to maximize the profit. An agent microgrid power
management approach to minimize the exchanged power with the
main grid was proposed in (Mahboob Ul Hassan et al., 2022), where
a fitted Q algorithm was used. However, the authors did not consider
the transient behavior of the microgrid during disturbances. The
above methods have low robustness and performance and cannot
meet the requirements of islanded microgrids. Reinforcement
learning methods can learn the optimal control policy by
interacting with the environment, but they require the analysis of
the Mercuriality of the problem, the construction of a Markov
decision process, and the design of a reasonable reward function.
The optimal control variables can be obtained by building an
optimization model, but it requires the analysis of the constraints
of the problem and the choice of a suitable solution algorithm.
However, these methods have low adaptability and robustness, and
are prone to the curse of dimensionality, which makes it impossible
to obtain an LFC policy that can consider a wide range of metrics in a
complex islanded microgrid environment.

This paper tackles the challenges of balancing multiple
performance indicators for isolated microgrids, such as frequency
stability and economic efficiency, which are often conflicting
objectives. The paper proposes a data-driven Adaptive Load
Frequency Control (DD-ALFC) method that uses deep
reinforcement learning to design an agent that can make
independent decisions and optimize multiple indicators. The
paper also introduces a Priority Replay Soft Actor Critic (PR-
SAC) algorithm that enhances the policy randomness and
adaptability of the agent by using entropy regularization and
prioritized experience replay. The paper demonstrates the
effectiveness of the proposed method and algorithm in improving
the frequency control performance and economy of a complex
microgrid environment, using the Zhuzhou Island microgrid as a
case study.

The main contributions and innovations of this paper are
as follows:

(1) Improved deep reinforcement learning method: We propose
a Priority Replay Soft Actor Critic (PR-SAC) algorithm to
solve the frequency control and optimal operation problems
of microgrids. PR-SAC uses entropy regularization and
maximization of entropy objective to make the policy more
randomly distributed, and employs the priority experience

replay policy to enhance the adaptability and generalization of
the algorithm. This enables the data-driven adaptive load
frequency control (DD-ALFC) based on this algorithm to
consider multiple performance indicators in complex
microgrid environments and to improve the frequency
control and economic performance.

(2) Data-driven adaptive load frequency control: We develop a
DD-ALFC to evaluate the effectiveness of frequency control
and optimal operation of microgrids by considering
multiple performance indicators. We consider not only
the frequency deviation of the microgrid, but also the
operating cost of the microgrid as the objective function
of the multi-objective optimization of the microgrid to
achieve a comprehensive optimization of the microgrid.
We design a suitable reward function to balance these
performance indicators so that the frequency control and
optimal operation of the microgrid can simultaneously
satisfy frequency stability, economy and
environmental benefits.

The structure of this paper is as follows: Section 2 introduces the
problem statement and the mathematical formulation of the
proposed approach. Section 3 describes the design and
implementation details of the proposed method. Section 4
presents the simulation model and the analysis of the results.
Section 5 concludes the paper and discusses the future work
directions.

2 Model of DD-ALFC

2.1 Island microgrid model

The grid-connected inverter interface allows distributed
photovoltaic (PV), wind power (WP) and energy storage (ES)

FIGURE 1
DD-ALFC structure.
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units to connect to the microgrid. The distributed generation (DG)
unit can track a given reference power quickly by controlling the
grid-tie inverter. A first-order model is adopted to represent the
grid-connected inverter model in the LFC model (Deng et al.,
2022). The previous section introduces the load frequency control
model of conventional thermal power units, the simplified
equivalent model of renewable energy units with certain
frequency regulation capability, and the simplified equivalent
model of battery energy storage. Based on these models, this
paper constructs a single-area load-frequency control microgrid
model, which consists of two wind turbines, two photovoltaic
units, an energy storage system and a diesel engine. Figure 1 shows
the load frequency control model.

This paper presents an islanded microgrid system with various
distributed energy sources, such as photovoltaic (PV), wind turbine
(WT), microturbine (MT), diesel generator (DG), and fuel cell (FC).
A benefit and penalty function is proposed to optimize themicrogrid
operation, considering both the economic cost and the control cost.
The smart body uses a DD-ALFC controller to generate the total
regulation commands, which are then distributed to each unit by the

PROP command distributor. The structure of the DD-ALFC
controller is described in detail.

2.1.1 Micro gas turbines
Various fuels, such as natural gas, biogas, biomass gas, diesel, etc.,

can be utilized by micro gas turbines, which have the benefits of high
efficiency, reliability, environmental protection and flexibility. These
turbines can serve as the core power equipment in various fields, such as
distributed energy, mobile emergency power generation, new energy
utilization, transportation, etc. Details as Eqs 1, 2.

CMT,OM � ∑T
t�1
kMT,OMPMT t( ) (1)

CMT,fuel � CMTΔt
1

LHV
∑T
t�1

PMT t( )
ηMT

(2)

where CMT is the maintenance cost of the power consumption,
kMT,OM is the maintenance coefficient, the value of CMT,fuel is the
unit price of MT fuel gas, LHV is the low calorific value of natural
gas, and PMT is the operating efficiency of MT.

FIGURE 2
Learning processes and programs.
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2.1.2 Diesel generators
Sag control is a technique that enables diesel generators to

achieve stable frequency and voltage output. By using sag
control, each unit can adjust its power output according to the
voltage sag, without requiring communication or coordination with
other units. This enhances the reliability and flexibility of the
distributed generation system. Details as Eqs 3, 4.

CDG,OM � ∑T
t�1
kDG,OMPDG t( ) (3)

CDG,fuel � α + β∑T
t�1
PDG t( ) + γ∑T

t�1
P2
DG t( ) (4)

where CDG,OM is the cost of the DG, kDG,OM is the DG maintenance
factor; PDG is the fuel cost of the DG, and α, β, and γ are the fuel cost
coefficients.

2.1.3 Fuel cell modeling
A possible way to provide secondary frequency regulation for

the grid is to employ fuel cells, which can adjust their output
power according to the grid frequency deviation and the area
control error signal. This way, the system can restore the
frequency and power balance by using fuel cells as flexible
resources. Details as Eqs 5, 6.

CFC,OM � ∑T
t�1
kFC,OMPFC t( ) (5)

CFC,fuel � CFCΔt
1

LHV
∑T
t�1

PFC t( )
ηFC

(6)

where CFC,OM is the cost of the FC, kFC,OM is the maintenance factor
of the FC, PFC (t) is the output power of the FC at time period t;
CFC,fuel is the fuel cost of the FC,CFC is the unit price of gas for the FC
and ηFC is the operating efficiency of the FC.

2.2 Objective functions and constraints

This paper presents an optimization method for the scheduling
of an islanded microgrid that operates under system constraints,
economic cost and frequency control objectives. A penalty function
is introduced to enable the multi-objective optimization of the
microgrid. The paper considers the cost and frequency regulation
performance of three types of distributed generators: micro gas
turbine, diesel generator and fuel cell: Details as Eqs 7, 8.

min∑T
t�1

Δf
∣∣∣∣ ∣∣∣∣ +∑T

t�1
∑n
i�1

αiΔP2
Gi + βiΔPGi + γi( ) (7)

∑n
i�1
ΔPin

i � ΔPorder−∑
ΔPorder−∑*ΔPin

i ≥ 0

ΔPmin
i ≤ΔPin

i ≤ΔPmax
i

ΔPGi t( ) − ΔPGi t + 1( )| |≤ΔPrate
i

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(8)

where ΔPorder-∑ is the total generation power command, ΔPimax and
ΔPimin are the upper and lower limits of the generation units
respectively, ΔPirate is the creep rate of the unit, and ΔPiin is the
generation power command input to the ith unit.

3 MDP model and PER-SAC algorithm
for DD-ALFC

3.1 MDP model for the proposed method

Reinforcement learning is a framework for decision-making,
where an agent interacts with an environment by observing its state,
performing actions, and receiving rewards. The agent aims to learn a
policy that maps states to actions in order to maximize the expected
return over time. However, reinforcement learning algorithms often
suffer from instability during training, which affects their
performance (Su et al., 2021).

3.1.1 The concept of MDP in the DD-ALFC
Reinforcement learning is a learning paradigm that enables

agents to acquire optimal behaviors through trial-and-error
interactions with stochastic environments. The theoretical
foundation of reinforcement learning is the Markov Decision
Process (MDP), a mathematical framework that captures the
essential features of sequential decision making under
uncertainty. Figure 1 illustrates the basic elements of an MDP. At
each discrete time step, the agent perceives the current state st of the
environment, selects an action at according to its strategy, and
receives a scalar reward rt+1 as a feedback, The environment then
transitions to a new state st+1, and the process continues. The agent’s
behavior is determined by one or more of the following components:
policy, value function, and model. These components are defined
as follows.

3.1.1.1 Policy
An agent’s behavior in different states is described by a

probability distribution, which is called a policy. A policy fully
determines the agent’s behavior, meaning that it assigns
probabilities to all possible actions that the agent can take in
each state. The policy is invariant in the same state, but the
action probabilities may vary. The agent’s objective is to find the
optimal policy that maximizes the expected reward over time. The
policy is denoted by π (a|s), and Eq. 9 defines all the possible
behaviors and probabilities of the agent in each state.

π a | s( ) � P At � a | St � s( ) (9)
where P is the probability of choosing action At to be a at time t.

3.1.1.2 Value functions
The performance of an agent in each state, or the degree of merit

of a given behavior in a given state, is captured by the value function.
Themerit is measured by the expected future reward, which depends
on the policy followed by the agent. All value functions are estimated
with respect to a given policy. The reward Gt is the discounted sum
of all future rewards starting from time t, as defined by the following
equation. Details as Eq. 10.

Gt � Rt+1 + γRt+2 + . . . � ∑∞
k�0

γkRt+k+1 (10)

The discount factor γ embodies the proportion of the value of
future rewards in the current moment, and the value of the reward R
obtained at k+1 moment is γkR at t. When γ is 0, the agent only pays
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attention to the immediate rewards in front of it, and does not
consider the long-term benefits in the future. When γ is 1, the agent
will fully consider the future rewards and regard the long-term
benefits as important.

3.1.1.3 Models
An agent can use a model to represent the environment internally,

which can facilitate its decision-making and planning processes in its
interaction with the environment. Two problems need to be addressed
by the environment model: one is the state transition probability Pssʹ

a,
which characterizes the dynamic properties of the environment and is
used to predict the probability distribution of the next state sʹ after
taking a behavior a in state s; the other is the prediction of the possible
instantaneous rewards Rs

a. Rs
a characterizes the rewards obtained after

taking a behavior a in state s. The formula is described as follows. Details
as Eqs 11, 12.

Pa
ss′ � P St+1 � s′ | St � s, At � a( ) (11)
Ra
s � E Rt+1 | St � s, At � a[ ] (12)

where St denotes the state at moment t, At denotes the action at
moment t; Pssʹ

a denotes the state transfer probability, and Rs
a denotes

the reward. The following is the MDP modeling of the agent.

3.1.2 The MDP model in the DD-ALFC
3.1.2.1 Action space

The ith unit (agent) functions as the output of the command of
the ith unit, which makes the exploration range to be reduced in
order to obtain. The action is shown as follows. Details as Eq. 13.

ai � ΔPorder−i (13)
where ai is the action of the ith agent and ΔPorder-i is the regulation
command of the ith agent (unit).

3.1.2.2 State space
The state of the agent is shown below. Details as Eq. 14.

sj � Δf k( ) ∫t

0
Δfdt ΔPorder−i k − 1( )[ ] (14)

where si is the state of the ith agent, Δf is the frequency deviation,
and ΔPorder-i(k) is the regulation command.

3.1.2.3 Reward function
According to Eq. 7, the reward function of the agent is shown as

follows. Details as Eq. 15.

ri k( ) � − μ1 Δf k( )∣∣∣∣ ∣∣∣∣ − μ2C
p
Σ[ ] + PT (15)

where ri is the reward function of agent i, and μ1 and μ2 are the
weight coefficients. Details as Eq. 16.

Among them

PT � −5 Δf k( )∣∣∣∣ ∣∣∣∣≥ 1KW

0 Δf k( )∣∣∣∣ ∣∣∣∣< 1KW

⎧⎨⎩ (16)

Deterministic policies based on deep reinforcement learning
algorithms have the advantage of selecting a unique action for each
state. However, this also limits the exploration of the environment
in the initial stage of training, when the agents have limited

knowledge. Therefore, deterministic policies can only improve
gradually, resulting in low learning efficiency. To address this
issue, the agents should explore more randomly and adaptively in
the early stage of learning, so that they can find a policy that
maximizes the Q value under insufficient information. As the
learning progresses, the agents should reduce the randomness and
focus on the best policy according to the current information.
Moreover, the exploration degree of the agents in deterministic
policies is usually controlled by human intervention, which may
not match the agent’s state and lead to high reward variance. This
can misguide the agents to choose suboptimal policies and lower
the learning efficiency. Hence, this section aims to find a DRL
algorithm that can adjust the exploration degree autonomously
based on the agent’s state, and select the most suitable exploration
for the environment, thus reducing the reward variance and
improving the learning efficiency. In summary, this section
proposes a randomized DRL algorithm based on the PR-SAC
algorithm, which enables the agents to explore more randomly
and adaptively. The algorithm overcomes the main challenges of
model-free DRL algorithms, such as poor convergence, difficulty in
choosing the optimal policy, and high sampling complexity.

PR-SAC is an off-policy, actor-critic reinforcement learning
algorithm that follows the maximum entropy principle. It uses a
stochastic policy function that resembles deterministic deep
reinforcement learning algorithms with a replay buffer storage
scheme. Unlike other reinforcement learning algorithms, PR-SAC
encourages exploration and exploitation of policies that maximize
the expected return. By introducing an entropy term, the policy can
be as random as possible, effectively balancing exploration and
exploitation. This prevents the policy from getting stuck in a
local optimum and allows it to explore multiple feasible solutions
for a given task. This also improves the robustness of the algorithm
to disturbances. The Q-function of the critic, which evaluates the
quality of the actions, is modeled as follows: Details as Eq. 17.

Qμ s, a( ) � −∑T
t�1

Δt BiΔf( )2 +∑n
i�1

Ctotal( )⎡⎣ ⎤⎦⎡⎣ ⎤⎦ (17)

The policy improvement phase aims to maximize the soft Q
values while maintaining the similarity between the soft Q values
and the policy distribution. Hence, the new policy is obtained by
minimizing the KL divergence between the policy distribution and
the soft Q values. A novel approach to enhance the Actor-Critic
framework is PR-SAC, which incorporates entropy into the reward
function. The agent receives a reward at each step that is
proportional to the entropy of the policy at the current time step,
as shown in the following equation. Details as Eq. 18.

π* � argmaxπ ∑
t

E s,a( )−ρz r st, at( ) + αH π · | st( )( )[ ] (18)

where ρs denotes the distribution of state-action pairs obtained from
the interaction between the agent and the environment under the
control of the policy π; α denotes the entropy coefficient, which is
used to adjust the degree of emphasis on the picking value. The
policy π controls the agent’s interaction with the environment,
resulting in a distribution of state-action pairs ρs. The entropy
coefficient α adjusts the trade-off between the value and the
entropy of the policy. The objective of maximizing the entropy-
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regularized value encourages the agent to explore more diverse
strategies without neglecting the low-reward ones.

Entropy is introduced in both the state action value function and
the state value function, called the flexible action value function
Qseft

π and the flexible state value function Vseff
π, with the following

expressions. Details as Eqs 19, 20.

Qπ
seft st, at( )�Δ r st, at( ) + γEss+1−ρz V st+1( )[ ] (19)

Vπ
seft st( ) � E

st ,at−ρz
Q st, at( ) − α log π at | st( )[ ] (20)

Similarly, the actor network parameter policy gradient is
computed as. Details as Eq. 21.

∇̂ϕJπ ϕ( ) � ∇ϕα log πϕ( ) + ∇aθα log πϕ( ) − ∇aiQθ st, at( )( )∇ϕfϕ

(21)

where fφ denotes the parameterization policy for neural network
transformation.

The target value in the Double-Critic network is prone to error
propagation, which affects the accuracy of the action value function
and leads to suboptimal solutions in Q-learning. A related challenge
in reinforcement learning is policy selection, which aims to balance
exploration and exploitation by retaining good policies and
exploring new ones. Therefore, minimizing error propagation
and achieving exploration-exploitation trade-off in double-critic
networks are important problems in deep reinforcement learning.
Kullback-Leibler (KL) divergence measures the similarity between
two distributions, with lower values indicating higher similarity. For
a random variable in the set χ, the KL divergence of two continuous
probability distributions p and q is defined as follows. Details as
Eq. 22.

DKL p
����q( ) � ∫

z
p x( )log p x( )

q x( )( )dx (22)

where p(x) and q(x) are distributed as p and q and probability
density functions.

The PR-SAC algorithm alternates between two phases: policy
evaluation and policy improvement. In each phase, the five neural
networks that constitute the PR-SAC algorithm are updated with
different objectives: Details as Eqs 23, 24.

qsoftπ st, at( ) � rt + γEst+1−p vsoftπ st+1( )[ ] (23)
vsoffπ st( ) � Eat−π qsoftπ st, at( ) − λ log π at | st( )( )[ ] (24)

where p denotes the state transfer probability function under the
randomized policy π. π(at|st) denotes the stochastic policy π under
which the agent makes the action at in state st.

3.2 Mixed priority experience replay

PR- SAC algorithms employ experience replay and random
sampling of transitions to update parameters. This approach is
inefficient for sparse reward scenarios, where only a few samples
can provide meaningful learning signals for the agent, while most
samples have small and indistinguishable rewards. Moreover, the
algorithm samples transitions uniformly at random from the replay
buffer, which can introduce strong temporal correlations among
adjacent data and different contributions of data to the gradient
learning, thus reducing the learning efficiency and even causing
overfitting.

This paper proposes a method to calculate the sampling
probability of samples based on the discretization of sample
mixing priority. The method aims to address the problems of
greedy sampling of high-error samples and poor guidance of the
evaluation network in prioritized experience replay. The paper
argues that high-error samples are not conducive to the
optimization of the policy network, and that low-error samples
should be sampled more frequently to train the evaluation network
and the policy network. The paper also suggests that the dispersion
of sample priority can be used to improve the diversity of training
samples and to balance the sampling probability of high-error and
low-error samples. The paper claims that the proposed method can

FIGURE 3
Results of case 1. (A) Frequency error of advanced control. (B)
Frequency error of conventional control.
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reduce the uncertainty of the evaluation network and enhance the
optimization ability of the policy network. The weight coefficients
are as follows: Details as Eqs 25, 26.

zi � ui − λ( )2 + ω (25)

pi � zζi∑
k
zζk

(26)

where zi denotes the dispersion of the first i sample, λ denotes the mean
of themixed prioritization of all the samples in the experience pool, and
ω denotes a small positive constant to ensure that the prioritization of
each sample in the experience pool is not 0. pi denotes the probability of
sampling the first i sample, and ζ denotes the conditioning factor of the
prioritization. When ζ=0, the prioritized experience replay is degraded
to random uniform sampling; when 0<ζ<1, partial-priority sampling is
used; when ζ=1, full-priority sampling is used. In this paper, full-priority
sampling is used to calculate the sample sampling probability. The
specific learning process is shown as follows:

4 Experiment and case studies

A DD-ALFC based on the PR-SAC algorithm is proposed and
applied to the DD-ALFC model of the CSGmicrogrid (Li and Cheng,
2023). The parameters are taken from (Xi et al., 2022) and represent
actual data. The CSG microgrid is an off-grid smart microgrid system
in Sanya Zhuzhou Island, which uses wind power and photovoltaic
power as the main energy sources and energy storage batteries and
diesel generators as auxiliary energy sources. The main parameters of
the CSG microgrid are as follows: wind power generation system: two
50 KW wind turbines, with an annual power generation capacity of
about 200,000 kwh; photovoltaic power generation system: two sets of
130 kW photovoltaic power generation systems, with annual power
generation of about 300,000 kwh; energy storage system: 2 sets of
300 kw/650 kwh lithium iron phosphate energy storage system, 1 set

of 150 kw/20.6f super capacitor; diesel generator: one 150 KW diesel
generator with an annual fuel consumption of about 11000L. The
smart microgrid controller is used in the microgrid control system to
realize the coordinated control of wind, light, storage and diesel,
optimize power distribution and improve system efficiency. The aim
of the CSG microgrid is to solve the problem of power supply on the
island, utilize the local abundant wind and solar energy resources,
realize the diversification and cleaning of energy, reduce the
dependence on diesel power generation, reduce carbon emissions,
and protect the island ecological environment. The proposed
method is compared with DD-ALFC based on DRL algorithms
such as soft actor critic (SAC) (Deng et al., 2022), trust region policy
optimization (TRPO) (Xiao et al., 2023a), twin delayed deep
deterministic policy gradient algorithm (TD3) (Chen et al., 2018),
Deep deterministic policy gradient (DDPG) (Calovic, 1972), Double
deep Q-learning (DDQN) (Zhang et al., 2021) and LFC based on
algorithms such as Model predictive control (MPC) (Li and Zhou,
2023a), particle swarm optimization fuzzy proportional integral
differential algorithm (PSO- Fuzzy-PI) (Harnefors et al., 2022),
Genetic algorithm optimized fuzzy proportional integral
differential algorithm (GA-Fuzzy-PI) (Calovic, 1972), glowworm
swarm optimization fuzzy proportional integral differential
algorithm (GSO-Fuzzy-PI) (Xie et al., 2023), particle swarm
optimization fractional order proportional integral (PSO-FOPI),
genetic algorithm optimized fractional order proportional integral
(GA-FOPI).

4.1 Case 1: randomized disturbances

A step disturbance is applied to the system and the algorithm is
tested for its robustness. The comparison of the algorithmwith other
methods is shown in Figures 3A, B and Table 1.

Table 1 shows the comparison between pr-sac algorithm and
other algorithms in terms of frequency deviation and power

TABLE 1 Statistical results for Case 1.

Algorithm Average frequency deviation (Hz) Power generation costs ($)

|Δf |avg Ctotal

PR-SAC 0.004840 2071.23

SAC 0.005064 2073.39

TRPO 0.005347 2073.50

TD3 0.004959 2073.43

DDPG 0.005764 2073.18

DDQN 0.005845 2073.16

MPC 0.006227 2073.10

PSO-Fuzzy-PI 0.007375 2073.53

GA-Fuzzy-PI 0.007081 2073.64

GSO-Fuzzy-PI 0.008660 2073.23

PSO-FOPI 0.007761 2073.44

GA-FOPI 0.006004 2073.13
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generation cost. The frequency deviation of pr-sac algorithm is
significantly lower than that of other algorithms, which is reduced
by 2.45%–78.92%, and the generation cost of PR-SAC algorithm is
also reduced by 0.09%–0.117%. Figures 3A, B shows the frequency

response and diesel generator output power of the microgrid under
different control modes. The simulation results show that pr-sac has
the best control performance among the four intelligent algorithms,
followed by SAC. This is because both pr-sac and sac adoptmaximum
entropy exploration, which can adjust the learning rate adaptively. By
sharing experience and dynamically updating the function table, the
relative weights of each region can be obtained, so that each control
region can adjust the control strategy appropriately and improve the
flexibility of control. The advantage of pr-sac is that it does not need
average strategy estimation, but directly makes decisions based on
dynamic joint trajectory and historical state action pairs. At the same
time, it has strong adaptability to learners’ real-time learning rate, so it
can obtain better LFC coordination control.

PR-SAC shows strong adaptability and better control
performance under different conditions of the system, which
fully proves the effectiveness and scalability of the proposed
algorithm. Reinforcement learning has strong competitiveness
among many methods because of its simplicity and universality
of parameter setting. However, the application of reinforcement
learning method also faces new challenges. Firstly, when dealing
with large-scale tasks, it is difficult to reasonably define an
optimal common exploration goal for multiple single agent
reinforcement learning; Secondly, each agent needs to record
the actions of other agents (resulting in poor stability) in order to
interact with other agents to get joint actions. This poor stability
also makes the convergence speed of many methods slow. In this
context, multi-agent reinforcement learning technology with
group characteristics has been rapidly developed and widely
used. Reinforcement learning focuses on how to use agent
exploration technology to solve dynamic tasks in real time in
dynamic planning and time sequence difference methods. The
pr-sac based on reinforcement learning proposed in this paper is
innovative and efficient due to its more accurate independent
self-optimization ability.

4.2 Case 2: renewable energy disturbances

This paper presents an intelligent distribution network model
that incorporates various new energy sources, such as electric
vehicles, wind power, hydropower, gas turbines, fuel cells,
photovoltaic and biomass energy, to examine the regulation
performance of PR-SAC in a highly stochastic environment. In
this model, new energy sources such as electric vehicles, wind power
and photovoltaic are considered as random load disturbances and
do not participate in the system frequency control. The input signal
of the wind turbine is determined by the random wind simulated by
the band-limited white noise, which results in the wind power
output. The active power output of the photovoltaic unit is
determined by simulating the diurnal variation of solar
irradiance. The relevant parameters of each unit are given in (Li
and Zhou, 2023b).

The long-term control effect of PR-SAC under strong random
load disturbance was evaluated by using 24-hour random white
noise as the test signal. The output curve of PR-SACwas able to track
the change of random disturbance quickly and accurately, as shown
in Figure 4. The statistical data of the simulation experiment were
also analyzed and presented in Table 2. The generation cost was

FIGURE 4
Results of case 2. (A) Frequency error of advanced control. (B)
Frequency error of conventional control. (C)Unit regulation of output.
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defined as the sum of the total regulation costs of all generating units
within 24 h. The distribution network data indicated that the
frequency deviation of other algorithms was 1.09–3.20 times
higher than that of pr-sac algorithm, while the generation cost of
PR-SAC algorithm was reduced by 0.0005%–0.017%. Moreover, PR-
SAC had higher economy, stronger adaptive ability and better
coordinated optimization control performance than other
intelligent algorithms.

The convergence characteristics and learning efficiency of pr-sac
were also verified by introducing various interference signals such as
step wave, square wave and random wave. The results demonstrated
that pr-sac had excellent adaptability in random environment. It could
not only resist random disturbance, but also improve the dynamic
control performance in interconnected power grid environment.
Figure 4A illustrated the balance response relationship between the
output power of various units and the load demand within 24 h. It was
observed that the total power of the units could well track the load
change. Under the control of the total power command, the coordinated
and optimized operation of multiple energy sources was achieved in
each unit period. Among them, new energy units had the advantages of
fast start-up and stop, fast climbing, and large adjustment range
compared with diesel units. As shown in Figure 4B, new energy
units were the most important frequency modulation unit in the
system and undertook most of the output tasks to cope with the
load fluctuation of the power grid.

5 Conclusion

In summary, the main contributions of this work are given
as follows.

This work presents a data-driven Adaptive Load Frequency
Control (DD-ALFC) for isolated microgrids, which aims to
balance multiple performance indicators, such as frequency
stability and economic efficiency. These indicators are often

conflicting, requiring grid operators to make trade-offs. The DD-
ALFC treats the Load Frequency Control (LFC) controller as an
agent that can make independent decisions based on the data.

To implement the DD-ALFC, a Priority replay Soft Actor Critic
(PR-SAC) algorithm is proposed. The PR-SAC algorithm uses
entropy regularization and maximization to achieve a more
random policy distribution, and employs a priority experience
replay mechanism to enhance the adaptability and generalization
of the algorithm. The PR-SAC based DD-ALFC can achieve higher
adaptivity and robustness in complex microgrid environments with
multiple performance indicators, and improve both the frequency
control and the economic performance. The proposed method is
validated in the Zhuzhou Island microgrid.

Future work: The PR-SAC algorithm proposed in this article is
still difficult to apply in practice due to its low generalization. Future
work aims to improve the generalization of the algorithm to make it
more practical.
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Glossary

Abbreviations

DD-ALFC Data-driven adaptive load frequency control

DDPG Deep deterministic policy gradient

DDQN Double deep Q-learning

DG Dstributed generation

DRL Deep reinforcement learning

EMS Energy management systems

ESS Energy storage systems

FC Fuel cell

GA-FOPI Genetic algorithm optimized fractional order proportional integral

GA-fuzzy-PI Genetic algorithm optimized fuzzy proportional integral
differential algorithm

GPC Generalized Predictive Control

GSO-Fuzzy-PI Glowworm Swarm Optimization fuzzy proportional integral
differential algorithm

KL Kullback-Leibler

MPC Model predictive control

MT Microturbine

PID Proportional Integral Derivative

PR-SAC Priority replay soft actor critic

PSO- Fuzzy-PI Particle swarm optimization fuzzy proportional integral differential
algorithm

PSO-FOPI Particle swarm optimization fractional order proportional integral

PV Photovoltaic

SMC Sliding Mode Control

TD3 Twin delayed deep deterministic policy gradient algorithm

TRPO Trust Region Policy Optimization

WT Wind turbines

Nomenclature

ai action of the ith agent

At choosing action

CDG,OM cost of the DG

CFC unit price of gas for the FC

CFC,OM cost of the FC

CMT maintenance cost of the power consumption

CMT,fuel unit price of MT fuel gas

fφ parameterization policy for neural network

kDG,OM DG maintenance factor

kFC,OM maintenance factor of the FC

kMT,OM maintenance coefficient

LHV low calorific value of natural gas

Qseft
π

flexible action value function

pi probability of sampling the first i sample

P probability of choosing action

PDG the fuel cost of the DG

PFC output power of the FC

PMT operating efficiency of MT

Pssʹa state transition probability

rt+1 scalar reward

ri reward function of agent i

R reward

Rs
a instantaneous reward

sʹ next state

st current state

Vseff
π

flexible state value function

zi dispersion of the first i sample

Greek symbols

α entropy coefficient

β fuel cost coefficients

γ discount factor

Δf frequency deviation

ΔPiin command of ith unit

ΔPimax upper limits of the units

ΔPi
min lower limits of the units

ΔPi
rate creep rate of the unit

ΔPorder-i regulation command

ΔPorder-∑ total command

ζ conditioning factor of the prioritization

ηFC operating efficiency of the FC

λ mean of the mixed prioritization

μ1 weight coefficients

μ2 weight coefficients

π(a|s) policy

ρs distribution of state-action pairs

χ random variable

ω small positive constant
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