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Durability is a desired characteristic for all battery packs in Electric Vehicles. In this
study, the service life of the EV battery pack under real-world operating
conditions is projected using an Arrhenius mathematical simulation model.
The model comprises a 39.2 kWh EV Lithium-Ion battery pack integrated with
a three-phase inverter to convert the battery pack’s Direct Current output to
Alternating Current. In addition, the Alternating Current output is coupled to a
100 kW permanent magnet synchronous motor, which is regarded as the load. A
field-oriented controller provides pulse width-modulated output signals that are
supplied back to the inverter to generate the correct driving current. Variable
conditions of charge rate (C-rate: 1.25C − 4C), discharge rate (C-rate: 0.5C − 4C),
temperature (25°C–60°C), and depth of discharge (30%–90%) are evaluated to
determine the battery pack’s service life. Under a 4C charge rate/0.5C discharge
rate and 50% depth of discharge, the modeling results indicate the battery pack
has a service life of approximately 6,000 h at low temperatures (25°C) and roughly
3,000 h at high temperatures (60°C). Themodel has been validated by comparing
the results with experimental data from the literature.
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1 Introduction

Internal combustion (IC) engine-powered vehicles have been extensively used for
transportation for over a century. The emissions from vehicles have significantly polluted
the environment and thereby caused atmospheric changes. Also, the limited availability of
petroleum resources, stringent emission norms, and ever-increasing prices have encouraged
research into various clean and green energy transportation technologies. One such
technology is Electric Vehicles (EVs), which have various advantages such as zero-
emission and potential for energy-saving (Hill et al., 2019), less running cost (Weldon
et al., 2018), and higher efficiency (Wang and Li, 2016; Somakettarin and Pichetjamroen,
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2019; Somakettarin et al., 2023) as compared to IC engine vehicles. A
1% increase in the number of electric vehicles sold in a city can lower
CO2 emissions by 0.096% locally and 0.087% in a neighboring city.
Second, EVs have an indirect impact on CO2 emissions via
substitution, energy consumption, and technological effects.
Increasing renewable energy generation by 1% leads to a 0.036%
reduction in EV carbon footprint (Wang et al., 2018). Lithium-ion
batteries (LIBs) are compact compared to other battery technologies.
LIBs also possess higher specific energy, high discharge current, low
self-discharge rate, and long life. These characteristics help to
achieve higher power efficiency because the cell can retain the
charge for a longer time.

The LIB self-discharge rate is 0.5% monthly when not in use
under normal conditions (Wang et al., 2018). Recent EVs have a
battery service contract that promises the battery for a particular
duration, typically 5–8 years, or a distance such as nearly
100,000 km. When driving, an EV generally consumes one kWh
of energy to travel about 4.5–6.5 km (3–four miles). In adverse
conditions, the performance of the battery is greatly affected due to
its temperature and depth of discharge (DOD), and the service life is
reduced (Tufail et al., 2023). The service life of the battery can be
estimated through electrical equivalent circuit modeling, which
helps to determine the open-circuit voltage, terminal voltage,
current, State of Health (SOH), and State of Charge (SOC).
Among these parameters, SOC is an important factor being
investigated to determine the amount of energy inside a battery
to drive an EV. The other prominent models in the involved
literature are the electrochemical model (Rahman et al., 2016;
Wang et al., 2023), the equivalent circuit model (Kunwar et al.,
2023), and the data-driven model (Li et al., 2020; Zhang R.
et al., 2023).

Many research works on battery life estimation focus only on
electrochemical mathematical models, thermal models, and a few
data-driven models (Zhang X. et al., 2023). For example, Rahman
et al. (Rahman et al., 2016) utilized particle swarm optimization
(PSO) to identify electrochemical model parameters such as solid-
phase diffusion coefficient at the positive and negative electrodes
and intercalation/de-intercalation at the anode and the cathode.
According to Sung’s experimental results, the battery model
developed considering these parameters was reasonably accurate.
Wang et al. (Wang et al., 2023) demonstrated the high-accuracy
prediction of the electrochemical model, but the simulation of the
model required substantial computational effort. The reason behind
preferring the electrochemical model is its ability to obtain an
accurate evaluation within LIB. Still, it is difficult to identify the
parameters of battery electrochemistry in real-time applications.
Besides these models, the equivalent circuit model has been adopted
extensively in real-time applications due to its highly simplified
structure and relatively fewer model parameters (Zhang et al., 2021).
The typical framework of the equivalent circuit model consists of
several resistor-capacitor networks where the number of networks is
the order of the model. The key is whether the electric energy used to
charge the EV battery is produced using renewable energy. If the
battery is charged using typical thermal power generation, EVs do
not significantly contribute to carbon emission reductions.
However, most renewable energy sources are intermittent,
creating spatial and temporal gaps between energy availability
and use by end users (Lu et al., 2022). To address these

difficulties, adequate energy storage devices, such as batteries for
the power grid, and full usage of renewable energy are required (Sun
et al., 2019). In comparison to these models, data-driven models,
such as support vector machines (Chen et al., 2019) and neural
networks (Wang et al., 2017), describe the electrical behavior of the
LIB without prior knowledge. However, the performance of the
data-driven models depends on the possibility of capturing the data
for the entire operational range of the battery (Sha et al., 2024).

As there is a considerable possibility of LIBs being subjected to
fast charging and discharging at extreme cycling conditions more
often, the study of thermal behaviour becomes crucial because it has
a direct effect on performance and service life. Also, it is seen that the
heat generation in the battery pack has a notable impact on the
fading of the capacity (Richter et al., 2017). Charging the LIB at
0–45°C and discharge at 0–55°C is generally safe. Numerous models
such as heat transfer, data-driven, and heat generation models have
been investigated and established for capturing thermal behaviour
for service life estimation (Shen et al., 2024). Guo et al. (Wali et al.,
2021) developed a multi-physics heat transfer model capable of
accurately predicting electrical and thermal behaviour. The model is
also flexible enough to be coupled with other multi-physics
equations to carry out system analysis effectively. Also, the three-
dimensional heat transfer models can effectively obtain the
distribution of the temperature inside the LIB, which helps to
detect hot spots. The developed heat generation model uses the
internal resistance of the battery and heat generation as a result of
Joule’s heating and entropy change (Liu et al., 2019).

The various studies show that the electrical and thermal effects
significantly affect the LIB. The electrical and thermal behaviour are
coupled as electro-thermal models to capture the above-said
variations efficiently and simultaneously (Zhang et al., 2016).
Yang et al. proposed an electro-thermal model that considers the
relationship between the electrochemical and thermal behaviour of
the cell to predict the behaviour of the battery under different drive
cycles (Yang et al., 2019). While battery technologies are constantly
improving to increase reliability and efficiency, the estimation of the
actual SOC and SOH is extremely crucial. Li-ion cells degrade over
time due to the growth of solid electrolyte interface and electrolyte
decomposition (Wang et al., 2017). The SOC and SOH degradation
of the cell is affected directly (Li et al., 2022; Xu et al., 2023).

LIB SOH is estimated using its voltage, current, and discharge-
charge cycles to indicate its lifespan. Although all these parameters
indicate the SOH, capacity is used for simplicity to estimate the
lifetime under different cycling conditions (Marques et al., 2019).
However, because the capacity cannot be directly measured online,
there is a requirement to establish a quantitative relation between
various measurable parameters of the battery and the capacity for
SOH estimation (Li et al., 2019). It was found in the literature that
the resistances (ohmic and polarization resistance) are the major
contributing factors to capacity loss and can be useful in predicting
battery life (Zhu et al., 2023).

The real-time life estimation of solid-state electronics based on
the Arrhenius model is used to detect the failure of any device that is
experimented with and projected to estimate the lifetime in hours
concerning the change in temperature at its junction (R et al., 2021),
which is an intuitive idea for this research. The accuracy of the
battery lifetime estimation greatly depends on aging effects and
capacity fade. Ashwin et al. (Ashwin et al., 2016) developed a P2D
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model that considers electrochemical processes to study the aging of
the batteries under repeated loading conditions. This model
integrates all the essential electrical and chemical processes under
a valuable algorithm for the battery monitoring system (Huang
et al., 2022).

Yonemoto et al. (Yonemoto YKTIKO, 2020) invented a capacity
prognostic device that determines a prediction function coefficient
using capacity degradation of the battery (capacity fade). Also,
García et al. (García et al., 2023) proposed a novel test
methodology that is useful for predicting the remaining capacity
of the cell after every cycle of discharge and charge. The parameters
are considered for investigating the battery charge and discharge
cycling effect due to the varying DOD between 20% and 100%DOD,
discharge rates, charge rates, and operating temperatures −18°C to
40°C. The results indicate that the negative effect of higher
temperatures can affect lifetime and performance. Wang et al.
(Wang et al., 2011) indicated the effect of cycling on the capacity
fade of LiFePO4 cells. The test conditions include the DOD that
varies from 90% to 10%, operating temperature ranging from −30°C
to 60°C, and discharge current varying from 1 A to 20 A. The
experimental results indicate a larger impact of temperature and
time on capacity loss than the DOD (Zhou et al., 2024).

While determining battery health is vital, it is equally important
to predict the end of life for LIB, as it helps to take preventive and
corrective measures to avoid unintended problems (Zhang et al.,
2022). Berecibar (Berecibar et al., 2016) discussed the testing
procedures and developed an estimation model for the SOH of
the battery, which is useful for forecasting its life. The cells were
subjected to extensive cycling and operating conditions such as
operating temperatures, discharge-charge rate, and DOD, with
results indicating the greater accuracy of the proposed model.
Hoyul et al. (Yul Yongin-si et al., 2013) patented a prediction
system that comprises a learning data input unit, target data
input, and machine learning to assign the weights to battery
factors in data input. The prediction system consists of a lifetime
prediction unit for indicating the lifetime of a battery cell. Energy
Storage Systems (ESS) are subdivided into four major categories
such as chemical, mechanical, thermal, and electromechanical
systems (Hannan et al., 2021). Hossain Lipu et al. stated that
SOC assessment under hundreds of lithium-ion battery cells in
EV operation remains unresolved (Hossain Lipu et al., 2020). Yu
et al. estimated SOC for a series-parallel LIB equivalent circuit
through an OCV-SOC-temperature relationship (Yu et al., 2023).

Table 1 shows the types of batteries considered for investigation
and its algorithm and research outcome in a nutshell related to
battery lifetime estimation along with the current proposed work.
Considering various models discussed in this section, our method
has the advantage of using PMSM as load whereas other models
considered only RC or RLC load. Another advantage of our method
is that it considers all critical parameters of the battery pack such as
temperature, charge-discharge rate, and DOD which estimates the
lifetime precisely (Mu et al., 2021). The novelty or contribution of
the current proposed work is summarized as follows. The study of
the existing literature indicates that most of the work regarding the
modeling and estimation of the SOH was carried out on the Li-ion
cells. It has been observed from the various models discussed in the
literature that real-time pack-level battery capacity models were
absent for EVs. In addition, a literature gap was found, indicating

that no model considered the PMSM load. Most of the authors
considered resistive load or RLC load in their simulation work. It
was also found from the literature that parameters such as
temperature, discharge rate, or DOD have been considered
individually in the previous work (Lü et al., 2024). Considering
the research gaps, the contribution or novelty of this proposed work
uses a mathematical model of PMSM drive that comprises a LIB
battery-pack and PMSM in MATLAB-Simulink environment for
the lifetime estimation of the pack considered, which considers
various operating working conditions such as operating
temperature, discharge–charge rates, and DOD. It is assumed
that the internal resistance of the battery cell is constant during
the charging and discharging cycle and will not change with the
current. In this paper, for example, 4C/4C, which is intended as the
discharge/charge rate, is considered.

This work considers the battery pack voltage of 327 V and the
current of 119.87 Ah. The entire battery pack is charged at rates of
1.25C, 2C, 3C, and 4C and discharged at 0.5C, 1C, 2C, and 4C,
respectively. During the operation, the temperature, SOC, and depth
of charge are considered inputs to the model. The battery pack is
cycled continuously at various charge-discharge rates that depend
on the requiredmotor power. The complete system is controlled by a
field-oriented controller that uses pulse width modulation to control
the motor voltage. Finally, the capacity degradation of the entire
pack is analyzed using the data obtained through simulation to
predict the useful lifetime.

The rest of this paper is organized as follows: Section 2 describes
a model-based design for PMSM along with a battery pack, inverter
and discharge model. It is followed by Section 3, which deals with the
overall model along with results and discusses the proposed system.
Finally, Section 4 concludes the work.

2 Model-based design for PMSM drive
in EV

The lifetime estimation model proposed in this work primarily
consists of a battery pack, a three-phase inverter, a Permanent
Magnet Synchronous Motor (PMSM), and a field-oriented
controller (FOC) along with position sensors. The specifications
are similar to the commercially available EV battery pack as given in
Table 2 and are taken as a benchmark to model the PMSM Drive
shown in Figure 1.

The LIB pack generates power to the PMSM (acts as the load)
through a three-phase inverter that converts the DC voltage to a
three-phase AC supply. The voltage and current are monitored by
voltage and current sensors, respectively. The field-oriented
controller is used to control and drive the motor using a sensor
feedback loop to produce gate pulses. The primary function of a
field-oriented control algorithm is to take a user-defined voltage uq
and, by continually reading the relative position of the motor rotor,
determine the proper phase voltages ua, ub, and uc. The FOC
algorithm generates phase voltages that form a magnetic field in
the motor’s stator that is 90° “behind” the permanent magnets of
the rotor, resulting in a pushing effect. The Rotor Position Sensor is
used to determine the rotating angle of any rotary application,
especially PMSM. Rotor position sensors are mandatory for
effective and trustworthy control of PMSM (Bhardwaj, 2013).
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The elaborate model of Figure 1 block diagram is shown
in Figure 4.

2.1 LIB pack model

The LIB pack model developed using MATLAB SIMULINK is
shown in Figure 2. The battery pack is subdivided into sub-battery
packs, and each pack is connected into a series of parallel
combinations. The full battery pack is attached to the main
model, as shown in Figure 4. The phosphate LIB is considered a
potential battery technology that could be utilized in automotive
applications due to its thermal and electrical stability. This battery
type also offers good electrical performance with low resistance.

The capacity of the modeled battery pack is 39.2 kWh. The cells
are LFP - A123 ANR 26650. More specifications of the battery cell
are given in Table 3.

The number of cells calculated using Eq. 1 and 2
(Buchmann, 2017) indicates approximately 102 cells in series
combination as a single pack, and a 53 - single pack is connected
in parallel combinations to deliver 39.2 kWh. Overall, the
battery pack consists of 5,406 cells with a weight of
approximately 389.2 kg.

TABLE 1 Summary of representative battery life estimation models.

References Model/Method Battery Type Description Results

Marques et al.
(Marques et al., 2019)

Semi-empirical model - Power-law
relation with time (capacity loss),
Arrhenius correlation (temperature
effect)

Lithium manganese oxide
(LiMn2O4), Lithium-ion
phosphate (LiFePO4)

Comparative life cycle assessment of
LiMn2O4 and LiFePO4 for
addressing capacity fade

The aging of LiFePo4 had almost
four times higher effect than
LiMn2O4

Li et al. (Li et al., 2019) Experimental, 2nd equivalent circuit
model (ECM)

Lithium-ion Establishment of the relation between
capacity loss and measurable
parameters

The capacity available decreases
with the increase in ohmic
resistance

Ashwin (Ashwin et al.,
2016)

Modified Newman model Lithium-ion Study of the capacity fade of the
battery under cyclic loading
conditions

Battery life is found to be
significantly affected by the
convective heat transfer
coefficient

García et al. (García
et al., 2023)

Electrical model Lithium iron phosphate
(LiFePO4)

Development of a life cycle model
that investigates the battery life and
effect of fast charging

The cycle life of the battery
degrades with an increase in
charge current rates

Wang et al. (Wang
et al., 2011)

Power law equation for capacity loss,
Arrhenius correlation for temperature
effect

Lithium iron phosphate
(LiFePO4)

Development of a semi-empirical life
model

The power-law relationship can
represent life cycle data

Berecibar et al.
(Berecibar et al., 2016)

Electrical model Lithium iron phosphate
(LiFePO4)

Prediction of SOH using capacity
estimation

The model has an average error
of 1.5% at the pack level

Deng et al. (Deng et al.,
2020)

Gaussian process regression Lithium-ion Predict the SOC of the battery pack Estimation error under different
temperatures is lower than 3.9%

Deng et al. (Deng et al.,
2021)

Data-driven methods Three types of Lithium
batteries

Predict battery SOH RMSE is lower than 1.3%

Che et al. (Che et al.,
2021)

Gaussian process regression Transfer learning and
recurrent neural network

Predict remaining useful life based on
the optimized health indicators

Error less than five cycles

Proposed work Arrhenius correlation included in
charging/discharging along with DoD

Lithium-ion (Nickel
Manganese Cobalt)

Predict the lifetime of the battery
pack in hours

At 4C/4C lifetime decreases
by 32.8%

TABLE 2 Model specifications.

Battery pack - lithium-ion Voltage - 327 V

Power capacity - 39.2 kWh

Three-Phase Inverter 180° Conduction Mode

PMSM Motor Power - 100 kW

Torque - 395 Nm

PMSM Controller FOC

FIGURE 1
PMSM drive powered by the battery pack.
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Number of cells series( ) � Battery pack voltage,V
Cell voltage,V

(1)

Number of cells parallel( ) � Battery pack capacity,Ah
Cell capacity,Ah

(2)

A modified Shepherd’s model is used to describe the voltage
dynamics of the Li-ion battery pack (Wang et al., 2023). The
equivalent discharge-charge model of the Li-ion battery shown in
Figure 3 consists of an internal resistance of approximately 10 mΩ,

which leads to a voltage drop based on the battery chemistry. The
temperature is an important factor that affects the performance of the LIB
in terms of pack voltage, discharge capacity, charge-discharge

FIGURE 2
Battery pack model.

TABLE 3 Specifications of the battery cell.

Parameter Ratings

Nominal Voltage 3.3 V

Nominal Capacity 2.3 Ah

Standard Charge 3A to 3.6V CCCV, 45 min

Rapid Charge 10 A to 3.6V CCCV, 15 min

Nominal Discharge Current 2.3 A

Internal Resistance 10 mΩ

Discharge Cut-off Voltage 2.40 V

Cell Weight 72 g

Cell Dimensions ø 26 × 55 mm

FIGURE 3
Discharge-charge battery model.
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characteristics, and power capability. The variation in the battery voltage
that considers the impact of temperature in the case of discharge and
charge conditions is represented by Eq. 3 and 4, respectively. It is assumed
that the internal resistance, R, is dependent on the operating temperature
of the battery (An et al., 2023). The remaining useful time ‘t’ in hours in
theArrheniusmodel included in the charging anddischarging Eq. 3 and 4
is acquired through the SIMULINK model for each second.

Vbatt di( ) � E0 T( ) − R T( ) · I − K T( ) · I* Q Ta( )
Q Ta( ) − it

− K
Q Ta( )

Q Ta( ) − It
( )It + Ae−B·It (3)

Vbatt ch( ) � E0 T( ) − R T( ) · I − K T( ) · I* Q Ta( )
it + 0.1Q Ta( )

− K
Q Ta( )

Q Ta( ) − It
( ) · It + Ae−B·It (4)

In Eq. 3 and 4, the terms are E0(T) – constant voltage, K(T) –
polarisation constant, Q (Ta)–capacity, R(T) – internal resistance
(An et al., 2023).

E0 T( ) � E0|Tref + ∂E
∂T

T − Tref( ) (5)

K T( ) � K T( )|Tref · eα
1
T − 1

Tref( ) (6)

Q Ta( ) � Q|Ta
+ ΔQ
ΔT Ta − Tref( ) (7)

R T( ) � R|Tref · eβ
1
T − 1

Tref( ) (8)
The overall heat generated PL during the process of discharging

and charging is expressed with the help of Eq. 9 (An et al., 2023).

PL � Eo T( ) − Vbatt T( )[ ] · I + ∂E
∂T

· I + I · T (9)

The aging of the battery pack is one of the major issues in EV
technology and has considerable effects, such as an increase in charging
losses, which results in reduced efficiency, a decrease in driving range,
and a reduction in acceleration. The available energy inside the pack is
lost gradually as the active material inside transforms into an inactive
phase. This energy reduction is represented by a factor called the aging
factor that is dependent on the percentage of the battery that has been
discharged (DOD) as defined in Eq. 10. The impact of the constant
discharging and charging process on the battery capacity is indicated by
Eq. 11 (An et al., 2023).

λ n( ) � λ n − 1( ) + 1
2N n − 1( )( ) · 1 − DOD n − 2( )

DOD n − 1( )( )( )
+ 1

2N n − 1( )( ) · 1 − DOD n( )
DOD n − 1( )( )( ) (10)

n( ) � CBOL 1 − λ n( )( ) − λ n( ) · CEOL (11)

Here, n � k · Th (k = 1, 2, 3, . . . , ∞).

2.2 Three-phase inverter model

The three-phase inverter is used to convert direct current from LIB
(327 V and 39.2 kWh) into AC for powering variable speed PMSM that

acts as the load. Themodel developed is a 180° conductionmode type in
which three switches are ‘on’ at any instant and the gate pulses switch
the device to an ‘on’ or ‘off’ position based on the signals from themotor
controller. Table 4 indicates the PMSM phase voltages Va, Vb, and Vc
based on the variation of the load. A capacitor is connected in parallel to
the RL circuit (equivalent stator winding circuit) to reduce voltage
fluctuations. This ensures that sinusoidal current is generated from the
inverter, as explained in Eq. 12 is generated from the inverter
(Buchmann, 2017).

iL � ∫ 1
Ls′

V − iLRs( ) (12)

2.3 Permanent magnet synchronous motor
and EV drive model

A permanent magnet synchronous motor (PMSM) is modeled and
integrated with the drive system as a load that acts on the battery pack. It
consists of three-phase windings in the stator and permanentmagnets in
the rotor. Each stator winding consists of inductance and resistance
connected in series with the input being the voltage applied to the
armature of themotor and the output is the angularmotion (position) of
the shaft. The electromagnetic current flowing across each of the stator
windings (iA, iB, iC) is calculated using Eq. 13, which considers the back
emf and the motor torque constant (Buchmann, 2017).

iL � ∫ 1
Ls′

−iLRs + V − Kb
dϕ
dt

( ) (13)

The angular acceleration of the shaft and the speed during
rotation are found using Eq. 14 and 15 (Krishnan, 2017).

J · ⅆ
2ϕ
ⅆt2

� Tem − b
dϕ
dt

(14)

w � dϕ
dt

(15)

In a balanced three-phase machine, the summation of the three-
phase currents is zero as given by Eq. 16. However, this equation
does not hold if there is an imbalance in voltage or current.

TABLE 4 Phase Voltages of the Three-Phase Inverter (1 indicates ON and
0 indicates OFF).

Switch Phase Voltage

S1 S3 S5 S2 S4 S6 Va Vb Vc

0 0 0 1 1 1 0 0 0

1 0 0 0 1 1 2Vdc/3 -Vdc/3 -Vdc/3

1 1 0 0 0 1 Vdc/3 Vdc/3 -2Vdc/3

0 1 0 1 0 1 -Vdc/3 2Vdc/3 -Vdc/3

0 1 1 1 0 0 -2Vdc/3 Vdc/3 Vdc/3

0 0 1 1 1 0 -Vdc/3 -Vdc/3 2Vdc/3

1 0 1 0 1 0 Vdc/3 -2Vdc/3 Vdc/3

1 1 1 0 0 0 0 0 0
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iA + iB + iC � 0 (16)
To calculate torque, Park’s transform is used, which transforms

the stator winding currents to id’, iq’, i0’ frame (independent of rotor
angle) as represented in Eq. (17)-19) (Krishnan, 2017).

id′ � 2
3

iA cosϕe + iB cos ϕe − 2π /

3( ) + iC cos ϕe + 2π /

3( )( ) (17)

iq′ � −2
3

iA sinϕe + iB sin ϕe − 2π /

3( ) + iC sin ϕe + 2π /

3( )( ) (18)

i0′ � 2
3

0.5iA + 0.5iB + 0.5iC( ) (19)

where, ϕe = n ϕ
The current i0 represents the imbalance in A, B, and C phase

currents and can be taken as the zero-sequence component of the
current. The mathematical models of the Li-ion battery pack, inverter
and the developed PMSM are integrated with a Field Oriented
Controller to construct an electric drive system, which is shown in
Figure 4. Based on battery configuration the total voltage is 327 V and
the current is 119.87 Ah, which is considered for vehicle operation.
The entire battery pack is charged at charge rates of 1.25C, 2C, 3C, 4C
and discharged at 0.5C, 1C, 2C, 4C, respectively. During the operation,
the temperature, SOC, and depth of charge are considered as input to
the model. Based on these inputs, the pack is cycled continuously at
various charge-discharge rates that depend on the power required by
the motor. The entire drive system is controlled by a field-oriented
controller, which uses pulse width modulation to control the load
voltage. Finally, the capacity degradation of the entire pack is analyzed
to predict the useful lifetime.

3 Results and discussions

The drive model shown in Figure 4 is developed using
MATLAB-Simulink (R2019a) with mathematical equations to

carry out cycling of the battery pack under varying conditions of
discharge rate (0.5C, 1C, 2C, 4C) and charge rate (1.25C,
2C, 3C, 4C).

Here, C indicates the charge capacity of the pack. For example, if
the capacity of the battery is 2.3Ah for a cell, then 0.5C denotes
1.15A. The battery temperature considered in this work is 25°C,
40°C, 50°C and 60°C with the DOD as 80%, 70%, 60%, 50%, 40%, and
30%, respectively. In addition, the pack is considered to have reached
its end of life when the available capacity reduces to 80% of the actual
capacity. The methodological validation of the proposed model is
compared with Wang et al. experimental results. As shown in
Figures 5A,B, the capacity loss results of a cell model are
validated for a 0.5C discharge rate at a battery temperature of
60°C. The analysis of the results obtained in Figure 5A indicates
a maximum variation of approximately 9.7% at 0.5C discharge rate,
operating temperature of 60°C and 80%DOD, whereas a variation of
6.5% is observed at 50% DOD (Figure 5B) with the rest of the
conditions remaining the same. Therefore, the mathematical model
developed to estimate lifetime produces results that are closer to the
experimental outcome (Wang et al., 2011). The battery pack, which
is modeled using the validated LiFePO4 cell, is tested under varying
conditions of C-rate, operating temperature, and DOD as described
earlier, with the PMSM acting as the load. The life of a battery pack
can be estimated using various methods and parameters. In this
work, the lifetime of battery packs is estimated in hours using Eq. 3
and 4, which involve battery pack capacity, charging, discharging,
and battery temperature.

Figure 6A indicates the degradation of battery pack capacity
when it is subjected to varying C-rates (both discharging and
charging) at the conditions of 40% DOD and the battery
operating temperature at 25°C. From the analysis that considers
the 4C constant discharge rate, it is seen that the lifetime reduces
from 1,463 h–867 h as the charge rate increases from 1.25C to 4C.
Similarly, when the charging rate is kept constant at 4C, the lifetime
is seen to reduce drastically from 6,675 h–867 h as the discharge rate

FIGURE 4
EV drive system.
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increases to 4C. As the battery operating temperature is increased to
40°C (Figure 6B) at a discharge rate of 4C, it is seen that lifetime
reduces from 1,093 h–648 h as the charge rate increases from 1.25C
to 4C. Similarly, when the charging rate is kept constant at 4C, the
lifetime is seen to reduce drastically from 4,988 h–648 h as the
discharge rate increases to 4C. In the case of 50°C (Figure 6C)
with the same conditions, at a 4C constant discharge rate, the
lifetime is seen to drop from 913 h to 542 h as the charge varies
from 1.25C to 4C; at the 4C constant charge rate, the lifetime drops
from 4,169 h–542 h as the discharge rate increases to 4C.

Correspondingly, at 60°C (Figure 6D), the lifetime is observed to
drop from 772 h to 458 h as the charge rate varies from 1.25C to 4C
at a discharge rate of 4C and from 3,522 h–458 h as the discharge
rate increases to 4C that considers 4C charge rate. Also, it is noticed
that with the increase in temperature to 60°C at constant discharge
and charge rate of 0.5C/1.25C, the lifetime reduces from 6,786 h (at
25°C) to 3,580 h (at 60°C). At the same time, at a constant discharge
and charge rate of 4C/4C, the lifetime is reduced from 867 h (at
25°C) to 458 h (at 60°C).

On carrying out the analysis at 80% DOD (Figure 7) under the
same conditions of discharge-charge rates and operating
temperatures, the trend remains the same. However, with the rise

in DOD, the lifetime is seen to be reduced significantly. Considering
the 4C discharge rate at 25°C (Figure 7A), the lifetime of the pack
reduces from 1,094 h–583 h as the charge rate increases to 4C,
whereas, at 4C charge rates, there is a drastic reduction from
4,253 h–583 h as the discharge rate increases. As the battery
operating temperature is increased to 40°C (Figure 7B) at a
discharge rate of 4C, it is seen that lifetime reduces from 817 h to
435 h as the charge rate increases from 1.25C to 4C. Similarly, when
the charging rate is kept constant at 4C, the lifetime is seen to reduce
drastically from 3,178 h–583 h as the discharge rate increases to 4C. In
the case of 50°C (Figure 7C) with the same conditions, at the 4C
constant discharge rate, the lifetime is seen to drop from 683 h to
364 h as the charge varies from 1.25C to 4C; at the 4C constant charge
rate, the lifetime drops from 2,655 h–364 h as the discharge rate
increases to 4C. Correspondingly, at 60°C (Figure 7D), the lifetime is
observed to drop from 577 h to 307 h as the charge rate varies from
1.25C to 4C at a discharge rate of 4C and from 2,244 h–307 h as the
discharge rate increases to 4C that considers 4C charge rate. However,
it is noticed that with the increase in temperature to 60°C at a constant
discharge and charge rate of 0.5C/1.25C, the lifetime is reduced from
4,865 h (at 25°C) to 2,567 h (at 60°C). At the same time, at a constant
discharge and charge rate of 4C/4C, the lifetime is reduced from 583 h
(at 25°C) to 307 h (at 60°C).

At a given discharge-charge rate, the battery pack cycled at DOD
greater than 50% was observed to reach the end of life early as
compared to 40% of DOD. Also, as the operating temperature and
DOD increase, the estimated lifetime of the pack decreases due to
the degradation in capacity. For instance, considering the 2C
discharge and 4C charge rate, the remaining life is approximately
2,000 h at the operating temperature of 25°C and 30% DOD.
However, as the temperature increases to 60°C, which keeps the
DOD at 30%, the remaining life drops to 1,056 h. Because the battery
is continuously cycled at the represented charge-discharge rates, the
life (in hours) is low. Here, the remaining life is analyzed for the 4C
charge rate condition because this analysis indicates the worst-case
scenario clearly as compared to lower charge rates. The results are
tabulated in Table 5, which indicates the best case and worst case for
the operation of the battery pack, along with the travel range in
kilometers (km). With a 1C discharge rate, the optimum distance
range is 205,010 km, and the worst condition is 65,105 km. The
kilometer range is calculated by multiplying the life (hours) with the
average economy speed of the EV, 50 km/h (Iclodean et al., 2017).

The numerical calculation of the kilometer travelled at 1C
discharge rate, which is calculated by Eq. (19).

Kilometers km( ) � Speed × Time

205,010 km = 50 × 4,100.2 h.
At a particular C-rate, it is observed that the pack cycled at

greater DOD reaches the 80% end-of-life condition sooner as
compared to the condition at lower DOD. This observation is
clearly shown in Figure 8 using two cases: 0.5C discharge/1.25C
charge rate and 4C discharge/4C charge rate to show the effect
at lower C-rate and higher C-rate conditions. Also, it is evident
that with the rise in operating temperature, the expected
lifetime decreases drastically in both cases. Therefore, the
graph in Figure 8 shows the range within which the lifetime
(in hours) of the pack may vary due to changes in the operating
conditions.

FIGURE 5
Capacity loss comparison at 50% and 80% DOD. (A): Verification
of results at 0.5C discharge, 60°C, 80% DOD. (B): Verification of
results at 0.5C discharge, 60°C, 50% DOD.
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4 Conclusion

The remaining useful life of the battery pack in the Permanent
magnet synchronous motor drive is analyzed through mathematical
modeling of the Lithium ion pack, three-phase inverter, and
Permanent magnet synchronous motor. A 327 V, 119.87 Ah
battery pack, 180⁰ conduction mode inverter, and 100 kW,
395 Nm permanent magnet synchronous motor available in the
market are considered. The battery is modeled considering the
operating temperature and aging effects (cycling). The effect of
the parameters -- discharge-charge rate, operating temperature, and
Depth of Discharge on the battery pack is investigated considering
the Permanent magnet synchronous motor as the current drawing
load. The results indicate that the lifetime of the Li-ion battery pack
is largely dependent on the discharge rate and operating
temperature, and the effect of the charge rate and the Depth of
Discharge is comparatively less.

The self-discharge phenomenon that affects calendar aging is
not considered for this modeling. Consideration of these parameters
for estimating the lifetime of the Li-ion battery pack that powers the
Permanent magnet synchronous motor drive will yield more
accurate results in comparison. However, the results obtained
from the work attempt to estimate the lifetime under critical
conditions that the battery pack may be subjected to during its
service life. The results of the proposed work are summarised
as follows:

• At 40% Depth of Discharge, as the operating temperature of
the pack is maintained at 25°C, the lifetime predicted is in the
range of 6,786 h–867 h. However, when its operating
temperature reaches 60°C, the predicted lifetime is in the
range of 3,580 h–458 h.

• At severe conditions, about 80% Depth of Discharge when the
operating temperature is maintained at 25°C, the lifetime is in

FIGURE 6
Capacity loss at 40% DOD. (A): Capacity loss at 40% DOD and 25°C (B): Capacity loss at 40% DOD and 40°C (C): Capacity loss at 40% DOD and 50°C
(D): Capacity loss at 40% DOD and 60°C.
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FIGURE 7
Capacity loss at 80% DOD. (A): Capacity loss at 80% DOD and 25°C (B): Capacity loss at 80% DOD and 40°C (C): Capacity loss at 80% DOD and 50°C
(D): Capacity loss at 80% DOD and 60°C.

TABLE 5 Effect of temperature and DOD on life (in hours) at 4C rate.

Discharge Rate (C) Operating Condition Battery Temperature (°C) DOD (%) Life (hours) Kilometers (km)

0.5 Optimum 40 30 6,326.5 h 316,325

Worst 60 80 2,244.8 h 112,240

1 Optimum 25 30 4,100.2 h 205,010

Worst 60 80 1,302.1 h 65,105

2 Optimum 25 30 2,002 h 100,100

Worst 60 80 651.8 h 32,590

4 Optimum 40 30 772.6 h 38,630

Worst 60 80 307.8 h 15,390
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the range of 4,865 h–583 h. As the operating temperature is
close to 60°C, the lifetime is expected to range
from 2,567 h–307 h.

• Upon analysis of the effect on lifetime predicted by the
increase in DOD from 40% to 80%: At a 0.5C/1.25C rate, it
is seen that the lifetime decreases by 28.3%. At the 4C/4C rate,
it is seen that the lifetime decreases by 32.8%

The results obtained can be used along with machine learning
algorithms to predict the lifetime for additional conditions. Also, the
real-time experimental work leads to accurate data that is helpful for
precise battery life estimation. However, the cost of the battery pack
is too high to carry out the experimental work.
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Nomenclature

AC Alternating current

C-rate Charge and Discharge rate

LIB Lithium-ion batteries

DOD Depth of Discharge

ESS Energy storage system

OCV Open circuit voltage

RC Resistor–capacitor circuit

RLC Resistor capacitor inductor circuit

ECM Equivalent circuit model

Ebatt Non-linear Voltage, V

Eo Constant Voltage, V

exp exponential

EV Electric Vehicle

FOC Field-Oriented Control

I Battery current (A)

IC Internal combustion

K Polarization Constant

iA, iB, iC Three phase currents, A

iL Current across the inductor, A

id’, iq’, i0’ d’q’0′frame currents

LiFePO4 Lithium Iron Phosphate

Li-ion Lithium Ion

N Maximum number of cycles

PL Heat generated during the charge-discharge cycle, W

P2D Pseudo-Two-Dimensional

PMSM Permanent Magnet Synchronous Motor

q-axis Quadrature Axis

R Internal resistance

SOC State of Charge

SOH State of Health

Ta Ambient Temperature, K

t Lifetime, h

Vbatt Battery voltage, V

ΔQ/ΔT Maximum capacity temperature coefficient, Ah/K

λ Battery Aging Factor

ζ Arrhenius rate constant for internal resistance, Ω
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