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The concept of time-of-use (TOU) electricity pricing is widely recognized as a key
strategy to bridge the gap between electricity availability and consumption,
enhance the efficiency of electricity, and refine the patterns of electricity
usage. Nonetheless, the existing policy on pricing electricity based on TOU
electricity pricing is missing a theoretical approach that evaluates the load
properties and the advantages of investing in the power grid. Consequently,
the article suggests a method for optimizing electricity prices based on TOU
electricity pricing to reduce the costs associated with investing in power grids.
Initially, a model for optimizing electricity prices based on TOU electricity pricing
is developed, offering support for the pricing strategy of the power grid;
Subsequently, a method for dividing TOU electricity pricing using the
Gaussian Mixture Module (GMM) clustering algorithm is introduced, offering
theoretical backing for the creation of such pricing strategies; Following this, a
detailed optimization approach for electricity pricing of electricity TOU electricity
pricing is suggested, along with taking into account the benefits of grid
investments and the power grid’s load properties, the formulation of the
electricity pricing strategy for TOU electricity pricing; Ultimately, this approach
is corroborated by the Chongqing power system in China, aiming to minimize
disparities in peak load valleys and enhance the advantages of grid investments,
thereby offering technical assistance for the scientific determination of TOU
electricity pricing.
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1 Introduction

The electric power sector has seen swift growth in recent times, with studies indicating
that by 2022, societal electricity usage reached 8.64 trillion kWh, marking a 3.6% rise from
the previous year. Anticipations are high for a more robust increase in electricity demand in
2023, with societal electricity usage projected to climb to 9.15 trillion kWh, marking a
roughly 6% growth from 2022 (SUN, 2023). Yet, as the demand for electricity rises, the
disparity between its supply and demand increasingly becomes evident. To bridge the gap
between supply and demand and ensure power grid companies invest effectively and
precisely, enhancing the TOU electricity pricing system is critically important (HAN, 2021).
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The TOU electricity pricing is a widely used tool for managing
demand. An effective TOU electricity pricing strategy can motivate
active user engagement in responding to demand, leading to optimal
shaving and filling of valleys. Conversely, an illogical policy on TOU
electricity pricing will result in additional degradation of load
properties, challenges in recouping the grid company’s
investment expenses, and other issues. Numerous research efforts
have focused on refining the strategy for TOU pricing electricity,
primarily encompassing two key elements: the period division of
TOU electricity prices and the determination of these
electricity prices.

The period division of TOU electricity price, being a crucial
cornerstone and pivotal aspect of TOU electricity pricing strategy,
has a direct impact on its execution. Current techniques for
segmenting the TOU electricity price period primarily encompass
empirical analysis, factor analysis, affiliation function method, and
cluster analysis. The method of empirical analysis involves
segmenting time periods among electric power personnel,
integrating their individual work expertise and professional
acumen (Min et al., 2005). While this technique is
straightforward and simple to implement, it falls short in
scientific grounding and is heavily swayed by personal volition.
The method of factor analysis involves examining and tallying the
public determinants in past load data, followed by segmenting the
time frame according to the load’s comprehensive attributes (LIU,
2006). This approach merges scientific statistical analysis techniques
with conventional empirical methods, yet human elements continue
to affect the selection of factors, lacking theoretical backing. The
fundamental concept behind the affiliation function approach
involves determining the highest and lowest affiliations for each
time frame on the load curve, utilizing the affiliation function in line
with the standard load curve, and calculating the outcomes of
dividing the time period according to the affiliation threshold. In
contrast to the empirical and factor analysis methods, this approach
is straightforward, effective, and scientifically grounded. However,
its ultimate division outcomes hinge on the chosen affiliation
threshold, making it challenging to accurately ascertain the peak
and valley time interval’s demarcation points (DING et al., 2001a;
XING et al., 2007; Chong, 2019). The method of cluster analysis
involves categorizing data into various groups, each containing
similar elements, by analyzing the inherent correlation among
data (Ravi et al., 2022). This technique is prevalent in the
segmentation of TOU electricity pricing periods due to its
resistance to subjective biases and its ability to thoroughly
explore correlations across time intervals (QIAO, 2011; DONG
and LIN, 2019; JIANG et al., 2021; Lei et al., 2021). The essence
of these methodologies lies in choosing a clustering algorithm that
aligns with the data set’s features, and the process of selecting an
appropriate clustering algorithm based on the load data’s attributes
requires further in-depth investigation.

Beyond the period division of TOU electricity pricing, the
determination of these electricity prices directly influences their
efficiency in directing the modification of load properties. The fine-
tuning of TOU electricity prices can be tailored to either the cost of
supply or the response to demand. In reference Li (2007), Gao et al.
(2019), Zhongfu et al. (2019), construct time-of-use price
optimization model based on power supply cost by analyzing the
relationship between feed-in price or marginal cost of transmission

and distribution and load characteristics; In reference RUAN et al.
(2012), YU et al. (2012), Wang et al. (2013), ZHAO et al. (2013), LI
et al. (2015), ZHANG and YU (2018) construct time-of-use price
optimization model based on demand response by analyzing
consumer response behavior to price signal. On the basis of the
above models, references Yang et al. (2013), CUI et al. (2018) design
reasonable time-of-use pricing to construct corresponding
optimization models. In reference HUANG et al. (2023),
considering the planning cost and generation cost of source
network uncertainty and the uncertainty of load side user
response, a two-layer optimization model of peak-valley period
and peak-valley price is proposed to optimize peak-valley period
division and peak-valley price. Nonetheless, the aforementioned
techniques solely focus on the operational advantages of the grid
company’s TOU electricity pricing approach, neglecting the
investment gains of the grid company. This narrows the
optimization scope for TOU electricity pricing, leading to a peak-
valley price difference in the existing TOU electricity pricing,
making it challenging to fully exploit the user demand response
potential. Indeed, the grid company’s scientifically sound and
sensible approach to TOU pricing electricity significantly
outweighs its operational advantages. This strategy not only cuts
down the investment expenses of the grid company but also fine-
tunes the user’s electricity usage patterns. Consequently, examining
the model for optimizing TOU electricity prices is crucial,
considering the enhancement of load properties and the grid’s
investment advantages.

Addressing the aforementioned issues, this document
introduces a method for optimizing TOU electricity prices,
taking into account the grid’s investment advantages, thereby
enhancing the grid’s investment value and load properties
through the application of the TOU electricity pricing
approach. Initially, a model for optimizing TOU electricity
prices and its investment advantages is developed by examining
user load transfer traits and the advantages for both the grid
company and its users. Subsequently, a method for dividing of
TOU electricity price period, utilizing the GMM algorithm, is
introduced to offer technical assistance. Ultimately, a thorough
optimization approach for both the TOU electricity price and its
division is suggested, and its efficacy is confirmed through a
provincial power system in China.

2 Time-of-use price optimization
model considering power grid
investment benefit

The TOU electricity pricing exerts a guiding influence on users’
electricity consumption behavior. The implementation of TOU
electricity pricing has the potential to modify the user load curve,
thereby reducing the investment cost of the power grid. This paper
aims to optimize the user load curve, reduce the investment cost of
the power grid, and minimize the electricity expenses for users by
employing a user response model that considers load transfer
characteristics. The text also presents a cost-benefit sharing
approach for power grid investment and introduces a TOU
electricity price optimization model that takes into account the
investment benefits of the power grid.
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2.1 User response model considering load
transfer characteristics

The TOU electricity pricing mechanism influences the shifting
of electricity load. By implementing user load transfer, it is possible
to make significant improvements to load characteristics and
optimize the user load curve. The paper employs the classical
load transfer model to effectively characterize the user load as a
piecewise linear function, which is segmented into the dead zone,
linear zone, and saturated zone (LIN, 2015). In the region of low
demand, the disparity in electricity prices is minimal, thereby failing
to elicit a significant response from users. Conversely, in the linear
region, the user’s reaction is expected to exhibit a positive correlation
with the extent of the electricity price differential. However, in the
saturated region, users are anticipated to cease responding to further
increases in the price differential due to the restricted capacity for
load transfer, thereby reaching the limit of user responsiveness.

According to the aforementioned theory, the day is segmented
into peak, normal, and valley periods. According to the division of
periods, the load transfer models can be categorized into peak period
to normal period, peak period to valley period, and normal period to
valley period, as illustrated in Figure 1.

The function expression for the load transfer model is as follows:

γi �
0, 0≤Δpri ≤ αi
Δpriγi

max/ βi − αi( ), αi <Δpri ≤ βi
γi
max,Δpri > βi

⎧⎪⎨⎪⎩ (1)

In the given equation, i � 1, 2, 3 represent the peak period to the
normal period, the peak period to the valley period, and the normal
period to the valley period. Additionally, γi represents the load
transfer rate, ΔPri represents the electricity price difference, γi

max

represents the maximum value of the load transfer rate, αi and βi
respectively represents the upper and lower limits of the price
difference in the linear region of the load transfer model.

The description of the load transfer model between each period is
now complete, as represented by Eq. 1. Following the price
optimization, it is necessary to consider the transfer of the load.
Consequently, by the user load transfer characteristicmodel presented
above, Eq. 2 illustrates the load value for each period under the
optimized TOU electricity price strategy (Domingo et al., 2011).

pload i �
pload i0 − γ1 �pload f0 − γ2 �pload f0, i ∈ T1

pload i0 − γ3 �pload p0 + γ1 �pload f0, i ∈ T2

pload i0 + γ2 �pload f0 + γ3 �pload p0, i ∈ T3

⎧⎪⎨⎪⎩ (2)

In the equation: pload i0 and pload i are the load of period i under
the TOU electricity price before and after optimization; �pload f0 and
�pload p0 are the average load of the peak period and the normal
period before the TOU electricity price optimization; T1, T2 and
T3 represent the collection of peak, normal and valley periods,
respectively.

In the given equation, pload i0 and pload i represent the load
during the period i under the TOU electricity price before and after
optimization, �pload f0 and �pload p0 represent the average load during
the peak and normal periods before the TOU electricity price
optimization. T1, T2, and T3 denote the sets of peak, normal,
and valley periods, respectively.

2.2 Time-of-use price optimization model
considering power grid investment benefit

To achieve the investment benefits of the power grid and reduce
users’ electricity costs, this section aims to minimize peak load and
peak-valley differences in load by considering load transfer
characteristics in the user response model Eqs 1, 2. The model
also incorporates user-side and grid-side income as constraints and
constructs Eqs 1–14 for the optimization of TOU electricity pricing.

① Objective function:

min w1 maxPload( ) + w2 maxPload − minPload( )[ ] (3)
Pload ≜ ∀pload i, i ∈ T1 ∪ T2 ∪ T3{ } (4)

In the given equation, Pload represents the load vector under the
optimized TOU electricity price, where the symbol ≜ is “equivalent
to” indicates that the right-hand symbol is equivalent to the left-
hand equation. Both w1 and w2 serve as weight coefficients. The first
component of the objective function denotes the load peak value
under the optimized price, while the second component represents
the load peak-valley difference under the optimized price. By
modifying the weight coefficient, a balance is achieved between
the two objectives.

② Constraint conditions:
1) Grid-side revenue constraints are implemented to prevent a

decrease in the revenue of the grid company due to the
adjustment of the TOU electricity price strategy. This is
achieved by setting the condition that under the optimized
TOU electricity price strategy, the grid company’s revenue
from the sale of electricity should not be lower than the
revenue generated before the optimization, as represented
by Eqs 5–7.

EA ≥E0 (5)
EA � ∑

i∈I
λipload i −∑

i∈I
hipload i (6)

E0 � ∑
i∈I

λi0pload i0 −∑
i∈I

hipload i0 (7)

FIGURE 1
Model of Load transfer.
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Where E0 and EA are the power company’s revenue from
electricity sales before and after the implementation of TOU
electricity price optimization. λi0 and λi are TOU electricity
prices under period i before and after optimization. hi is the
marginal cost of power generation of the system in the period i.
Additionally, the study considers the concatenated set of all
periods, i.e., I � T1 ∪ T2 ∪ T3.

2) Customer-side benefit constraint: To prevent an increase in
the cost of electricity for the customer resulting from
changes in electricity prices, it is necessary to establish
that following the TOU electricity price optimization, the
average cost of electricity to the customer does not exceed
the pre-optimization cost, as represented by Eq. 8:

∑
i∈I
λipload i

∑
i∈I
pload i

<
∑
i∈I
λi0pload i0

∑
i∈I
pload i0

(8)

3) The price constraint for each period is established to prevent
the irrationality of the optimized TOU electricity price
strategy, which could exacerbate the deterioration of load
characteristics. Specifically, it is stipulated that the price of
electricity in the peak period under the optimized TOU
electricity pricing is higher than the price of electricity in the
weekday period, and the price of electricity in the weekday
period is higher than the price of electricity in the valley
period, as expressed in Eq. 9.

λf > λp > λg (9)

The optimized electricity prices for the peak hour, the usual
hour, and the valley hour are denoted by λf , λp and λg respectively.

4) The constraint on the difference between peak and valley
prices is essential to maintain the rationality of the TOU
electricity pricing strategy. It is typically limited to a specific
range, as represented by Eq. 10.

τmax >
λf
λg

> τmin (10)

Where τmax and τmin represent the upper and lower limits of the
peak-to-valley electricity price scaling factor.

5) Generation cost constraint: To prevent financial losses for
the grid company due to the introduction of the new TOU
electricity pricing strategy, it is necessary to establish that
the optimized TOU electricity price exceeds the marginal
cost of electricity generation, as represented by Eq. 11:

λi ≥ hi (11)

6) Constraints associated with peak loads and peak-to-valley
differences: The capacity of the equipment is directly
affected by peak loads, which in turn influences grid
investment. To reduce grid investment, it is important to
ensure that the load peak following TOU electricity price
optimization does not surpass the peak before optimization,
as indicated in Eq. 12. Moreover, a greater peak-to-valley

load difference results in reduced operational efficiency and
economic performance of the power system. The condition
is stipulated that the peak-to-valley difference after the
optimization of TOU electricity pricing must not surpass
the peak-to-valley difference before optimization, as
denoted by Eq. 13.

maxPload ≤ maxPload0 (12)
maxPload − minPload ≤ maxPload0 − minPload0 (13)

Pload0 ≜ ∀pload i0, i ∈ T1 ∪ T2 ∪ T3{ } (14)

Where Pload0 represents the load vector be located in the context
of TOU electricity pricing before any optimizations? Equations 1–14
depict essential models for price optimization, which are capable of
reducing price peaks and filling troughs.

Furthermore, the exclusion of grid investment costs in Eq. 5
limits the optimization space for TOU electricity prices to only the
grid company’s power sales revenue. This limitation hinders the
achievement of enhanced load characteristics, reduced grid
company investment costs, and lower electricity consumption
costs for customers. Therefore, to address the aforementioned
issues, this section enhances Eq. 5 and formulates a model for
sharing the benefits of grid investment. The objective is to minimize
the grid company’s investment expenses by devising a viable TOU
electricity pricing strategy. The goal is to minimize the investment
expenditure of the power grid company by designing a feasible time-
of-use electricity price strategy, as shown in Eqs. 15–16.
Additionally, a portion of the reduced investment costs is
allocated to benefit the users, thereby broadening the scope for
optimizing the TOU electricity pricing and achieving a mutually
beneficial outcome for both the grid company and the users. The
specific enhancements are outlined below:

EA + 1 − ∂( )ΔH≥E0 (15)
H0 − ΔH � H (16)

Where ∂ represent the concession coefficient, denoting the
proportion of the investment cost saved by the power grid
company that translates to profit for the users; Δ H represents
the investment cost saved by the power grid company after the
optimization of TOU electricity price; H represents the investment
cost saved by the power grid company after the optimization of TOU
electricity price; H0 represents the investment cost of the power grid
company before the optimization of TOU electricity price.

H in Eq. 16 can be determined using Eqs 17–24 from the grid
investment planning optimization model, which is widely employed
in industry. This model takes into account both conventional units
and each new energy field station, as outlined in (LIN, 2015).

Objective function:

minH � α α + 1( )Y
α + 1( )Y − 1

∑
l∈Nl

clClLl+

∑Y
y�1

∑T
t�1
∑Ng

g�1
agPf,g,tΔt + ∑Y

y�1
∑T
t�1

∑Nw

w�1
χwPw,t

* Δt
(17)

Where H represents the total cost of the grid, the first term
denotes the annual equipment investment of the grid, the second
term signifies the operation cost of thermal power, hydropower, and
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other traditional units, and the third term indicates the penalty cost of
new energy sources such as abandoned wind and light. α represents the
discount rate, cl stands for the investment cost of the line per unit of
capacity per unit of length, Ll represents the length of the lth branch, ag
represents the offer of the gth traditional unit, χw represents the penalty
cost of the unit of energy abandonment, Cl represents the lth branch’s
capacity, Pf,g,t represents the power of the gth conventional unit in the
time period t, Pw,t

* represents the amount of energy discarded by thewth
new energy station in the time period t,Nl represents the set of routes to
be optimized,Ng andNw represent the number of conventional units
and new energy stations, respectively, and Y represents the number of
years of planning; T represents the total number of time periods, while
Δt represents the interval between time periods.

① Constraint conditions:
1) Power balance constraint

∑Ng

g�1
Pf,g,t + ∑Nw

w�1
Pw,t − ∑

n∈Nload

Pn,load,t � 0 (18)

Where t � 1, 2 . . . ,T;Nload represents the set of nodes accessing
the load; Pw,t represents the actual power of the wth new energy
station in time period t; Pn,load,t represents the load of the nth node in
time period t.

2) Branch power constraint

−Cl0 <Pl,t <Cl0 (19)

Where t � 1, 2 . . . ,T; l � 1, 2 . . . ,Nl0; Nl0 represent the total
number of branch circuits in the grid; Cl0 represents the capacity of
branch circuit l.

3) Branch-planned capacity constraints

Cl
min ≤Cl ≤Cl

max (20)

Where ∈ Nl ; Cl
max and Cl

min are the upper and lower limits of
the plannable capacity of branch l respectively.

4) Conventional unit constraint

Pf,g,min ≤Pf,g,t ≤Pf,g,max (21)
rg,down ≤Pf,g,t − Pf,g,t−1 ≤ rg,up (22)

Where t = 1,2. . .,T; g = 1,2. . .,Ng; Pf,g,max and Pf,g,min represent
the upper and lower limit values of the power of the gth traditional
unit; rg,up and rg,down represent the upper and lower limit values of
the traditional unit to climb the slope, respectively.

5) New energy station constraints

0≤Pw,t ≤Pw,t,max (23)
Pw,t
* � Pw,t,max − Pw,t (24)

Where t = 1,2. . .,T; Pw,t,max represents the maximum generating
power of the wth new energy station in t period.

In summary, the model proposed in this paper is essentially a
two-layer optimization model, and in the actual grid model, firstly,
with Eq. 17 as the objective function and Eqs 18–24 as the
constraints, the inner layer optimization model is solved to

obtain the investment cost H of the grid company after the
optimization of TOU electricity price and to achieve the saving
of the grid investment cost. Then, we substitute it into Eq. 16 and
solve the outer optimization model with Eq. 3 as the objective
function and Eqs 5–16 as the constraints. The load transfer is guided
to realize the “peak shaving and valley filling” of the load curve.

In summary, the model presented in this paper is fundamentally
a two-layer optimization model. In the actual grid model, the inner
layer optimization model is solved first, with Eq. 17 serving as the
objective function and Eqs 18–24 as the constraints, to obtain the
investment cost H of the grid company after optimizing the TOU
electricity price and achieving savings in grid investment costs.
Subsequently, the substitution is made into Eq. 16 and the outer
optimization model is solved, with Eq. 3 serving as the objective
function and Eqs 5–16 as the constraints. The load transfer is
directed towards achieving “peak shaving and valley filling” of
the load curve.

3 Time-of-use electricity price
optimization approach considering grid
investment efficiency

To develop a TOU electricity pricing strategy that considers the
grid’s investment benefits and maximizes its effectiveness in
enhancing customer load characteristics and reducing grid
investment costs, this section presents a TOU electricity pricing
time slot division approach based on the GMM clustering algorithm.
It also integrates the TOU electricity pricing optimization model
discussed in Section 1 to propose a comprehensive optimization
strategy for TOU electricity prices and time slots, taking into
consideration the grid’s investment benefits.

3.1 GMM clustering algorithm based time-
sharing tariff time slot division method

The section proposes a time slot division method based on the
GMM clustering algorithm to address issues related to objectivity
and adaptability in traditional time slot division methods. This
approach aims to provide technical support for the reasonable
division of time-sharing tariff time slots and mitigate the
influence of subjective factors on the results.

The GMM clustering relies on the probability of classification
members, which falls under “soft classification.” This method
does not explicitly assign members to a specific category but
instead provides the probability of a member belonging to each
category. The information conveyed by this approach is
considerably greater than that of K-means and other “hard
classification” clustering methods, resulting in improved
clustering effectiveness. Additionally, GMM clustering can
more effectively uncover correlations between various
attributes. As a result, GMM clustering algorithms are
currently extensively employed across diverse fields (DANG
et al., 2015).

The GMM is derived by linearly combining multiple Gaussian
distribution functions. The r-dimensional sample dataset Dr �
(x1, x2, ..., xr) be classified into S classes, and the Gaussian
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mixture model, which comprises a mixture of S Gaussian
distributions, is defined by an Eq. 25:

P x( ) � ∑S
s�1
αsp x

∣∣∣∣βs( ) (25)

p x
∣∣∣∣βs( ) � 1���∑s

√
2π( )r/2 e

− x−μs( )2
2∑s

[ ]
(26)

∑S
s�1
αs � 1, 0≤ αs ≤ 1 (27)

Where P(x) represent the probability density function of GMM;
p(x|βs) represent the probability density function of the sth
Gaussian distribution; αs、 μs、 ∑s represent the weight,
expectation and covariance matrix of the sth Gaussian
distribution, respectively.

The output of a GMM consists of a sequence of probability
values, and the category with the highest probability is considered
as the one to which the member belongs. Determining the
probability value necessitates identifying the Gaussian
distribution to which the member belongs, and ensuring that
the Gaussian distribution accurately represents the sample data
by fitting it as closely as possible, thereby ensuring that its
parameters are accurate. The Expectation-Maximization

algorithm (EM) (Zanetti et al., 2015) is employed for parameter
estimation of the GMM. The fundamental concept of EM is to
iteratively optimize the likelihood estimation of the model
distribution parameters, converging on the model parameters
by repeatedly iterating until the likelihood function value
reaches convergence, thereby completing the parameter
estimation process. Furthermore, due to the complexity of
solving the likelihood estimation function for sample data in
the Gaussian mixture model, it is common to use the logarithm
of the likelihood function, as shown in Eq. 28:

ln∏r
i�1

P xi

∣∣∣∣∣α, μ,∑( ) � ∑r
i�1
ln ∑S

s�1
αsp x

∣∣∣∣βs( )⎡⎣ ⎤⎦ (28)

The EM algorithm primarily engages in iterative parameter
estimation through two steps: the E-Step (Expectation Step) and
theM-Step (Maximization Step). The E-Step involves calculating the
probability that each data point is generated by each Gaussian
distribution using the initial values of α、 μ 、 ∑ or the value
obtained from the previous iteration. TheM-Step entails solving and
updating the model parameters based on the value obtained from
the E-Step.

Based on the aforementioned theory, to achieve a precise
division of time-sharing tariff periods, this section presents a
method for time-sharing tariff period division based on the

FIGURE 2
Division method of TOU price based on GMM clustering algorithm.
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GMM clustering algorithm. The flowchart of this method is
illustrated in Figure 2 and described below.

Step 1: First, give an r-dimensional sample set of typical daily
load data Dr � (x1, x2, ..., xr) (e.g., one data point at 1 h intervals, a
day has 24 time periods, r = 24); second, given the number of clusters
S (e.g., if a day is divided into 3 time periods, peak, normal, and
valley, then S = 3), the GMM consists of a mixture of S Gaussian
distributions.

Step 2: First, the initial GMM parameters α0、 μ0、 ∑0 are
randomly given. Second, E-Step is used to calculate the posterior
probability of each data sample xi(i � 1, 2, ..., r) in the sample set
Dr � (x1, x2, ..., xr) generated by the sth Gaussian distribution γs,i as
in Eq. 29. Finally, on the basis of the values obtained by E-Step, the
GMM parameters are updated by M-Step as in Eqs 30–32.

Step 3: Determine whether the stopping condition is satisfied,
i.e., when the maximum number of iterations is reached or the log-
likelihood function Eq. 28 converges go to Step 4 to complete the
estimation of the GMM parameters; otherwise, go to Step 2 to repeat
E-Step and M-Step.

Step 4: First, according to the a posteriori probability γs,i that the
data sample xi(i � 1, 2, ..., r) may be generated by each Gaussian
distribution, we select the cluster with the largest a posteriori
probability γs,i as the cluster to which the time period belongs,
and mark the cluster σ i as Eq. 33; second, according to the cluster
marking, divide the data sample Dr � (x1, x2, ..., xr) set into S
clusters Tall � T1, T2, ..., TS{ }, and the resulting S clusters Tall are
the S classes of the time period, with the time period belonging to

that class included in each class, thus completing the division of the
time-sharing tariff time period.

γs,i � αsp xi

∣∣∣∣βs( )/∑S
s�1
αsp xi

∣∣∣∣βs( ) (29)

αs � ∑r
i�1
γs,i/n, s � 1, 2, ..., S (30)

μs � ∑r
i�1
γs,ixi/∑r

i�1
γs,i, s � 1, 2, ..., S (31)

∑
s
� ∑r

i�1
γs,i xi − μs( )2/∑n

i�1
γs,i, s � 1, 2, ..., S (32)

σ i � argmaxγs,i, i � 1, 2, ..., r; s ∈ 1, 2, ..., S{ } (33)

3.2 An integrated optimization strategy for
time-of-day tariff prices and time slots
considering grid investment efficiency

The design of a time-of-day tariff encompasses two primary
components: time slot division and price determination. This
subsection consolidates the time-of-day tariff price optimization
model, which takes into account the grid investment benefit outlined
in Section 1, and the time-of-day tariff time slot division method
based on the GMM clustering algorithm discussed in Section 2.1.
Furthermore, it introduces a comprehensive optimization strategy

FIGURE 3
Comprehensive optimization strategy for TOU electricity price and time period considering power grid investment savings.
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for time-of-day tariff price and time slot, considering the grid
investment benefit, as depicted in Figure 3. The specific steps are
outlined below:

Step 1: First, give a typical daily load profile as input and set it to
divide a day into S categories such as peak, normal, valley, etc.
second, adopt the time-sharing tariff time period division method
based on GMM clustering algorithm proposed in Section 2.1 to
obtain S clusters Tall � T1, T2, ..., TS{ } such as peak, normal, valley,
etc. where each of the clusters contains a time period belonging to
the cluster, so as to realize the division of time-sharing tariff
time periods.

Step 2: Based on the results of the obtained time slot division
Tall , the time slots are included in the categories of peak, normal,
and valley are determined to complete the construction of the
time-sharing tariff optimization model Eqs 1–4 and Eqs 6–24
proposed in this paper considering the investment benefits of
the power grid.

Step 3: First, solve the time-sharing tariff price optimization
model by adopting algorithms such as the out-point method (cited
in the literature), and obtain the time-sharing tariff price; secondly,
combine with the time slot division method obtained in step 1, and
finally obtain the time-sharing tariff strategy. For example, set the
number of clusters S = 3, the 24 h of the day are divided into peak
hours, weekdays and valleys, then according to the results of the time
division, the following time-sharing tariff strategy can be
constructed. A time-of-use electricity price strategy can be
constructed as shown in Eq. 34:

λi �
λf, i ∈ T1

λp, i ∈ T2

λg, i ∈ T3

⎧⎪⎨⎪⎩ (34)

Step 4: In order to assess the impact of the designed time-sharing
tariff strategy on the benefits of the grid company and users. First,
calculate the grid company’s benefit Ecompany, the sum of the grid
company’s revenue from electricity sales and the investment cost
saved by the grid company after the concessions, as in Eq. 35, the
larger the value, the better the grid company’s benefit; second,
calculate the price of electricity per unit of the user to
characterize the user’s benefit, as in Eq. 36, the larger the
reduction in the price, the larger the benefit to the user.

Ecompany � EA + 1 − ∂( )ΔQ � ∑
i∈I

λipload i −∑
i∈I

cipload i + 1 − ∂( )ΔQ

(35)
Euser � ∑

i∈I
λipload i/∑

i∈T
pload i (36)

The above analysis culminates in the development of a time-
sharing tariff strategy that takes into account the grid’s
investment benefits. This strategy offers potential solutions for
enhancing the load curve, reducing grid investment costs, and
lowering electricity consumption expenses for users.
Furthermore, through an analysis of the advantages for both
the grid company and users under the optimized time-sharing
tariff, this study offers insights that can inform the appropriate
adjustment of future time-sharing tariffs. This adjustment is
beneficial for mitigating the conflict between power supply
and demand.

4 Case study/case analysis

4.1 Validation of the effectiveness of time-
of-use electricity price period segmentation
method based on GMM clustering algorithm

To assess the efficacy of the TOU electricity price period
segmentation method proposed in this study, a set of typical
daily load data from a provincial-level power system in China
was selected for period segmentation, similar to that of a real
power grid (DONG et al., 2023; DING et al., 2001b). The typical
daily load data is depicted in Figure 4, with the number of clusters
designated as S = 3, indicating the division of the 24 time periods of a
day into peak periods, off-peak periods, and normal periods.

The existing TOU electricity pricing strategy in this province
delineates time periods as follows: peak periods are from 11:00 to 17:
00 and 20:00 to 22:00, off-peak periods are from 8:00 to 11:00, 17:
00 to 20:00, and 22:00 to 24:00, and the valley period is from 0:00 to
8:00. Nevertheless, as depicted in Figure 4, the current time period
segmentation method does not adequately capture the peak and off-
peak characteristics of the province’s load. There are several
instances of inconsistency, such as the load showing a significant
increase at 10:00 with a high load value, yet being categorized as an
off-peak period based on the current time segmentation. Similarly,
at 21:00, the load demonstrates a distinct decrease but is designated
as a peak period according to the current time segmentation.
Consequently, it is imperative to modify the segmentation of
time periods in this province.

To comprehensively illustrate the efficacy of the TOU electricity
price period segmentation method based on the GMM clustering
algorithm proposed in this paper, this section sets up four
comparative analysis scenarios, labeled as M0 to M3.

M0: Method for segmenting the current time period.
M1: A method for segmenting TOU electricity price periods

based on membership functions has been proposed (DING
et al., 2001a).

M2: A method for segmenting TOU electricity price periods
based on the K-means clustering algorithm (Nedal, 2011).

M3: proposes a method for segmenting TOU electricity price
periods based on the Gaussian Mixture Model (GMM)
clustering algorithm.

InM1 toM3, M1 denotes the conventional TOU electricity price
period segmentation approach, characterized by its simplicity and
efficiency, but also susceptible to significant influence from human
factors. The M2 method is a traditional clustering approach
frequently employed for segmenting TOU electricity price
periods. It is recognized for its straightforward principles and
straightforward implementation, although it has constraints
regarding the types of samples to which it can be applied. The
method proposed in this paper is referred to as M3.

In this section, a comparative analysis method, as cited in (QIAO,
2011), is employed to determine the percentage of peak load across
various time period segments. The rationality of the proposed time
period segmentation method is assessed through a comprehensive
analysis. The time period divisions from M0 to M3 are presented in
Table 1, while the proportion of electricity usage during peak hours
within these divisions is depicted in Figure 5.
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The comparison of the proposed TOU electricity price period
segmentation method M3 with M1 and M2, based on the results
obtained from Table 1, yields the following observations: In the
time period segmentation result of M1, 9:00 is not designated as a
peak period. Nevertheless, as illustrated in Figure 4, the load at 9:
00 demonstrates a noticeable increasing pattern and is
characterized by a relatively high load value. The power
generation is only 189.14 MW less than the peak value
recorded at 12:00, representing approximately 86.88% of the
peak load. Consequently, if the period is designated as off-
peak, it has the potential to result in a new peak load at that
time due to user load shifting, which may not be favorable for peak
shaving. The time period segmentation result of M2 does not
designate 13:00 as a peak period. Despite the current decrease in
load, the load value remains relatively high, with a difference of

only 46.82 MW compared to the peak load at 12:00, representing
approximately 96.75% of the peak load. If the period is categorized
as off-peak, it could lead to a reduction in transferable load or the
creation of a new peak load at that time following user load
shifting, posing challenges to effectively accomplish peak shaving
and valley filling.

In summary, the study confirms the effectiveness of the time-
sharing tariff period division based on the GMM clustering
algorithm proposed in this paper, demonstrating its ability to
achieve a rational division of time-sharing tariff periods.

4.2 Analysis examination of the effectiveness
of time-sharing optimization methods
considering grid investment benefits

To assess the efficacy of the time-sharing tariff price
optimization method proposed in this study, taking into account
the grid investment benefit, this section utilizes the actual load data
of a province in China from 2022 and the locally implemented time-
sharing tariff policy for verification. This is combined with the
typical daily load curve, as depicted in Figure 6. The time-sharing
tariff policy implemented in the province on an average day is
presented in Table 2.

Three TOU electricity tariff optimization methods M4-M6 are
set up in this section, as shown in Table 3:

The load profiles after optimization by different methods are
shown in Figure 7.

The conclusions that can be drawn from Figure 7 are as follows:

1) When comparing M4, M5, and M6 with the original load
curves, it is evident that M4-M6 has successfully achieved the
objective of peak reduction and valley filling.

2) When compared to M4 and M5, the cost-benefit analysis of
network investment in TOU electricity price optimization
indicates that it will not alter its impact on the load curve.

FIGURE 4
Load data of a typical day.

TABLE 1 Period division results of M0–M3 for TOU price.

Method Scene 1

M0 Peak periods: 11:00–17:00, 20:00–22:00

Normal periods: 8:00–11:00, 17:00–20:00, 22:00–24:00

Valley periods: 0:00–8:00

M1 Peak periods: 10:00–14:00, 17:00–21:00

Normal periods: 9:00–10:00, 14:00–17:00, 21:00–24:00

Valley periods: 0:00–9:00

M2 Peak periods: 9:00–13:00, 17:00–21:00

Normal periods: 8:00–9:00, 13:00–17:00, 21:00–24:00

Valley periods: 0:00–8:00

M3 Peak periods: 9:00–14:00, 17:00–21:00

Normal periods: 8:00–9:00, 14:00–17:00, 21:00–24:00

Valley periods: 0:00–8:00
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3) In comparison toM5 andM6, the segmentationmethod for TOU
electricity pricing periods based on the GMM clustering algorithm
proposed in this study can yield further enhancements to the load
curve, demonstrating the most favorable outcomes.

By optimizing the current TOU electricity pricing, users’ load
curves have been enhanced, leading to peak load reduction and off-

peak load increase, as well as a decrease in the investment cost of the
power grid. In comparison to M4 and M5, the load curve of
M6 exhibits a more pronounced peak reduction and valley filling,
thereby enhancing the optimization of user load curves.

To provide additional evidence of the efficacy of the proposed
approach, an analysis of the advantages for power grid companies
and users is conducted, and the findings are presented in Table 4
and Table 5.

The following conclusions can be drawn from Table 4:

1) After the implementation of the M4 TOU electricity price
optimization method, the income of the power grid company
has not changed compared with the original TOU electricity
price strategy, the power grid company has not reduced its
income due to the change of the price strategy.

2) The income of the power grid company under the
M5 optimization method is significantly higher than that
under the original income. This is due to the investment
benefit of the power grid company is taken into account in

FIGURE 5
Proportion of electricity consumption during peak hours for the four methods of M0–M3.

FIGURE 6
Load data of a typical day.

TABLE 2 Current TOU price policy of a domestic province.

Period Period Period division result

M4, M5 Peak period 0:00–8:00

Flat period 8:00–11:00; 17:00–20:00; 22:00–24:00

Peak period 11:00–17:00; 20:00–22:00

M6 Valley period 0:00–8:00; 22:00–24:00

Flat period 8:00–10:00; 16:00–20:00

Peak period 10:00–18:00; 20:00–22:00
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the model, and part of the cost saved is transferred to the user,
which makes the user more actively participate in peak cutting
and valley filling, and effectively reduces the investment cost of
the power grid.

3) The income of the power grid company under the
M6 optimization method is further improved than that of
M5. This is due to the period segmentation of GMM is
considered in the model. Based on M5, users are more
active in peak cutting and valley filling, which further
reduces the investment cost of the power grid. Therefore,
the M6 proposed in this paper can effectively reduce the
investment cost of the power grid company and improve
the income of the power grid company.

The conclusions drawn from Table 4 are as follows:

1) Following the implementation of the M4 TOU electricity price
optimization method, there has been no significant change in
the income of the power grid company compared to the
original TOU electricity price strategy. The power grid
company has not experienced a reduction in income as a
result of the change in the price strategy.

2) The revenue of the power grid company is substantially greater
when using the M5 optimization method compared to the
original income. This phenomenon can be attributed to the
incorporation of the investment benefit of the power grid
company into the model, resulting in a portion of the cost
savings being passed on to the user. This encourages greater
user participation in peak cutting and valley filling, thereby
effectively reducing the investment cost of the power grid.

3) The income of the power grid company is further enhanced
under theM6 optimizationmethod compared to that of M5. This
phenomenon arises from the segmentation of periods in the
Gaussian Mixture Model (GMM) as considered in the model.
According to M5, users exhibit higher activity levels during peak
cutting and valley filling, leading to a reduction in the investment
cost of the power grid. Consequently, the M6 proposed in this
study has the potential to significantly decrease the investment
costs of the power grid company and enhance its revenue.

As indicated inTable 5, the unit electricity consumption forM5users
proposed in this study is 0.001 yuan less than the average price for
M4 users and the original pricing strategy. Similarly, the unit electricity

TABLE 3 Optimization methods and effect comparison.

Optimization method Cost benefit of grid investment GMM Peak cutting and valley filling Formula

M4 × × o Eqs 1–14

M5 o × o Eqs 1–4, Eqs 6–24

M6 o o o Eqs 1–4, Eqs 6–24, Eqs 25–33

P.S.: The symbol “o” represents the factor is considered and “×” represents factor that is not considered.

FIGURE 7
Load curve of Original and M4–M6 optimized.

TABLE 4 Comparison of investment benefit of grid company.

Grid savings in investment costs

Current electricity price M4 M5 M6

Amount/Yuan 0 0 1.663 × 109 1.992 × 109

TABLE 5 Comparison of average electricity price of user.

The average price of users

Current electricity price M4 M5 M6

Amount/Yuan 0.753 0.753 0.752 0.750
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consumption for M6 users is 0.003 yuan lower than the average price for
M4 users and the original pricing strategy. This suggests that, under the
TOU electricity price period segmentation method based on the GMM,
customers are experiencing cost savings on their electricity bills.

The study confirms that the TOU electricity pricing strategy
proposed in this paper effectively empowers users to actively
participate in peak load reduction and off-peak load utilization.
This not only decreases the power grid’s investment costs but also
lowers electricity expenses for users, thereby achieving a mutually
beneficial outcome for both the power grid company and the users.

5 Conclusion

This paper presents an optimization method for TOU electricity
pricing aimed at enhancing the user load curve, minimizing the
investment cost of the power grid, and reducing the electricity
expenses for consumers. The proposed method takes into account
the cost savings associated with power grid investment. Firstly, the
study designs the investment benefit-sharing model for the power grid
and constructs a TOU price optimization model that takes into account
the investment benefit of the power grid. Secondly, amethod for dividing
TOU electricity price periods based on the GMM clustering algorithm is
proposed to obtain a reasonable division of TOUelectricity price periods.
Subsequently, in conjunction with the aforementioned methods and
models, a comprehensive optimization strategy for TOU electricity
pricing and time periods is further introduced, leading to the
implementation of the TOU electricity pricing strategy design. The
proposed method has been successfully verified in a provincial power
system in China, demonstrating its effectiveness in designing a set of
TOU electricity price strategies. This approach has the potential to create
a mutually beneficial situation for power grid companies and users.
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