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Instead of expanding power plant capacities, which is an extremely expensive
investment option, demand response offers an economical solution to the
challenges arising from the variability and intermittency of the renewable
energy resources and demand variations, particularly during demand peak
periods. This paper proposes a multi-objective optimization framework for the
optimal power flow problem that integrates a stepwise demand response
involving flexible and aggregated loads. The process includes short-term
demand forecasting using long short-term memory (LSTM) networks in a
smart distribution grid, followed by the optimal allocation of energy storage
systems, and load aggregators. By determining the optimal solution point of the
multi-objective problem analytically, significant system costs and peak demand
can be reduced without compromising system stability. Through numerical
studies for a sample study case, a reduction of 22% in system costs, 2% in
total voltage variation, and 10% in peak demand is observed for a negligible
impact on customers’ convenience.
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1 Introduction

Demand response (DR) is an important feature of smart grids and aims to change
the consumption pattern of end-uses from their normal patterns to reduce the
network’s peak demand and shift the loads to network’s off-peak periods (Albadi
and El-Saadany, 2008). While DR has been widely employed in industrial and
commercial sectors since 1970, it is being expanded thanks to technology
developments and market improvements (Henríquez et al., 2017). Although
consumers are technically capable of reducing their demand quickly and reliably,
implementing DR for industrial loads can be more challenging than that for residential
loads, primarily because industrial plants require more stringent reliability
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management (Shoreh et al., 2016). On the other hand,
residential sector accounts for the a very large share of
electricity consumption (e.g., 38% in the United States)
(Buildings Energy Data Book, 2011). Heating, ventilation,
and air conditioning (HVAC) systems constitute an
important part of energy consumption in our daily lives; for
example, approximately 40% of the energy consumption of
buildings in the United States is related to HVAC systems
(Bhattacharya et al., 2017). Aggregated domestic and
commercial loads can be used in the DR program. To
manage the flexibility of a large number of scattered DR
resources in the context of electricity markets, they must be
aggregated by a new participant called the DR aggregator
(Henríquez et al., 2017). Aggregators can be used for any
type of small-scale and high-potential flexible loads. As an
example, HVAC aggregators (HVACA) enable owners to
participate in DR by aggregating a number of HVAC units.
In fact, without going out of the standard temperature range, it
is possible to provide the desired temperature and reduce
energy consumption simply by applying the predicted load
chart in the process and settings, bringing a win-win situation
for smart grid operators and consumers. In fact, with peak
shaving via DR, the operator brings less expensive power plants
into operation, therefore, reducing the cost of the
entire system.

The core of a proficient power markets is the optimal power flow
(OPF) challenge from economic, electrical, and computational
standpoints. Economically, achieving an effective market
equilibrium necessitates multi-faceted nonlinear pricing
mechanisms. Electrically, the power flow is characterized by
alternating current (AC), thereby introducing supplementary
nonlinear elements. Computationally, the optimization process
entails non-convexities, encompassing binary variables and
continuous functions, rendering the problem arduous to resolve
(Cain et al., 2012). The quadratic and non-linear characteristics of
the power flow equations of the ac power grid make the OPF
problem non-convex. Therefore, solutions such as the convex
relaxation and linear approximation methods have been
proposed to simplify the AC-OPF problem (Nakabi and
Toivanen, 2021). The convex relaxations methods are generally
shown to be exact only under certain conditions (Chowdhury
et al., 2023). One of the linear approximation methods applied in
the transmission network is DCOPF, but due to very small phase
changes (Li et al., 2023), this method is not suitable for the
distribution network. According to (Nair et al., 2022), among the
three formulation methods of AC-OPF, the power balance polar
formulation is the best choice for small distribution grids because of
its fast runtime.

Integration of the AC-OPF problem with DR has been the
focus of several studies. Emphasizing the importance of the AC-
OPF problem, in some references, such as (Younesi et al., 2024),
where the problem is solved in the electricity market framework,
the AC-OPF structure is used to ensure the minimization of lost
load and enhance resilience. In (Vanin et al., 2022) an mixed-
integer linearized OPF-based congestion mitigation strategy is
presented for DR in unbalanced residential networks. The
strategy is based on requiring residential customers to limit
their demand for a certain amount of time in exchange for

economic benefits. A time-value-based demand-shifting
strategy is proposed for DR in (Jabari et al., 2020) which is
focused on transmission system and only active power. The
article by (Khonji et al., 2016) has investigated OPF in the
context of utility-maximizing DR management in distribution
networks, in which customers’ demands are satisfied subject to
the operating constraints of voltage and transmission power
capacity. An optimal DR-based AC-OPF problem considering
renewable energies and energy storage systems (ESSs) has been
presented in (Zarei and Ghaffarzadeh, 2023) for a transmission
network with short-term load forecasts using long short-term
memory networks (LSTM). Considering the constant power
factor for before and after DR, active and reactive power are
included in the problem at the same time. In (Mak et al., 2023;
Merrad et al., 2022), machine-learning approaches are used to
solve AC-OPF problems in a decentralized fashion, but
challenges related to its accuracy are still not solved,
especially in systems with a high number of buses (such as
the distribution network).

At present, the direct integration of AC-OPF with DR has
been the subject of only a few studies. This study introduces a
DR-based strategy for the AC-OPF problem, focusing on the
aggregator’s small-scale flexible HVAC loads and the direct
participation of flexible distributed loads at distribution grid
buses, considering their simultaneous effects. The paper also
discusses LSTM-based load prediction, the optimal placement
of ESSs, and an intelligent model for HVACAs that prioritizes
the user’s desired temperature range. Uncertainties in
distributed energy resources (DERs) are modeled using a
scenario-based approach and factored into optimal
scheduling. The proposed scheme has the potential to
significantly delay or eliminate the need to construct a new
power plant by leveraging the participation of a small portion of
the loads in the distribution network. The multi-objective
model presented in the paper leads to a substantial reduction
in total system costs, minimizes total voltage variations, and
levels out the electrical load pattern while maintaining user
convenience.

The key contributions of this paper to the research field can be
summarized as below:

• Developing a simultaneous two-part DR strategy involving
aggregated small-scale flexible HVAC loads and partial
flexible loads across different load buses.

• Formulating a multi-objective optimization of the AC-OPF
problem through an analytical approach that integrates DR
considerations, aiming to reduce the total system costs, peak
loads, and total voltage variations while enhancing user
convenience.

• Optimizing the allocation of Energy Storage Systems (ESSs)
within the smart distribution grid, utilizing a modified LSTM-
based method for short-term load prediction, and
implementing intelligent control for HVACA based on
predicted load patterns to maintain the desired temperature
ranges for residents.

The remainder of this paper is organized as follows: The
proposal along with the formulated objective function are
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introduced in Section 2. Section 3 presents the performance
evaluation of the proposal using numerical studies. Finally, the
key findings of the research are summarized and presented
in Section 4.

2 The proposal

First, the electrical demand was predicted based on previous
consumption data using the LSTMmethod. Then, optimal locations
for ESSs were selected in the structure of the smart distribution grid,
which included distributed energy sources, such as small DGs, solar
and wind units, and thermal units. In addition, multiple scenarios
for wind and solar units have been developed to consider the
uncertainty of renewable energy sources. An HVACA was
integrated into the network based on its network structure and
capacity. This aggregator was modeled by considering the min/max
margin temperature and the predicted load patterns. Subsequently, a
multi-objective problem was modeled and simulated within the AC-
OPF framework, considering the relative response of all distribution
network buses to DR programs, as well as two modes for the
HVACA: flexible and non-flexible. Finally, an analytical method
was used for optimal solution selection. The overall solution
procedure is illustrated in Figure 1.

2.1 Objective functions

The proposed multi-objective function comprises one
economic, two technical, and one user-convenience functions, as
introduced and discussed below:

2.1.1 Total Cost Function
The total cost function incorporates the costs of active and

reactive power generation, load shedding, and wind/solar
curtailment, given by

OF1 � agP
g
i,t

2 + bgP
g
i,t + cg + c · Qg

i,t +∑
i,t

VOLL × PLS
i,t

+∑
i,t

VOLW × PWC
i,t +∑

i,t

VOLS × PSC
i,t (1)

and should be minimized. In (1), ag, bg, cg, and c are the fuel cost
coefficients of active and reactive power generation at unit g,
respectively. Pi,t

g, Pi,t
LS, Pi,t

WC, and Pi,t
SC are the power generation

of unit i, active load shedding in bus i, and wind and solar
curtailment in bus i, at time t respectively. To simplify the
problem, the quadratic cost function of thermal power plants was
approximated as a first-order function. VOLL is the value of the load
loss according to the graph of wind and demand changes, which is
considered as a penalty (Gorman, 2022). Similarly, VOLW/VOLS is
the cost factor for reducing wind/solar energy production in wind/
solar power plants, according to the graph of wind/solar and
demand changes.

2.1.2 Power quality improvement
In the pursuit of enhancing voltage stability, an objective

function is formulated to reduce the voltage deviations across all
nodes within the power grid, in the form of

OF2 � ∑T
t�1
∑N
i�1

Vt,i − Vt,i
*

∣∣∣∣ ∣∣∣∣ (2)

in which the voltage deviation function is used to enhance the
voltage profile and power quality, where Vt,i is the voltage at bus i at
time t, and Vt,i* is set to one in this study.

2.1.3 Peak reduction
The equation for the peak reduction is presented in reference

(Aalami et al., 2010). An objective function is introduced to
incorporate the peak reduction of active power before and after
DR, in the form of

OF3 � Pnew
load − Pold

load

Pold
load

× 100 (3)

which is highly important during the hot seasons of the year for
effectively managing customers’ electricity consumption.

2.1.4 User convenience
To account for the diverse range of network loads, the

similarity between the load profiles with and without DR is
evaluated using the correlation coefficient, which is then
incorporated as the fourth objective function in the final
assessment, in the form of

FIGURE 1
Flowchart of the proposal.
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OF4 � ∑24
t�1

Pnew
load t( ) − Pnew

load( ) Pold
load t( ) − Pold

load( )⎛⎝ ⎞⎠/
∑24
t�1

Pnew
load t( ) − Pnew

load( )2 ·∑24
t�1

Pold
load t( ) − Pold

load( )2√√⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ (4)

Pnew
load � ∑24

t�1
Pnew
load t( )⎛⎝ ⎞⎠/24 (5)

Pold
load � ∑24

t�1
Pold
load t( )⎛⎝ ⎞⎠/24 (6)

2.2 Uncertainty of distributed energy
resources

To consider the effect of distributed energy resources such as
wind and solar units, allOFj are calculated in every possible scenario
(Si) and then combined in the form of

OFj � ∑Sn
S1

P Si( ) · OFSi
j

100
(7)

where OFj
S
i and P(si) are respectively the values of OFj in scenario Si

and the probability of scenario Si.

2.3 Technical constraints

The constraints for the operation of the thermal power plants,
load-shedding limits, as well as operation of ESSs and distributed
energy resources should be considered for the successful
implementation of the DR, as introduced and discussed below:

2.3.1 Thermal power plant constraints
The constraints regarding the upper and lower limits of active

and reactive power generation from thermal power plants, as well as
their ramp-up and down rates, are given by

Pg,min
i,t ≤Pg

i,t ≤Pg,max
i,t (8)

Qg,min
i,t ≤Qg

i,t ≤Q
g,max
i,t (9)

Pg
i,t+1 − Pg

i,t ≤RUg (10)
Pg
i,t−1 − Pg

i,t ≤RDg (11)

2.3.2 Load shedding constraints
To determine the cost of load shedding, the curtailed demand of

each bus should be within the range of zero to the nominal load
capacity of that bus, given by

0≤PLS
i,t ≤PL

i,t (12)
0≤QLS

i,t ≤QL
i,t (13)

2.3.3 ESS constraints
The constraints pertaining to ESSs are given by (Thanh et al.,

2022; Nan et al., 2017)

SOCt � SOCt−1 + Pch
t ηch − Pdch

t /ηdch( )Δt (14)
SOCmin ≤ SOCt ≤ SOCmax (15)
Xch,ESS

i,t +Xch,ESS
i,t ≤ 1; ∀i, t (16)

0≤Pch,ESS
i,t ≤Ri ·Xch,ESS

i,t · Pch,ESS
i (17)

0≤Pdch,ESS
i,t ≤Ri ·Xdch,ESS

i,t · Pdch,ESS
i (18)

SOCi,t � SOCi,t+24 (19)
where Eqs 14 and 15 represent the state of charge (SOC) constraints
of the battery, indicating that the battery cannot charge when its
SOC reaches the maximum value or discharge when its SOC reaches
the minimum value. Constraint Eq. 16 specifies that it is impossible
for the battery to charge and discharge simultaneously. The hourly
charging and discharging power of the battery are limited by Eqs
(17) and (18), respectively. The initial SOC is set to be equal to the
SOC at the conclusion of scheduling hour (19).

2.3.4 Distributed energy resources constraints
The curtailed power of wind and solar resources is determined from

PWC
i,t � wtΛw

i − PW
i,t (20)

in which

0≤PW
i,t ≤wtΛw

i (21)

where Pi,t
s and Pi,t

sc are the solar generation and solar curtailment in
bus i at time t, respectively. St is the solar availability at time t; and Δi

s

the solar power plant capacity in bus i. Similar to wind resources, for
the solar bellow relation can be written as

PSC
i,t � stΛS

i − PS
i,t (22)

0≤PS
i,t ≤ stΛS

i (23)

2.4 Power balance polar formulation

The power balance constraints of the power grid include

Pij,t � Re Sij,t{ } � V2
i,t

Zij
cos θij( ) − Vi,tVj,t

Zij
cos δi,t − δj,t + θij( ) (24)

Qij,t � Im Sij,t{ } � V2
i,t

Zij
sin θij( ) − Vi,tVj,t

Zij
sin δi,t − δj,t + θij( ) − bV2

i,t

2

(25)
Pg
i,t + PLS

i,t + PW
i,t + PS

i,t + −Pch
i,t + Pdch

i,t( ) − PL
i,t � ∑

j∈Ωi


Pij,t: λ
P
i,t (26)

Qg
i,t + QLS

i,t + QW
i,t − QL

i,t � ∑
j∈Ωi



Qij,t: λ
q
i,t (27)

in which (24) and (25) describe the relationship for respectively
active and reactive power in the network while (26) and (27) outline
the active and reactive power balance constraints at time t. Also, Pi,t

L

is the power demand andQi,t
W is the reactive power generated by the

wind power plants on bus i at time t.

2.5 Demand response modelling

The DR constraints are formulated as follows:
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PL
i,t � PL0

i,t +DRi,t; ∀i (28)

∑24
t�1
DRi,t � 1; ∀i (29)

−α · PL0
i,t ≤DRi,t ≤ α · PL0

i,t ; ∀i (30)

tan θi,t( ) � QL0
i,t

PL0
i,t

(31)

QL
i,t � tan θi,t( )PL

i,t (32)

Constraint (28) specifies that the electrical power consumption at
bus i and time t in the presence of the DR scheme (Pi,t

L) which is
obtained from the sum of the base load (Pi,t

L0) and decision variable of
the DR (DRi,t). WhenDRi,t is zero, no DR program occurs, however for
DRi,t>0, the active and reactive power demand of bus i will increase at
hour t, resulting in valley filling. Similarly, the active and reactive power
demands of bus i decrease at hour t when DRi,t<0; hence, contributing
to peak shaving. In accordance with (29), the net change in the demand
across all buses is zero. The upper and lower bounds for the DR values
are determined by (30). By maintaining a constant power factor before
and after DR, as described by (31), the coordinated adjustment of the
reactive power in the DR scenario is expressed by (32).

2.6 HVAC aggregator modelling

The relationships between the HVAC units can be simplified by
omitting the coefficient related to the heating system and expressing the
coefficient and value of the cooling system in an aggregated form, as
described in (33). This simplification aims to reduce the volume of
calculations and assumes that the calculations are performed on a hot
day of the year. In the non-flexible mode, the ambient temperature,
room temperature, and air conditioning system capacity are considered;
however, in the flexible mode, apart from these parameters, the value of
k3. PAC(i,t) is determined based on the load chart specifications and the
specified ranges of the peak and valley loads. Constraint (34) specifies
that intelligent control is employed to ensure that at low loads, the
electricity consumption is higher and the temperature is maintained
close to the minimum allowed temperature range. The goal is to
minimize electricity consumption and adjust the temperature to the
maximum allowable temperature range.

Tin i, t( ) � k1.Tin i, t − 1( ) + k2.Ta t − 1( ) − k3.PAC i, t( ).U i, t( ) (33)

U i, t( ) �
1 Tin i, t − 1( ) >TMax

1 Ta t( )>Ta t − 1( )
1 k1.Tin i, t − 1( ) + k2.Ta t − 1( ) >TMax

0 else

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (34)

2.7 ESS allocation

In this study, the method borrowed from (Soroudi, 2017), which
was used in theDC-OPF program. The allocation of ESSs and their sizes
minimized the operational cost. After demand prediction and HVAC
aggregator calculation in the AC-OPF platform, the formulation size
and number of ESS are calculated. Considering the power quality issues,
the uncertainties associated with renewables are addressed when
optimizing ESS placement. The state of charge (SOCi,t) represents

the charging capacity of each ESS, depending on the number of ESS
units installed on-site (Ni

ESS) and their minimum and maximum
capacities (SOCi,min and SOCi,max), as described by (35). Constraint
(36) specifies that the total number of installed ESS units should not
exceed the specified maximum limit (Nmax

ESS).

SOCi,min × NESS
i ≤ SOCi,t ≤ SOCi,max × NESS

i (35)∑NESS
i ≤NESS

max (36)

3 Performance evaluation and
discussion

A modified IEEE 33-bus distribution system (Dolatabadi et al.,
2020), as seen in Figure 2, has been used to evaluate the performance
of the proposal. The specifications and details of wind and solar
energy resources, ESS, aggregated flexible loads, and reactive power
compensators are listed in Table 1. The generated unit data,
including their installation locations and production cost
functions, are listed in Table 2. The bus and branch data of the
modified IEEE 33-bus distribution system are derived from
(Dolatabadi et al., 2020). An initial power level of 4 MVA and
designation of bus-1 as the slack bus are noted. The voltage limits of
0.95–1.05 pu are considered acceptable for distribution systems. To
add the aggregator effect to the distribution grid, a 0.4 MW of
HVAC aggregator with a power factor of 0.8 is considered. The real
and reactive power loads on each bus are shown in Figure 3. The
total normal active and reactive electrical demands are respectively
3.715 MW and 2.3 MVar (Wang et al., 2021). According to the costs
in the objective function, the values of VOLS, VOLW, and VOLL
become respectively 1,000, 2,000, and 11,000 $/MWh. According to
the nodal reactive power pricing in (Wolgast et al., 2022; Halbhavi
et al., 2012), the cost of reactive power is approximately 1% of that of
the active power.

The control of the on- and off-times and the capacity of the
HVAC system units are managed by the HVAC aggregator. The
specifications of the HVAC system are listed in Table 3. According to
the formulas provided in the preceding section and the information in
the aforementioned table, the nominal cooling capacity of each unit
amounts to approximately 7.1 kW of electricity. By disregarding its
heating component and considering the 0.4 MW capacity of the
HVAC aggregator, the number of HVAC system units can be
computed. The placement of the HVAC aggregator was designated
as Bus 8. The performance of the HVAC aggregator was evaluated in
both flexible and non-flexible modes. In the nonflexible mode, the
input data comprises only the input temperature and ambient
conditions. Conversely, in the flexible mode, adjustments are made
based not only on the aforementioned factors but also in alignment
with the load diagram. The HVAC aggregator is well versed in the
permissible operating temperature range of the HVAC system units,
set between 18° and 22°, as per the projected load curve of the system
for the upcoming hours. Consequently, to curtail electricity
consumption during peak load periods and optimize utilization
during off-peak and valley periods to offset the required power, it
operates in accordance with the DR. The following are depicted in
Figure 4: a) inlet temperature and ambient conditions at the preceding
moment, b) variations in the current inlet temperature in both flexible
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and non-flexible modes, and c) electricity consumption of each unit
within the HVAC aggregator in the aforementioned modes. Notably,
the flexible mode shows a reduction in electricity consumption during
peak hours, with a subsequent shift towards off-peak and
valley periods.

In order to calculate the size and number of ESS in distribution
system, parameter in Table 4 are considered. The optimal allocation
of ESS units in IEEE 33 bus distribution network is depicted in
Figure 5. The ESS was placed to reduce the cost of the entire system.
After allocating ESS units in the smart distribution grid, the study
focuses on achieving the desired objective function through DR
calculations within the AC-OPF framework. Due to the nonlinearity
of the problem and integer variables, the GAMS software with

Mixed-Integer Nonlinear Programming (MINLP) was used to model
the issue, and CONOPT3 was employed as a high-speedMINLP solver
for large-scale problems. The research was conducted on a PC with an
Intel Core i7 processor, 2.2 GHz CPU, and 6 GB of RAM.

3.1 Uncertainty of Distributed
Energy Resources

The uncertainties mainly arise from random variations in the
input data, prediction errors, network failures, and intermittent
behavior of RESs. In such an uncertain environment, deterministic
power flow (DPF) is infeasible and cannot precisely reveal the state
of the system. Therefore, for uncertainty assessment, several
uncertainty modeling techniques exist, such as probabilistic
approaches, possibilistic approaches, hybrid probabilistic-
possibilistic approaches, information gap decision theory (IGDT),
interval analysis, and robust optimization (Singh et al., 2022). One of
the possibilistic methods is scenario-based. Although the scenario-
based method has disadvantages such as sensitivity to selected
scenarios and complexity in the number of scenarios, advantages
such as flexibility and the possibility of performing sensitivity
analysis have led to the use of this method. The three scenarios
of normal, high, and low production for each solar and wind unit are
shown in Figure 6. Each of these three scenarios was assigned a
probability of occurrence in such a way that for the three scenarios of
normal, high, and low production in the wind system, the
probability of occurrence is 50, 25, and 25, and in the solar
system, it is 60, 20%, and 20%, respectively. Owing to the
existence of three scenarios for each of the sources, and without
losing the generality of the problem, nine scenarios were obtained,

FIGURE 2
The enhanced IEEE 33-bus distribution system.

TABLE 1 Parameters of the enhanced IEEE 33-bus distribution system.

Symbol Class Parameter Typical value

HVAC Aggregator Location Bus # 8

Capacity 0.4 MWh

Solar Power Plants Location Bus # 9 and 17

Capacity 0.1 and 0.1 MW

VOLS 1000

Wind Power Plants Location Bus # 4 and 32

Capacity 0.3 and 0.3 MW

VOLW 2000

TABLE 2 Generators data of the enhanced IEEE 33-bus distribution system (Dolatabadi et al., 2020).

Bus Number Active capacity (MW) Reactive capacity (MVAR) Type Cost function ($/h)

1 4 2.5 Feeder (Conventional Generation) 0.003P2 + 12P + 240

18 0.2 0 DG 0.0026P2 + 10.26P + 210

22 0.2 0 DG 0.0026P2 + 10.26P + 210

25 0.2 0 DG 0.0026P2 + 10.26P + 210

33 0.2 0 DG 0.0026P2 + 10.26P + 210
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and their probabilities are depicted in Figure 7. In each of the nine
scenarios, the problem was solved and multiplied by the probability
of its occurrence, and the system output was obtained from the sum
of the results of the nine scenarios, taking into account the
uncertainty of scattered production resources.

3.2 Demand prediction

Accurate electricity demand prediction is vital for efficient
network operation because errors can result in increased
production costs and grid losses. Also seasonal ARIMA has
better forecasting result for capturing the seasonality and short-
term fluctuations in demand but in general, LSTM performed better
for products with stable demand (Falatouri et al., 2022). In this
study, theModified LSTMmethod for load predictions, based on the
deep neural network architecture referenced in (Zarei and

Ghaffarzadeh, 2023), was utilized. The prediction data cover the
period from August 19 to 19 September 2022, and were obtained
from the New Zealand Electricity Company (Live load data, 2022)
using the MATLAB software. Figure 8 demonstrates the load
prediction using this method, with the achieved accuracy
indicated by the root-mean-square error and mean absolute error
values of 61.8 and 274.9, respectively.

4 Results and discussion

This section compares the performance of the proposed DR-
based AC-OPF in various states and investigates the effect of the

FIGURE 3
The electrical active/reactive load in each bus.

TABLE 3 The characteristics of a single HVAC (Makhdoomi and Moshtagh,
2023).

HVAC’s parameters

k1 0.212

k2 0.788

k3 7.1

k4 5

PAC_max 1 kw

PH_max 2 kw
FIGURE 4
Flexible and non-flexible mode for HVAC unit: (A) input data,
including ambient and indoor temperature at (t-1), (B) indoor
temperature at (t), (C) power consumption of HVAC units.
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HVAC aggregator on peak reduction, various RES scenarios on total
cost, DR on voltage profile, peak reduction, and valley filling, and
finally, an analytical multi-objective optimization analysis.

4.1 Investigating the effect HVAC aggregator

Two flexible and non-flexible modes were considered for the
aggregator to investigate the effect of the HVAC aggregator on DR.
As mentioned earlier, this aggregator is included in Bus 8 with a
capacity of 0.4 megawatts and a power factor of 0.8. In flexible

mode, the aggregator adjusts its performance according to the
predicted load chart. In addition to the ambient temperature inside
and outside the building, it also checks the load chart and then
makes a decision regarding the settings of the on and off times and
the corresponding power. For a better comparison, in addition to
the simultaneous effect of flexible aggregators and non-flexible,
different percentages of DR were applied to other buses. In Figures
9–12, respectively, the objective functions of the total cost, total
voltage variation, peak reconnection, and use convenience are
displayed in two different modes of aggregator operation and in
different DR steps. As can be seen in all the different DRs, the total
system cost and total voltage variation in the flexible operating
mode of the HVAC aggregator are reduced, and the amount of

TABLE 4 The ESS allocation parameters and results.

ESS allocation Parameters and Values Results

SOCMax(i) 0.1 MW Bus Size (MW)

NESS
Max 10 14, 15, and 16 0.075 (3 × 0.025)

Ni
Max 3 32 0.025

FIGURE 5
The optimal allocation of ESS units in IEEE 33 bus distribution network.

FIGURE 6
Uncertainty scenarios of wind and solar units.

FIGURE 7
Probability of each scenario for distributed energy resources.
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peak reduction also increases in this mode. The aggregator
installed at a point does not have a noticeable effect on the
fourth objective function, that is, the UC. To investigate the
effect of the HVAC aggregator individually, in the state without
DR, the demand of the entire network in two flexible and
nonflexible modes is shown in Figure 13. Because its capacity is
approximately 10% of the demand of the entire system, a
noticeable reduction in the two peak loads and the transfer of
its consumption time to periods of low and intermediate loads
are observed.

4.2 Effect of different RES scenarios on total
cost of grid

According to the possible scenarios for RESs, the total cost of the
system in different DRs from zero to 10% is calculated and shown in
Figure 14. Therefore, in scenarios with the possibility of producing
more energy through solar and wind energy, the cost of the entire
system is reduced. In addition, the cost of the entire system
decreased significantly with an increase in the DR. Scenario 9,
characterized by maximum solar and wind production, exhibits

FIGURE 8
Modified LSTM load prediction.

FIGURE 9
The comparison of total cost in different cases.

FIGURE 10
The comparison of TVV in different cases.

FIGURE 11
The comparison of peak reduction in different cases.

FIGURE 12
The comparison of UC in different cases.

FIGURE 13
Flexible and non-flexible HVAC aggregator effect on total
demand (with no DR).
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the lowest cost at each DR step, whereas Scenario 5, with minimal
renewable resource production, incurs the highest system cost.

4.3 Demand response effect on
voltage profile

In Figure 15, the voltages of all buses are shown under peak load
and low load conditions, with and without consideration of the DR.

As can be seen, the effect of applying the DR is to improve the
voltage of all buses and approach the optimal voltage (1 pu),
especially in low load and end buses of the distribution network.

4.4 Demand response effect on peak
reduction and valley filling

The effect of levelization on the demand graph of all network
loads by applying DR is presented in Figure 16. In the case without
DR, the load curve had a desert valley and almost two afternoon and
evening peaks. By applying only 10%DR, valley filling has been done
to a considerable extent, and almost all the two peaks mentioned
have also had a significant reduction. This important factor causes
fewer negative effects on the smart distribution grid during
peak times.

4.5 Demand response effect on load
scheduling

In this subsection, the load scheduling involving demand
response at various generating stations, including conventional,
wind, solar, DG, and ESS, is discussed. Additionally, the electrical
load power, including electrical load and power loss, is presented
both without DR and with 10% DR states. As depicted in
Figure 17, the implementation of a 10% DR results in a
reduction of conventional generation and a subsequent
decrease in generation costs. Furthermore, with the 10% DR,
power generation costs are lower at lower loads, leading to an
increase in power generation by DGs compared to scenarios
without demand response.

4.6 Multi-objective optimization analysis

In order to address multi-objective optimization challenges,
various methods like the Ɛ-Constraint and TOPSIS are utilized.
Each method has its own set of advantages and drawbacks.
Figure 18 illustrates the values of four objective functions: total
cost (TC), total voltage variation (TVV) for power quality
enhancement, peak reduction (PR), and user convenience (UC),

FIGURE 14
The total cost comparison in various DR steps for the
all scenarios.

FIGURE 15
Voltage profile of buses in a modified IEEE 33-bus system for: (A)
without DR, (B) 10% DR.

FIGURE 16
Peak reduction in demand response program.
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ranging from 0 to 30 percent of DR. Utilizing the TOPSIS method
identified the optimal point in DR at 30%, albeit resulting in a
significant decrease in user convenience from 100% to nearly zero.

Given the opposing trends of the other three functions in
comparison with UC, even with low weighting factors, the final
solution remains unaffected. To address this issue, a thorough

FIGURE 17
The effect of DR program on generation scheduling: (A) Without DR and (B) with 10% DR.

FIGURE 18
Multi-objective optimization results and analysis.
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analytical approach to the objective function responses is
imperative. The cost function exhibited a fully decreasing trend,
with a steeper decline at lower DR values and a more gradual
decrease at higher DR values. The TVV objective function displays
a slight decrease with increasing DR, with a reduction range of less
than 0.7% between 23.7 and 23. Because a substantial reduction in
TVV comes at a high cost, a balance must be struck. Peak
reduction, as the third objective, sees a rapid increase in peak
value at the start of DR, reaching a local peak of over 10% before
15% DR, followed by minimal changes thereafter, and maintaining
peak reduction below 12% up to DR 30%. Despite increasing the
DR in certain regions, a decrease in the PR may still occur. Finally,
the UC objective function focuses on user convenience, which
diminishes gradually with DR, drops sharply after 15% DR, and
approaches zero at 30% DR. Considering the explanations
provided, the importance of subscriber consumption patterns,
and the societal impact of economic decisions, an analytical
approach suggests that DR values below 15% are optimal for
altering subscriber consumption patterns. During this phase,
when UC falls below 20%, significant cost reductions across the
system and optimal peak efficiency are achieved at a DR of 14%.

4.7 Practical implications

The simultaneous solution of AC-OPF and DR problems in a
smart distribution network was achieved by applying the effects of a
small-scale load aggregator owing to its control and feedback
capabilities. Although, in theory, there is no limit to the
participation of more electricity subscribers in demand response,
in practice, a large change in the time and amount of their
consumption will cause dissatisfaction. In practice, choosing the
appropriate percentage of DR by considering the behavioral habits
of energy consumption of electricity subscribers in the framework of
user convenience makes the network operator’s planning on this
value closer to reality and reduces the difficulty of adjusting the
demand-production balance. The participation of the local
aggregator of the HVAC loads to comply with the optimal
temperature range of the residents was also emphasized.

5 Conclusion

The integration of renewable energy sources with their
intermittent operation and unbalanced electrical loads has
created challenges for power grids, particularly in the distribution
network section. This paper presents a multi-objective DR approach
within the AC-OPF framework by employing two simultaneous
participation options: distributed flexible and concentrated
aggregated loads. The simulation results demonstrate that flexible
modeling of the HVAC aggregator, considering the optimal
temperature range for the operation of the units, reduces the

total cost, peak load, and total voltage variation. By incorporating
modified LSTM demand prediction, optimal ESS placement, and
addressing the uncertainty in DERs, along with implementing an
analytical method and introducing a 15% maximum step in the DR
with a negligible impact of less than 10% on user convenience,
significant reductions were achieved across various objective
functions. Specifically, the total system cost, network peak, and
total voltage variation decrease by 22%, 10%, and 2%, respectively.
This optimization effort led to a $8,000 cost reduction and a
0.4 MW decrease in peak load. For future work, the electrical
power losses can be considered as another objective functions.
And more scenarios can be used for more exact uncertainty
modelling of DERs.
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Nomenclature

AC-OPF AC Optimal power flow

DERs Distributed energy resources

DR Demand Response

ESS Energy Storage System

HVAC heating, ventilation, and air conditioning

HVACA HVAC aggregator

Indices and Sets ch/dch Index denotes the charge/discharge state of ESS

g Index denotes the thermal generation units

i,j Index denotes the network buses

t Time indicator

w Index denotes the wind turbine units

Ωi
ι Set of all buses connected to bus i

Parameters and Variables
ag, bg, and cg

fuel cost coefficient of active power generation at unit
g ($/MW)

c fuel cost coefficient of reactive power generation at
unit g ($/MW)

k1, k2, k3, k4 Thermal equation coefficients

nFP/nSP Minimum number of EVs to participate in the first/
second peaks

Nmax
ESS Maximum number of ESSs

PAC Cooling power consumption of HVAC system

PAC_max Maximum possible cooling power consumption of
HVAC system

Pch
max/Pdch

max Maximum charging and discharging limits (MW)

Pch
min/Pdch

min Minimum charging and discharging limits (MW)

Pi,t
ch/Pi,t

dch Charging/discharging power of ESS (MW)

Pi,t
L/Pi,t

L0 Active power consumption at bus i and time t after/
before demand response (MW)

Pi,t
LS Active Load shedding in bus i at time t (MW)

Pi,t
WC/Pi,t

SC Wind/Solar curtailment in bus i at time t (MW)

Pi,t
S Solar plant generation in bus i at time t (MW)

Pij,t/Qij,t Active/Reactive power flow from bus i to bus j (MW/
MVar)

Pi
g,min/Pi

g,max Minimum and maximum limits of active
power (MW)

Pc
j Rated charging power of EV

Ploadnew Active Load after demand response (MW)

Pload
old Active Load before demand response (MW)

Qi
g,min/Qi

g,max Minimum and maximum limits of reactive power
(MVar)

Qi,t
L/Qi,t

L0 Reactive power consumption at bus i and time t after/
before demand response (MVar)

Qi,t
LS Reactive Load shedding in bus i at time t (MVar)

Qi,t
W Wind turbine reactive power generation (MVar)

RUg/RDg Ramp up/down rate (MW/h)

Sij,t Complex power flow from bus i to j (MVA)

St Solar availability in time t (pu)

SOCt State of charge of ESS at time t (MWh)

Ta Ambient temperature

Tin Indoor temperature of house

Vi Voltage magnitude at the bus i (pu)

VOLL VOLW VOLS Value of loss of load ($/MWh) Value of
loss of wind ($/MWh) Value of loss of solar ($/MWh)

wt Wind availability in time t (pu)

Xi,t
ch,ESS/Xi,t

dch,ESS Charging/Discharging power state of ESS

Zij<θij Impedance of transmission line i to j (pu < deg)

Λt
S/Λt

w Solar/Wind availability at time t (pu)

λi Locational marginal price in bus i ($/MWh)

δi Voltage angle at the bus i (deg)

ηch/ηdch Charge/Discharge efficiency of ESS
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