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The space of production well plays a crucial role in the heat extraction
performance of the Enhanced Geothermal System (EGS), which have the
potential to meet the growing global energy demand as a reliable energy
source. Nonetheless, there has been insufficient research and attention
focused on comprehending the impact of the space of production well on
the efficiency and effectiveness of EGS. In this work, a series of numerical
simulations were conducted to assess the impact of the space of production
well on heat extraction efficiency in EGS. Three different cases were considered:
Case 50with 50mproductionwell spacing, Case 100with 100mproductionwell
spacing, and Case 150 with 150 m production well spacing. At the X-Y plane and
Y-Z plane, the simulation results indicated that there were slight differences in
temperature variation among the Case 50, Case 100 and Case 150. And the
cooling area decreasing as the spacing of production wells decreased. Moreover,
the delivery of cooling water via the injection well and its subsequent distribution
to various reference points lead to a decline in temperature at each point, albeit
with varying degrees of variation. Besides, the established efficiency (ef) for Case
50 is smaller than the Case 100 and Case 150 during the last 15 years. These
findings contribute valuable insights to the exploration and exploitation of EGS
systems and can serve as a guide for further research in this field.
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1 Introduction

Nowadays, as a matter of fact, energy consumption has recently increased significantly
due to the world economy’s rapid growth, which is also causing the intended low-carbon
and green process—that is, a high-speed and green development—to go more quickly
(Olasolo et al., 2016; Liu et al., 2017a; Liu et al., 2017b; Zheng et al., 2019; Hao et al., 2021;
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Lin et al., 2021; Zhao et al., 2022). With this context in mind,
unconventional oil/gas resources like tight sandstone gas and shale
oil, as well as renewable energy sources like solar, wind, and
enhanced geothermal systems (EGS), emerge on the scene
(Zheng et al., 2018; Kumari and Ranjith, 2019; Cheng et al.,
2021; Steffen et al., 2021). Therein, the EGS is thought to have
the capacity to supply the growing energy needs for the reason that it
has an endless supply of resources that can be obtained for less
money than traditional fuels from almost any place in the globe (Lu,
2018; Abdelhafiz et al., 2023; Zhao et al., 2023). Undoubtedly, a
highly effective development pertaining to this type of renewable
energy source is required to support this issue. Due to its emerging
nature and potential to generate clean, low-carbon energy, EGS is
receiving a lot of attention. There are also efforts underway to steer
EGS toward a commercially viable platform through the use of cost-
cutting measures, enhanced performance, and technology validation
(Lu, 2018). As a result, many initiatives were carried out and
demonstrated some successful and acknowledged
accomplishments (Olasolo et al., 2016).

Actually, EGS is now commonly known as an engineered
geothermal system, which has replaced the previous phrases used
in earlier research, such as hot dry rock and hot sedimentary
aquifers (Christ et al., 2017). Rudimentary studies on the creation
of artificial geothermal reservoirs, and heat exchange and
transport were arranged in relation to the EGS-related
investigations (Feng et al., 2012; Zhang and Jiang, 2012; Li
and Lior, 2014). Additionally, the Songliao Basin in Northeast
China was the subject of a study on the 30-year heat extraction
process in an EGS system, which examined the most significant
variable factors involved (Huang et al., 2015). Besides,
predictions were made regarding the diverse effects on EGS
results during extended periods of operation under varying
geological situations (Chen et al., 2013a; Chen et al., 2013b).
Moreover, Gan et al. (2021) and Spycher and Pruess (2010)
conducted research on an EGS system that employed CO2 as
the working fluid instead of water. Furthermore, based on the
utilization of fracture network simulation techniques for an EGS
system, the study also analyzed the hydraulic fracturing process
(Wang and Zhang, 2011). While these mentioned literature
sources may have different focuses, they share a common
aspect, which is the utilization of numerical modeling.
Furthermore, upon reviewing past accomplishments in
relation to EGS systems, it is apparent that the impact of the
space of production well on heat extraction efficiency has not
been adequately addressed. This lack of consideration may
restrict the optimal positioning of production wells for heat
extraction.

Indeed, numerical approaches have become extensively utilized
in research on geological resources in recent years, particularly in
endeavors aiming to simulate complex engineering scenarios that
are impractical to conduct in a traditional experimental setup (Sun
et al., 2013; Chen et al., 2019; Li and Elsworth, 2019; Liu et al., 2021;
Yang et al., 2023). This study employs numerical modeling to
simulate the process of heat extraction from an EGR system.
Herein, the production well spacing is varied to assess its impact
on heat extraction efficiency. Moreover, the study also contrasts
the heat extraction effectiveness under various operational
circumstances to conduct a quantitative analysis of how the space

of production well affects heat extraction efficiency from an EGS
system. This numerical study is carried out on an engineering scale
about how the well space influence the heat extraction performance,
providing a new viewpoint and possibly providing some guidance
for the exploration and exploitation of EGS-related issues.

2 Numerical model description

For this numerical study conducted at an engineering scale, a
hot dry rock (HDR) cubic model with edge length of 400 m was
employed, which is a further work on the basis of our previous
investigations (Wang et al., 2016a; Wang et al., 2016b; Hu et al.,
2022; Ke et al., 2022; Wang et al., 2022; Wang et al., 2023). Within
this model, the EGS system was situated at its center with
dimensions of 250 m in length, 250 m in width, and 150 m in
height (Figure 1). The simulated reservoir in this study has a
depth of 600 m from the surface to the bottom, while the roof of
the reservoir is located at a burial depth of 300 m. In addition, to
examine the impact of the space of production well on heat
extraction efficiency, EGS system comprises of injection well and
production wells. Three distinct situations are established,
wherein each model features a single injection well with a
length of 50 m with coordinates midpoint at X: -100, Y: 0, Z:
0 (Figure 2), and the origin of coordinates situates at the central
position of the EGS system (Figure 1). The spacing of production
wells in Case 50, Case 100, and Case 150 is 50, 100, and 150 m,
respectively (Figure 2).

3 Governing equations for numerical
model establishment

3.1 Model hypotheses

In this work, a 3D THM coupling model was created to simulate
the procedure of the heat extraction from HDR system. The model
incorporates a few hypotheses pertaining to heat transmission and
fluid flow to effectively simulate the process (Zimmermann et al.,
2009; Ye et al., 2021; Huang et al., 2023; Wang et al., 2023; Liu
et al., 2024).

FIGURE 1
Numerical model used in this work.
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(1) The working fluid is water, which exists as a liquid in the pores
throughout the heat extraction procedure.

(2) It is assumed that the initial EGS system brims with water, and
the fluid in the matrix follows Darcy’s law as laminar flow.

(3) The heat transmission process within the matrix is governed
by Fourier’s law. Calorific balance can be achieved locally
between the rock mas and working fluid.

These hypotheses are commonly used as reasonable conditions in
numerical studies related to EGS systems (Lu, 2018; Zhao et al., 2023).

3.2 Governing equations

Therefore, based on the above assumptions, the main control
equations of this heat extraction simulation process are as follows

(Sun et al., 2019; Tan et al., 2021; Zinsalo et al., 2021; Zhao
et al., 2023).

When the working fluid flow in the porous medium a, the mass
conservation law in the seepage field can be described as:

S
∂p
∂t

+ ∇ · q � −Qf (1)

Furthermore, according to the Darcy’s law, the expressions of q
is defined as:

q � − k

μf
∇ · p + ρwgz( ) (2)

The local thermal balance is the main feature of the
heat exchange between the cryogenic fluid and the rock
surface in the temperature field. During this heat exchange
process, the liquid and the solid have the same temperature at
any location. Hence, the energy conservation law can be
expressed as:

ρcp( )
m

∂T
∂t

+ ∇ · ρwcp,wqT( ) − ∇ · λm∇T( ) � −Qf,E (3)
ρcp( )

m
� 1 − φ( )ρscp,s + φρwcp,w (4)

λm � 1 − φ( )λs + φλw (5)

3.3 Effect of temperature on water
properties

In addition, the temperature can determine the density (ρw), the
thermal conductivities (λw), the heat capacity (cp,w), and the
dynamic fluid viscosity (μf) of water. The governing equations
are described as (Sun et al., 2019; Aliyu and Archer, 2021; Zhou
et al., 2022):

μf �
1.3799 − 0.0212T + 1.3604 × 10−4T2 − 4.6454 × 10−7T3 + 8.9043 × 10−10T4

−9.0791 × 10−13T5 + 3.8457 × 10−16T6 273.15K≤T≤ 413.15K
0.004 − 2.1075 × 10−5T + 3.8577 × 10−8T2 − 2.3973 × 10−11T3 413.15K≤T≤ 573.15K

⎧⎪⎨
⎪⎩

(6)
cp,w � 12010 − 80.4T + 0.3T2 − 5.4 × 10−4T3 + 3.6 × 10−7T4

273.15K≤T≤ 573.15K
(7)

FIGURE 2
Modeling cases description regarding the injection-production wells planform of the EGS system.

TABLE 1 Reservoir physical properties.

Parameter Value Unit

Initial pressure in seepage field 30 MPa

Injection rate in seepage field 10 kg/s

Production pressure in seepage field 20 MPa

Upper and lower boundaries in seepage field Impermeable

Initial temperature in temperature field 473.15 K

Injection temperature in temperature field 303.15 K

Upper and lower boundaries in temperature field Thermal insulation

Matrix density 2,700 kg/m3

Matrix porosity 0.2 -

Matrix permeability 5e-15 m2

Matrix heat capacity 950 J/(kg·K)

Matrix thermal conductivity 2.8 W/(m·K)

Fluid compressibility 1e-8 1/Pa

Biot coefficient 1 -
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λw � 7.9754 × 10−9T3 − 1.5837 × 10−5T2 + 0.0089T − 0.8691

273.15K≤T≤ 573.15K
(8)

ρw � 838.4661 + 1.4005T − 3 × 10−3T2 − 3.7182 × 10−7T3

273.15K≤T≤ 573.15K
(9)

In this work, the boundary/initial conditions and main reservoir
physical parameters for the numerical simulation model referred
from previous research (Han et al., 2020; Yu et al., 2021; Zhou et al.,
2022) are listed in Table 1. Moreover, during the modeling process,
all simulation cases run in 30 years.

4 Mathematical results and discussion

The assessment of heat extraction performance in an EGS system
heavily relies on temperature as a fundamental parameter (Rodriguez
et al., 2013; Guo et al., 2018; Yang et al., 2021). Consequently, this study
focuses on comparing the heat extraction efficiency of an EGS system
utilizing water as the working fluid by analyzing temperature. Firstly,
the overall temperature distribution throughout the EGS system is
investigated, followed by setting up three reference points to track the
temperature variation during variable simulated cases. Subsequently,
three operation cases (Case 50, Case 100 and Case 150) were compared
in terms of the temperature changes across the entire system.

4.1Overall trend of temperature variation for
different operation cases in the EGS system

In this work, the trend of overall temperature change from
various directions for different numerical simulation cases are
analyzed from three planes, which include plane X-Z (Y = 0),
plane Y-Z (X = 0) and plane X-Y (Z = 0)–according to the
coordinate system in Figure 1.

4.1.1 X-Z plane
The X-Z plane represents a cross-section that passes through

both the injection well and the center of the EGS system (Figure 1).
In Figure 2, the Y-coordinate is set to 0 on this plane. Basically, the
area of cooling place gets larger from the injection well to production
well during the water injection process (Figures 3–5). Nevertheless,

in the X-Z plane, the temperature variation tendency seems to be
similar for different production well spacing. Herein, the reason for
the insignificant difference among all numerical simulation cases
might be analyzed from two aspects. On the one hand, during the
simulated process, the water is injected from one injection well with
stable injection rate of 10 kg/s. On the other hand, the water
(relatively low temperature) can scarcely transport on a large
scale in the low permeability system, which makes the water
extraction from production well influenced the water seepage. In
general, the overall temperature variation tendency in X-Z plane of
EGS system is less affected by the well spacing.

4.1.2 Y-Z plane
The Y-Z plane is a slide that across the EGS center, where X =

0 in the coordinate system in Figure 1. Herein, as the water
continuously injected from injection well, the area of cooling
place becomes grater (Figures 6–8). When comparing the
temperature variations among the different numerical cases, a
noticeable difference can be observed when examining the X-Z
plane (Figures 3–5) as mentioned earlier. It becomes evident that
having smaller production well spacing leads to a smaller cooling
area during heat extraction. This observation provides a perceptual
understanding of the relationship between the spacing of production
wells and the corresponding cooling area. Additionally, considering
the inconspicuous difference observed in the X-Z plane, it can be
hypothesized that the variation in temperature resulting from the
space of production well primarily affects the Y-Z plane. Therefore,
during heat extraction process, this variation is likely to contribute to
the volume difference.

4.1.3 X-Y plane
In this study, the X-Y plane is perpendicular to the wellbore of

production/injection well (Figure 1). It is utilized to examine the
horizontal temperature variation within the EGS system. In general,
across all operational cases, the cooling area within the EGS system
gradually expands as water is injected from the injection well. It is
observed that this expansion occurs in a manner where the cooling
area extends from the injection well towards the production well
(Figures 9–11). Similar to the temperature variation tendency of the
X-Z plane (Figures 3–5), the difference among three numerical cases
is not apparent in the X-Y plane and the stable injection rate and low
permeability system might be the main factors.

FIGURE 3
Temperature change in the X-Z plane for Case 50.
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4.2 Temperature variation in reference
points for different operation cases in the
EGS system

In order tomore comprehensively illustrate the temperature change
among distinct simulation cases, the dynamic alterations in temperature
are quantitatively evaluated based on three reference points. These
representative points are located at coordinates (X = 100, Y = −50, Z =
25), (X = 100, Y = 0, Z = 25), and (X = 100, Y = 50, Z = 25), as illustrated

in Figure 1. The temperature change at the three reference points is
visually depicted in Figures 12–14, respectively.

In general, at each reference point, the temperature undergoes only
slight variations during the initial ~3”years across all simulation cases
(as shown in Figures 12–14). This is attributed to the fact that the
cooling water injected into the system has not yet reached these points,
and also due to the fact that the heat extraction from the productionwell
has a relatively mild impact on the EGS. Subsequently, the temperature
at these points begins to decrease as the cooling water is continually

FIGURE 4
Temperature change in the X-Z plane for Case 100.

FIGURE 5
Temperature change in the X-Z plane for Case 150.

FIGURE 6
Temperature change in the Y-Z plane for Case 50.
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injected and reaches the reference points, exhibiting varying degrees of
amplitude in its variation. For Case 50, the temperature variation at the
designated coordinates (X = 100, Y = 50, Z = 25) is gradual and steady
throughout the entire heat extraction process. This can be attributed to

the water pressure discrepancy between the injection well and the
production well, which stimulates the movement of cooled water in the
direction of the production well. However, for Case 100 and Case 150,
the injected cooling water eventually reaches the location at (X = 100,

FIGURE 7
Temperature change in the Y-Z plane for Case 100.

FIGURE 8
Temperature change in the Y-Z plane for Case 150.

FIGURE 9
Temperature change in the X-Y plane for Case 50.
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Y = 50, Z = 25) due to the seepage induced by the hot water extraction
from the production well. For Case 150, a larger quantity of cooling
water flows towards this specific point compared to Case 100. This
discrepancy arises because the injected cooling water exhibits a
tendency to flow towards the production well, driven by the
disparity in fluid pressure.

In regard to the point at (X = 100, Y = 0, Z = 25), the temperature
fluctuation demonstrates a comparable pattern and inclination in Case
50 andCase 100 (as shown in Figure 13). This is likely due to the fact that,
the cooling water encounters analogous seepage space and flow
conditions in its path towards this reference point. Moreover, the
disparity in fluid pressure between the injection well and the location
at (X = 100, Y = 0, Z = 25) is comparable for both Case 50 and Case 100,
as demonstrated in this work. Throughout the entire heat extraction
period in Case 150, the temperature at the reference coordinates (X = 100,
Y = 50, Z = 25) exhibits a consistently smooth variation. This can be also

attributed to the discrepancy in water pressure between the injection well
and the production well, which propels the flow of cooling water towards
the production well and ensures a continuous provision of cooling water
to the reference points. Additionally, an observation can be made at the
location of (X = 100, Y = −50, Z = 25), where there is a comparable
temperature variation tendency (as seen in Figure 12) to that observed at
point (X = 100, Y = 50, Z = 25) (as depicted in Figure 14). It can be
inferred that the underlying mechanism responsible for the temperature
variation at both of these points is similar to the aforementioned process.

4.3 Attenuation process of temperature in
the whole EGS system

In this study, an efficiency metric called heat extraction
efficiency (marked as ef) has been introduced (Zhao et al., 2023).

FIGURE 10
Temperature change in the X-Y plane for Case 100.

FIGURE 11
Temperature change in the X-Y plane for Case 150.
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The purpose of this metric is to examine the attenuation process
during the temperature variation in the EGS. The heat extraction
efficiency is derived by dividing the heat recovery by the total heat
stored in the EGS, providing valuable insights into the overall
effectiveness of heat extraction (Zhao et al., 2023),

f � ∫∫∫
Vs
ρscp,s T0 − T( )dV

∫∫∫
Vs
ρscp,s T0 − Tinj( )dV (10)

Figure 15 presents the ef performance for each numerical
case, as determined by Eq. 10. The calculations reveal slight
variations among the different simulation cases, as shown in
Figure 15. In general, it can be noted that for three numerical
simulation cases, there is a swift surge in the ef during the first
10 years, succeeded by a relatively sluggish progression in the

final 20 years. Throughout the heat extraction process, the
variation of ef for Case 50 exhibits a slightly lower trend
compared to Case 100 and Case 150. Therefore, it could be
concluded that the larger the well spacing, the higher the
value of ef during the last 20 years.

5 Conclusion

When investigating the temperature variation during the heat
extraction process, there are minimal disparities observed among
the three operation cases on the X-Y plane and Y-Z plane.
Furthermore, a noticeable observation is that smaller
production well spacing leads to a smaller cooling area during
heat extraction.

FIGURE 12
Temperature change in reference point at (X = 100: Y = −50:
Z = 25).

FIGURE 13
Temperature change in reference point at (X = 100: Y = 0: Z = 25).

FIGURE 14
Temperature change in reference point at (X = 100: Y = 50:
Z = 25).

FIGURE 15
The value of ef for each case in 30 years.
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Based on the investigation conducted on the points (X = 100: Y =
0: Z = 25), (X = 100: Y = 50: Z = 25), and (X = 100: Y = −50: Z = 25), it
is observed that the temperature is piecemeal reduce in each
reference point for the unceasing injection of cooling water and
its arrival at the representative locations at (X = 100, Y = 0, Z = 25),
(X = 100, Y = −50, Z = 25), and (X = 100, Y = 50, Z = 25), albeit with
varying amplitude of variation. Notably, among the three numerical
cases, the temperature change at points (X = 100: Y = −50: Z = 25)
and (X = 100: Y = 50: Z = 25) exhibits a significant difference.
Conversely, for Case 50 and Case 100, the temperature change at the
point (X = 100: Y = 0: Z = 25) appears less pronounced.

As for the ef, it is noteworthy that the variation of the ef for Case
50 exhibits a slightly lower trend compared to Case 100 and Case
150. This finding suggests that the spacing of production wells has
impact on the ef in an EGS system during the last 15 years. Therein,
it could be concluded that the larger the well spacing, the higher the
value of ef.
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Nomenclature

S storage coefficient of the rock matrix (Pa−1)

P pore pressure (Pa)

T time (s)

q is the Darcy velocity (m/s)

qf the Darcy velocity in the fracture (m/s)

Qf the source (1/s)

k permeabilities of the rock matrix (m2)

μf dynamic fluid viscosity (Pa·s)

ρw fluid density (kg/m3)

g gravitational acceleration (m/s2)

z unit vector in the vertical direction

T temperature (K)

cp,w is the heat capacity of the fluid (J/(kg·K))

Qf,E heat source (W/m3)

(ρcp)m effective volumetric heat capacities of the matrix (J/(m3·K))

λm effective thermal conductivities of the matrix (W/(m·K))

Φ porosities of the matrix

ρs solid density (kg/m3)

cp,s solid heat capacity (J/(kg·K))

λs thermal conductivities of the solid (W/(m·K))

λw thermal conductivities of the fluid (W/(m·K))

VS heat extraction zone in the EGS

T0 initial temperature

Tinj injection temperature of the fluid (namely, cooling water)
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