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As the youngest of the three sub-fields within sustainability assessment,
development of social impact assessment lags behind life cycle and techno-
economic assessments. This is manifested in comparatively lacking
methodological maturity. The calculation of impact indicator results, achieved
through the use of characterisation models, is a prime example of the field’s
immaturity. This research initially identifies current methodologies observed
within social impact assessment. This reveals that impact pathway
characterisation models, analogous to those seen in life cycle assessment,
have primarily been neglected; instead, research has been focused on less
reproducible and more subjective reference scale approaches. Redressing this
balance, a set of seven UNEP and SETAC indicators are evaluated, developing
novel impact pathway-based characterisation models. Focussing on the effects
of stimulating and de-stimulating factors on indicators, identifying hotspots
where negative social impacts are likely to arise. The presented
methodologies are tailored to applications involving the assessment of
potential carbon dioxide utilisation (CDU) value chains. This focus results in
open access characterisation models that are indiscriminate of technology
readiness level, requiring no primary process data. Data from the World Bank
and its partner organisations are utilised, generating complete results across all
indicators for 129 countries. Development of these quantifiable characterisation
models delivers significant value in the standardisation of assessment procedure
and facilitates inter-assessment comparability, a benefit to stakeholders ranging
from practitioners to commissioners.
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1 Introduction

First attempted in 1996 by O’Brien, et al., social impact assessment (SIA) aims to
systematically and repeatably evaluate the social effects of activities, policies, or legislation
(Huarachi, et al., 2020). Alternatively, it can be defined as; “the process of identifying the
future consequences of current or proposed actions, which are related to individuals,
organisations and social macro-systems” (Becker, 2001; McCord, et al., 2021; Newman and
Styring, 2023). This is typically achieved by considering a diverse stakeholder portfolio
containing relevant impact categories and indicators. The idealised outcome of a well-
conducted SIA is the safeguarding, monitoring, and (in many cases) mitigation of social
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pressures associated with sustainable development. Many
assessment frameworks for social performance have been
proposed, the most notable being the United Nations’
Sustainability Development Goals (UN SDGs) (United Nations,
2015a). However, owing to the complexity of societal structures
and human behaviour, accurate characterisation remains a field-
wide challenge. Consequently, methodologies often incorporate
practitioner judgement or other sources of subjectivity, delivering
qualitative or pseudo-quantitative results. In addition, most work
focuses on the assessment of deployed activities, neglecting the pre-
emptive assessment of proposed projects.

In a broader sense, SIA can be seen to represent one of three
‘strands’ within a holistic view of sustainability. Environmental,
economic, and social factors must all be managed responsibly to
deliver long-term sustainable practices. While environmental-
focused lifecycle assessments (LCA) and techno-economic
assessments (TEA) are mature and standardised, social impact
assessment (SIA) is still a relatively underdeveloped field.
Attempts have been made to integrate the three strands, making
significant headway in the form of the Global CO2 Initiative’s (GCI)
combined LCA and TEA guidelines (McCord, et al., 2018), and
McCord et al.‘s Triple Helix Framework (McCord, et al., 2021).
Despite this progress, the lack of consistent, quantitative
methodologies for SIA hinders the meaningful integration of
otherwise parallel assessment strands. SIA’s most notable
shortcoming is a failure to provide transparent and repeatable
characterisation models (CMs) to underpin impact indicator
reporting. This issue has long been solved for LCA (and TEA),
offering numerous robust and broadly accepted CMs such as CML
2002, ReCiPe, TRACI, etc., each with specific use cases. SIA’s lack of
such quantitative impact characterisation prevents comparison
between studies of competing technologies. Such an approach
would also deliver increased transparency and reliability, aspects
that are often dismissed within practitioner judgement-based
scoring scales.

Procedural and methodological divergence within SIA, based on
assessment focus (i.e., technology type or field), is necessary to accurately
refine SIA practices; an observationmirrored in LCAvia the ISOderived,
and sector-specific, ILCD Handbook (European Commission - Joint
Research Centre - Institute for Environment and Sustainability, 2010).
For instance, the assessment of deployed activities can be defined and
supported by primary data, resulting in more straightforward impact
pathway characterisation. In contrast, assessments of proposed future
value chains, or low TRL technologies, cannot rely on such data and
instead requires a risk-based approach that utilises only open-source
data. In theory, this would identify red flags, allowing for the subsequent
implementation of mitigation or monitoring procedures. SIA’s current
focus on deployed activities inherently contrasts its aim of supporting
sustainable development, only quantifying impacts after capital
investment and roll-out. However, if the activity or process is not
intrinsically socially sustainable, deployment should be deferred until
the root issues are resolved. Social sustainability should be attained, or
projected, in the design phase, not retrospectively (Newman, et al., 2023).
This philosophy requires a novel approach that does not rely on the
primary data of a deployed technology or value chain.

Having identified this major gap in assessment capabilities, this
paper focusses on the development of SIA impact characterisation in
the context of carbon dioxide utilisation (CDU). With increasing

cultural and societal relevance, and offering a partial answer to the
climate crisis, CDU is a field in urgent need of such pre-deployment
SIAs. Pieri, et al. conducted a review of CDU focussed sustainability
assessments, concluding that none considered social impacts (Pieri,
et al., 2018). Following this, Chauvy, et al. approach meaningful
consideration of SIA through examination of health and safety
within CDU (Chauvy, et al., 2019). However, the consideration
of social impacts in the field remains lacking. Early assessment
would facilitate the minimisation or avoidance of negative social
impacts prior to occurrence. After all, how efficacious can an
environmentally sustainable technology be if it simultaneously
generates negative social impacts?

The broad catalogue of CDU technologies seen in current
literature, ranging from concrete manufacturing (Li, et al., 2022)
to synthetic fuel production (Dimitriou, et al., 2015), harbour a
diverse range of technology readiness levels (TRLs) and process
types. This diversity demonstrates CDU’s character as a rapidly
developing and forward-looking field. However, it also makes the
derivation and application of social impact characterisationmethods
a complex challenge. Even in cases where primary data is available, a
rare scenario for low TRL CDU processes, it cannot be effectively
used in comparative studies. Higher TRL processes will have
benefited disproportionately from optimisation and scale-up
efficiency gains when compared to theorised or bench scale
alternatives at early R&D phases. Consequently, the development
of flexibly applicable, non-TRL specific, CMs offers significant value
to both CDU researchers and SIA practitioners. Furthermore, this
high-level approach supports application to the full suite of CDU
related technologies, circumnavigating the nuances related to
specific technologies.

In addition, many CDU projects, particularly those at pre-
deployment or low TRL phases, typically suffer from a lack of
geographic specificity regarding operating location (McCord,
et al., 2018). Often, only a vague targeted deployment region can
be defined, informed by investment conditions, market forces, and
labour requirements. However, macro level studies at continental or
sub-continental resolution offer only vague insights. Consequently,
the potential for negative societal impacts must be evaluated on a
geographically meso-level, incentivising the development of
methods adopting a national level scope.

The outlined issues demonstrate that CDU has sector specific
needs that are currently neglected by broader, more general, social
impact characterisation approaches. These can be succinctly
summarised within six methodological requirements, or objectives;

1. Applicability to a broad range of technology types.
2. Pre-emptive identification of likely negative impacts associated

with projects
3. A levelized and comparative consideration of diverse

TRL ranges
4. Reliance on open source (non-primary) data
5. National (meso) level reporting resolution
6. Transparency and repeatability

The proposed national level red-flag philosophy, while less
granular than approaches based on primary data, adds significant
value at project inception or upgrade lifecycle phases. For instance,
many CDU processes are highly energy intensive, a consequence of
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CO2’s inherent thermodynamic stability (Creutz and Fujita, 2001).
A SIA CM focussing on communities’ access to electricity would
augment an organisation’s ability to determine whether existing
energy infrastructure can be utilised, or, if on-site generation is
required to safeguard local communities’ energy needs. A plant
requiring large amounts of grid electricity may not be socially
sustainable if deployed in a country with a scarce or intermittent
energy supply. However, if the project scope was expanded to
include combined heat and power (CHP), photovoltaics, etc.,
sustainability may be realised. Through this approach, SIA does
not exclude countries from consideration, but instead informs the
targeting of remedial action. Furthermore, incorporating this
philosophy within holistic assessments would allow detailed
identification of burden shifting. In the previous example case,
the abatement of social issues around electricity access would
likely be reflected in elevated capital costs associated with CHP.

While not granting the same level of granular insight as LCA
CMs, adherence to these six objectives delivers a value addition to
organisations during the transition towards sustainable industrial
ecosystems. Early identification of potential negative social impacts
leaves time to remedy the causal factors, improving both long- and
short-term sustainability profiles while removing the compromises
associated with post-deployment optimisation. If conveyed
effectively to key stakeholders, the results of such a red-flag
assessment would support strategic industrial decision-making
around CDU process deployment.

2 Review of literature

Previous reviews spanning a broad period reveal that SIA,
constitutes the least standardised strand within sustainability
assessment (Klöpffer, 2003; Jørgensen, et al., 2007; Pollok, et al.,
2021). Impacts are most commonly reported relative to the UN
SDGs (Sustainable Development Goals) (United Nations, 2015b) or
GRI (Global Reporting Initiative) (Stiching Global Reporting
Initiative, 2021). Assessments are typically carried out around
deployed operations, generally neglecting processes residing in
low TRL or R&D lifecycle phases (McCord, et al., 2021), an issue
realised to a lesser but still present extent in LCA. Beyond the UN
and GRI approaches, Kühnen and Hahn (2017) identify the UNEP
(United Nations Environment Programme) and SETAC (Society of
Environmental Toxicology and Chemistry) S-LCA guidelines, SAI
(Social Accountability International) SA 8000, and ISO 26000 as
alternate methodological options. However, the focus on deployed
activities remains a common limitation (Zimmermann and
Schomäcker, 2017).

A small number of sector-specific SIA approaches have been
identified in previous literature (Newman and Styring, 2023),
primarily focusing on the mineral (Azapagic, 2004) and mining
(Mancini and Sala, 2018) industries. Despite this specialisation,
characterisation models analogous to those observed in LCA
remain elusive. Furthermore, in the case of CDU-oriented SIA,
there is no practitioner guidance around the quantitative handling of
impact reporting. McCord, et al., instead, propose practitioner-led
reference scale approaches when aligning CDU-based LCAs, TEAs
and SIAs (McCord, et al., 2021). While superficially aligning the
three strands, the SIA ‘scoring’ methods introduce a much greater

degree of subjectivity than their LCA and TEA counterparts. These
shortcomings are due to both a lack of available data and an
imperfect understanding of the macro societal systems through
which impacts propagate. Where environmental impact pathways
transcend national and cultural borders, social impact pathways are
dynamic, complex, and opaque. At this point, the field appears to
have reached an impasse with respect to assessment specificity.
Stakeholders desire more accurate and granular SIA results, with
practitioners contemporaneously lacking the methodologies
through which these must be generated.

UNEP and SETAC clearly define two typologies of impact
characterisation: the reference scale (formerly called Type I or RS
S-LCA) and impact pathway approaches (formerly Type II or IP
S-LCA). Each have their merits and limitations, reflecting
fundamentally different schools of thought and delivering a
significant methodological bifurcation. Reference scale approaches
aim to “assess social performance or risk”, whereas the impact
pathway approach assesses “consequential social impacts through
characterising the cause-and-effect chain” (UNEP, 2020). Reference
scales usually utilise a five-point scale against which practitioners
score the performance of evaluated alternatives. However, these
scales incorporate several sources of fuzziness and subjectivity.
Examples include the assignment of criteria for each scoring
level, the use of linear versus non-linear scales, and the
qualitative nature of performance ranking against (usually un-
quantified) statements. Furthermore, the approach generates very
coarse results due to the five-point non-continuous scale. In
contrast, the impact pathway approach is more analogous to
methods seen in LCA, allowing for more seamless integration of
the strands within holistic assessments. However, the previously
noted complexities associated with impact pathway modelling result
in broader adoption of the reference scale approach, a conclusion
mirrored in all major practitioner guidelines, including the latest
CDU-focused framework, the triple helix framework (McCord,
et al., 2021).

Reference scale-based tools, such as the Social Hotspot
Database (SHDB) (SHDB, 2022), have been developed to aid
practitioners in the conduction of SIAs. Indeed, the SHDB
facilitates national level assessments scopes such as those
targeted in this work. However, while valuable in many
applications, the adoption of reference scale approaches to
impact characterisation falls short of the methodological
counterparts seen in LCA and TEA; inherently facilitating the
introduction of practitioner subjectivity or bias. If the complete
and meaningful harmonisation of environmental, economic,
and social assessment strands is to be realised, an impact
pathway-based approach must be presented for use by
practitioner, transcending the SHDB’s offering.

Compounding this divergence in characterisation approach, the
SHDB is pay wall protected. This puts it in direct conflict with LCA
and TEA characterisation methods, provided free of charge in all
examined cases (CML 2002, ReCiPe, TRACI, etc.). If SIA is to be
adopted on an equivalent basis, freely accessible impact pathway
characterisation methods must be available to practioners who lack
the backing of well-funded organisations. Failure to provide this
may result in SIA’s stagnation within a second strata of assessments,
requiring database licences that exclude small businesses and
independent practioners.
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GreenDelta’s PSILCA database (GreenDelta, 2022) represents
what is deemed to be the closest analogue to the CMs targeted within
this work. However, despite being based on the UNEP and SETAC
guidelines, and examining a comprehensive 15,000 sectors
(excluding CDU) across a mixture of 69 qualitative and
quantitative risk-based indicators, it is designed to assess
deployed processes and value chains. Therefore, the most
pertinent gap in capability with respect to CDU related SIA, pre-
deployment assessments, remains un-tackled. Furthermore, the
indicator results are reported against a discrete qualitative scale
(based on quantitative background calculations). This consequently
fails to communicate social impact risks on a continuous basis,
instead utilising reference-scale-like scoring points (low risk,
medium risk, high risk, etc.). In addition to these factors, and
similarly to the SHDB, PSILCA is also a paid product, resulting
in the same accessibility issues as previously noted. Finally, the
examination on a sector specific basis adds little value to CDU
projects as it is not currently recognised as an independent industrial
sector within PSILCAs methodology (GreenDelta, 2022). Owing to
their surface level similarities, the PSILCA CMs will be compared to
those developed in this paper within the discussion.

A secondary methodological divergence within SIA thinking can
be observed in the handling and characterisation of positive social
impacts. UNEP and SETAC propose their classification under three
categories (UNEP, 2020): positive social performance going beyond
business as usual (Goedkoop, et al., 2018), positive social impact
through presence (Norris, 2006), and positive social impact through
product utility (Kuhnen and Hahn, 2019). These classifications
again focus on deployed technologies, requiring detailed
knowledge of the local communities. In contrast, a majority of
SIA methodologies focus only on negative impacts (UNEP, 2020).
While the argument can be made for the need to include positive
impacts, the decision should be handled on a case-specific basis;
their inclusion should enhance the insights delivered by a given
assessment, not dilute the resolution at which potential negative
impacts are examined.

The literature review’s findings show that no CDU or value
chain-oriented SIA guidelines further the development of impact
pathway approaches. This paper therefore proposes that more
emphasis should be placed on the impact pathway approach,
aligning its development phase with reference scales to deliver
more quantitative results. Additionally, impact characterisation
through mathematical methods offers a remedy to currently
observed subjectivity and repeatability issues.

3 Methodology

As identified through the literature review, impact pathway-
based SIA lags behind its reference scale counterpart, both in terms
of research effort and maturity. Consequently, herein we target the
generation of initial open-source impact pathway CMs. The
approaches developed primarily focus on applications concerning
comparative assessments of CDU value chains, tackling the specific
challenges identified through the literature review and building
upon McCord, et al.‘s triple helix framework. However, where
McCord, et al. deploy a “qualitative scoring methodology based
on quantitative and semi-quantitative data” (McCord, et al., 2021),

this approach targets purely quantitative assessment. The
methodology aims to highlight elevated social impact risks based
on deployment country. Generated results subsequently support the
efficient allocation of resources for the pre-deployment prevention
and mitigation of impacts through elevated due diligence and
monitoring by the operating organisation.

Assessment indicators, clustered within stakeholder categories,
are typically selected by the SIA practitioner from a broad pool, with
36 identified by Rafiaani, et al. (2019); this process draws on the
assessment’s goal and scope. Despite omitting impact pathway
approaches, the triple helix framework offers significant advances
in CDU SIA methodology in this respect. McCord, et al., building
upon Rafiaani, et al.‘s adaptation of UNEP and SETAC’s guidelines
to CDU technologies (Rafiaani, et al., 2019), streamline the
stakeholder categories considered within assessments. UNEP and
SETAC originally recommend a base set of five stakeholder
categories (UNEP, 2020);

1. Workers/employees
2. Local community
3. Society
4. Consumers
5. Value chain actors

These categories are subdivided into impact categories,
subcategories, and associated impact indicators. The triple helix
framework subsequently reduces this set to the consideration of only
workers, local communities, and consumers (McCord, et al., 2021),
citing the irrelevance of other categories to CDU projects.

Owing to the scope of this work, the reduced set of stakeholder
categories defined within the triple helix framework is adopted as a
basis (McCord, et al., 2021). However, the consumer category can
also be discarded when targeting comparative studies, providing an
assessment scope aligned with cradle-to-gate LCA’s; any products
manufactured by competing CDU value chains should be identical,
resulting in identical social impacts for consumers and reduced
insights. This leaves consideration of only the worker (W) and local
community (LC) stakeholder categories. Within these, seven
indicators are selected for this proof-of-concept exercise. These
reflect both a broad range of social issues, and typical difficulties
experienced in the field (primarily data availability and
reporting quality).

• Risk of Forced Labour (W)
• Risk of Child Labour (W)
• Occupational Health and Safety (W)
• Risk of Change in Access to Electricity (LC)
• Risk of Change in Access to Water (LC)
• Risk of Land Use Change (LC)
• Utilisation of Hazardous Materials (LC)

Due to the targeting of pre-deployment CM applicability, some
common indicators such a fair wages or job creation cannot be evaluated.
Without the specification of an operating location, their evaluation
would result in a degree of uncertainty that negates any benefit of
their assessment. Such gaps in impact coverage represent the first
limitation of the proposed methodology. However, this is necessary
in scenarios where the exact deployment region is unknown.
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To facilitate an impact pathway-based methodology, stimulating
and de-stimulating factors are identified for each indicator and
systematically aggregated, delivering overall risk scores that
highlight potential impact hotspots. The result is an approach
closely aligned with the more thoroughly developed LCA CMs.
Additionally, dependence on detailed process-specific data is
avoided, aiding with technology comparisons over the diverse
TRL range observed within CDU.

In the interest of transparency and reproducibility, only open-
source data is utilised in the developed CMs. However, SIA-focused
databases lag significantly behind their LCA counterparts, such as
Ecoinvent (Newman and Styring, 2023). Several characteristics were
targeted within the data source selection: coverage, currency,
reliability, and consistency. After consideration of multiple
options, including ad-hoc collection, the World Bank is selected
as the primary data source for CM development (also heavily utilised
within PSILCA’s methodology). With 189 participating countries
and 12,000 social development projects (The World Bank, 2023a),
coverage is broad and reliable. Furthermore, constituent national-
level data sets are updated regularly, with a majority reported
annually. Reliability is safeguarded through the use of
transparently audited data from partner organisations and
governments. Finally, consistency is achieved inherently through
the convergence of these prior factors. In some cases, secondary
sources must be used to supplement the World Bank data; however,
as discussed later, these often originate from partner organisations
or constituent data sets. Once national level data for the stimulating
and de-stimulating factors is collated, normalisation procedures are
applied, delivering scores between zero and one through which the
assessed CDU value chain alternatives’ risk levels can be directly
compared. This is a significant departure from the PSILCA
methodology which utilises conversion to reference scales
(discrete) in favour of normalisation (continuous).

Adhering to the red-flag approach, necessitated by the complexity
of impact pathways, only negative social impacts will be considered.
As previously identified, the evaluation and inclusion of positive
impacts is a divisive issue within SIA. The developed CMs aim to
highlight supply chain components with an elevated risk of negative
social impacts, stimulating greater due diligence and monitoring
efforts from the responsible organisation. Furthermore, positive
social impacts should not be compensatory, as seen in LCA and
TEA. That is, positive impacts on one indicator or stakeholder group
cannot be allowed to offset negative performance in another. From a
moral stance, no stakeholder should wield the power to benefit one
community at the detriment of another. Avoiding positive impact
reporting removes such complications while simultaneously achieving
the specified objectives.

Scoring directionality within SIA is also acknowledged by
McCord, et al. as an important methodological decision
(McCord, et al., 2021). That is, should negative social impacts be
reflected through a high or low score? Directionality should be
uniform across all indicators within an assessment, allowing for
easily interpreted parallel reporting. In this methodology, countries
with a high risk of negative social impacts are indicated by low
scores, perceivedly the most intuitive approach.

Note to readers: ESI containing all utilised data and intermediate
handing steps is available for simultaneous reference and the
support of replication studies.

4 Methods development

In this section, the developed SIA CMs are laid out. The
respective stimulating and de-stimulating factors, normalisation
procedures, and attained geographic coverage are detailed. In the
interest of conciseness, the complete datasets generated through
these methods are not fully detailed in this paper, instead focussing
on the G20 nations; however, the full results and utilised data sets for
the 239 examined countries are provided within the
Supplementary Material.

4.1 Risk of forced labour

The risk of forced labour can be summarised as “work that is
performed involuntarily and under the menace of any penalty. It
refers to situations in which persons are coerced to work through the
use of violence or intimidation, or by more subtle means such as
manipulated debt, retention of identity papers or threats of
denunciation to immigration authorities” (International Labour
Conference Protocol to Convention No. 29, 2014).

The proposed CM evaluates the stimulating factors of current
prevalence (per 1,000 population), and future vulnerability. This
delivers keener insights than the sole consideration of prevalence,
incorporating future exposure risk through the evaluation of
additional aggravating factors. This national prevalence and
vulnerability data is collected from a Walk Free Foundation report
(WFF) (Walk Free Foundation, 2018), a partner and contributor to
the World Bank database. Additional contributions were made by the
International Labour Organization (ILO) and the International
Organisation for Migration (IMO).

The estimated prevalence is evaluated using data collected by
WFF through the Gallup World Poll. Complete reporting is
observed for 167 of the World Bank’s 189 participating nations,
providing a high degree of completeness. Estimated values range
from 104.6 people in forced labour per 1,000 population (N. Korea)
to people in forced labour per 1,000 population (Japan), full datasets
are available in the ESI (Walk Free Foundation, 2018).

The prevalence values for each country (collected from the WFF
report)are normalised within the set on a max-zero basis. This approach
is selected to avoid assigning a score of one (indicating perfect
performance) to a country with an estimated prevalence greater than
zero. While this could conceivably cause the artificial grouping of
countries’ scores at the lower end of the scale, it is deemed essential
to anchor the perfect score at zero prevalence. This decision only changes
the highest normalised prevalence of forced labour (NPFL) score (for
Japan) by 0.288% (from one to 0.997). The lower end of the scale moves
dynamically with the highest (i.e., worst) national prevalence value. As a
result, a global reduction in forced labour prevalence makes attainment
of a positive score more challenging, incentivising continued
improvement.

Equation 1 – Calculation of normalised prevalence of forced
labour (NPFL). Where, PFLMax indicates the highest national
prevalence, and PFLi indicates prevalence in country i.

1 − PFLi

PFLMax
� NPFLi
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Equation 1 converts the full range of theoretical prevalence
values to scores between 0 and one while correcting for desired
directionality. The resulting upper and lower bounds for this
normalised prevalence of forced labour (NPFL) are 0 and
0.99727 for N. Korea and Japan, respectively.

The second stimulating factor within the CM considers
vulnerability to forced labour. This is a complex metric to quantify
as unlike prevalence it cannot be directlymeasured. Consequently, the
WFF’s method evaluates several constituent risk stimulators, utilising
procedures verified through an audit by Ernst and Young (Walk Free
Foundation, 2018).

The full methodology behindWFF’s quantification of vulnerability
can be found in the referenced report (Walk Free Foundation, 2018). In
summary, an initial group of 35 risk stimulators were checked for
collinearity, removing those with a significant correlation, defined as
those with variance inflation factors (VIF) greater than 10 and
tolerance below 1. 12 factors are removed in this process,
eliminating the compounding effects and reduced sensitivity
observed through the inclusion of multiple co-linear factors. The
remaining 23 stimulators are grouped into clustered ‘factors’
through principal component analysis (PCA). The result is five
overarching factors (listed below) that more approachably
characterise a population’s vulnerability to forced labour. An expert
working group, selected by the WFF, was then consulted to assign
weights to the five factors. This utilises the eigenvalues as weightings,
indicating the amount of variance explained by each particular factor
(Walk Free Foundation, 2018). Those possessing greater eigenvalues,

and therefore variance, explain a more significant proportion of the
overall model and, thus, command greater weights. This process
delivers the following factors and weights (detailed in brackets):

1. Governance Issues (5.76)
2. Lack of Basic Needs (3.422)
3. Inequality (2.233)
4. Disenfranchised Groups (2.092)
5. Effects of Conflict (1.938)

With the five constituent factors fully defined, weighted, and
evaluated for each of the 167 countries considered, the raw national
vulnerability scores can be calculated. This yields country-specific
eigenvalue weighted values (EWVi) through Equation 2.

Equation 2 – Calculation of the eigenvalue weighted value for
country i. Where, Fxi indicates the average value of factor x for
country i.

F1i × 5.76( ) + F2i × 3.422( ) + F3i × 2.233( ) + F4i × 2.092( ) + F5i × 1.938( )
0.01 × 5 × 5.76 × 3.422 × 2.233 × 2.092 × 1.938

� EWVi

This EWV represents an overall vulnerability score for each
country, incorporating the 23 identified stimulating factors.
However, this must be normalised, using Equation 3, to facilitate
further use in conjunction with the national prevalence scores. This
is defined as the Normalised Vulnerability to Forced Labour (NVFLi).

FIGURE 1
Flow diagram showing the classification of what constitutes child labour. Adapted from UNICEF and ILO (International Labour Organization and
United Nations Children’s Fund, 2021).
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Equation 3 – Calculation of the normalised vulnerability to
forced labour for country i. Where EWVMin and EWVMax are the
lowest and highest observed EVW across the assessed countries.

100 − 1 − 99 EWVi−EWVMin( )
EWVMax−EWVMin

( )
100

� NVFLi

Having now defined and calculated the normalised national
scores for prevalence and vulnerability, the overall indicator scores
can be obtained through a simple average of the two values
(Equation 4). This approach was adopted to assign equal
importance of current prevalence and vulnerability; although,
with time this weighting strategy can be revisited if supported by
the results obtained through application cases. The national scores
generated by Equation 4 provide a relative ranking of all considered
countries between values of zero and one. Result of this calculation
for the G20 countries gives the national risk profile detailed in
Figure 3.

Equation 4 – Calculation of final risk of forced labour indicator
score for country i.

0.5 NPFLi +NVFLi( ) � Risk ofForced Labour

4.2 Risk of child labour

As with the previous forced labour CM, prevalence and
vulnerability are identified as stimulating factors. In order to
clearly and consistently evaluate the prevalence of child labour,
the classification requirements laid out by the United Nations
Children’s Fund (UNICEF) and the ILO are adopted (shown by
Figure 1). This considers varied factors such as industry sectors,
hazard, age, and duration, providing a widely accepted framework.

With a clear definition achieved, the quantification of national
child labour prevalence is approached. However, data availability
proves a challenge due to lacking geographic resolution. Rather
than at the national level, data is presented in terms of the UN SDG
regions listed below. This clearly reduces the granularity attained.
However, the incorporation of vulnerability as a second
stimulating factor augments the indicator’s overall geographic
resolution.

• Sub-Saharan Africa
• Central and Southern Asia
• Eastern and South-Eastern Asia
• Northern Africa and Western Asia
• Latin America and the Caribbean
• Europe and North America

Examining the reported prevalence data, all identified child
labour between the ages of 5–17 is included. UNICEF
independently report the prevalence of both hazardous and non-
hazardous child labour as a percentage of the nation’s population.
For SIA CM development, both of these types are of significance.
Additionally, the reported values are mutually exclusive, permitting
their additive aggregation through Equation 5 without the risk of
double counting.

Equation 5 –Aggregation of child labour prevalence data for UN
SDG regions. Where, NCLi is the % of children in non-hazardous
labour in country i, HCLi is the % of children in hazardous labour in
country i, and OPCLi is the country’s overall prevalence of
child labour.

NCLi +HCLi � OPCLi

The generated overall child labour prevalence (OCLPi) values
are subsequently normalised using Equation 6. As seen with forced
labour prevalence, this occurs on a max zero basis, both reversing
directionality and ensuring a requirement of 0% child labour
prevalence for a perfect score of 1.

Equation 6 – Normalisation of overall child labour prevalence
(OPCL). Where, OPCLMax is the highest observed prevalence,
OPCLi is the overall prevalence in country i, and NCLPi is the
normalised prevalence of child labour for country i.

1 − OPCLi

OPCLMax
� NPCLi

With the normalised child labour prevalence (NCLPi)
determined for each UN SDG region, and thus their
constituent countries, vulnerability can be incorporated.
Vulnerability to child labour is not examined by the World
Bank directly, necessitating a secondary data source.
Consequently, the national vulnerability scores utilised within
the forced labour CM (extracted from a WFF report (Walk Free
Foundation, 2018)) are used as a proxy. Given a clear
commonality in stimulating factors between forced and child
labour (International Labour Organization and United Nations
Children’s Fund, 2021), this is deemed a reasonable assumption.
Incorporation of national level vulnerability as the second
stimulating factor allows for upward or downward adjustment
of the UN SDG region-oriented prevalence data, accounting for
intra-region risk variations. The overall effect of this strategy is
greatly improved geographic resolution. Using the previously
processed WFF vulnerability data (NVFLi), the final indicator
value can be determined using Equation 7, delivering the national
scoring profile for the G20 seen in Figure 4.

Equation 7 – Final indicator calculation for the risk of child
labour. Where, NPCLi is the normalised prevalence of child labour
in country i, and NVFLi is the normalised vulnerability to forced
labour in country i.

0.5 NPCLi +NVFLi( ) � Risk ofChild Labour

4.3 Risk of change in access to electricity

In adherence to the methodological approach laid out earlier,
literature was consulted to identify stimulating and de-
stimulating factors with respect to energy access and security.
Stavytskyy, et al. present the only identified list of factors with a
relevant scope, all of which are present within the World Bank
database (Stavytskyy, et al., 2021; The World Bank, 2023b).
This includes;
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• Renewable energy consumption (% of total final energy
consumption) (De-stimulating factor)

• Energy Imports, net (% of energy use) (Stimulating factor)
• Electric power consumption (kWh per capita) (De-
stimulating factor)

• Fossil fuel energy consumption (% of total) (Stimulating)

With the factors identified, their respective data sets are
extracted directly from the World Bank. However, issues around
data completeness are again encountered. Many countries show
patchy reporting with no single year containing all required data
across an acceptable number of countries. To circumvent this issue,
the most recently available data is utilised in each case, generating a
super-set (provided in the Supplementary Material). A hard limit on
data age is implemented, backdating no more than 10 years,
preventing the incorporation of significantly aged data. This
strategy results in complete data coverage for 142 countries, or
65% of those present in the database. Additional gaps cannot be
filled without imputation.

Before normalisation of each factor, skewness is examined (using
Equation 8) to identify any unintended implications of the temporally
diverse data aggregation strategy. Through this, the skewness of
electric power consumption data is revealed to be 4.74 (the only
factor with a skewness <1). When using standard normalisation
techniques, this significantly reduced the utility of collected data,
tightly grouping a majority of countries with a few distant outliers.
Furthermore, the raw energy consumption rate gives little insight to
the more relevant per captia availability. Electric power consumption
was therefore removed from further CM development.

Equation 8 – Method used for the calculation of data skewness.
Where n is the sample size, xi is the i

th value in the sample, �x is the
mean, and σ is the standard deviation.

skewness � n

n − 1( ) n − 2( )( ) × ∑n
i�1

xi − �x

σ
( )3

Renewable energy consumption (RECi) is normalised on a zero to
one basis (Equation 9) to deliver national scores reflecting their
renewable grid shares (NRECi), only awarding a perfect score to a
100% renewable grid mix. The upper bound observed within the data
set is the Democratic Republic of the Congo, exhibiting a 96.24%
renewable grid mix, a direct consequence of large hydroelectric and
biogas capacities (International Energy Agency, 2023).

Equation 9 – Normalisation of national renewable energy
consumption. Where, RECi is the renewable energy consumption
of country i (% of grid mix), and NRECi is the normalised renewable
energy consumption of country i.

RECi

100
� NRECi

Normalisation of net energy imports is a more complex task,
ultimately being handled by utility function (Equation 10). Many
exporting countries exhibit highly negative values within this risk
stimulating factor (e.g., Norway). These large-scale exporters
introduce significant skew. Additionally, the export capacity of a
country does not affect its own population’s access to electricity,

rendering it is consideration moot. Consequently, any countries
exhibiting negative percentage import values (NEIi) are assigned a
value of zero, attaining the highest possible normalised value
(NNEIi = 1), signalling ideal performance. Conversely, a value of
100% import will receive a normalised score of zero, reflecting total
dependence on non-domestic sources.

Equation 10 – Normalisation of net energy import (% of
domestic use). Where, NNEIi is the normalised net energy
import for country i, and NEIi is the net energy import of
country i.

NNEIi �
NEIi
100

, for 0<NEIi < 100

1, forNEIi ≥ 100

⎧⎪⎨⎪⎩
The next stimulating factor identified is fossil fuel dependence

(FERi). The simplest of the normalisation cases, it is tackled on a
max zero basis (Equation 11). Normalised scores fossil energy
reliance (NFERi) therefore delivers low scores for nations with
high reliance, with high scores awarded for low reliance. This
rationale, derived in conjunction with the work by Stavytskyy,
et al. (Stavytskyy, et al., 2021), reflects the uncertain energy
futures of fossil reliant nations, owing to increasing fossil energy
scarcity and tariffs.

Equation 11 – Calculation of normalised fossil energy reliance of
country I (NFERi). Where FERi is the fossil energy reliance of
country i.

FERi

100
� NFERi

With the three contributing factors’ scores normalised for all
142 available countries, aggregation into a final score is approached.
Weightings are used, derived through practitioner judgement,
delivering Equation 12. Normalised fossil energy reliance (NFER)
is assigned the highest weighting (0.5), reflecting its notable
influence on energy security in a world where fossil-based
generation is being phased out. The resulting national scoring
profile for the G20 is shown in Figure 5.

Equation 12 – Final indicator calculation for risk of change in
access to electricity.

0.25 NRECi +NNEIi( ) + 0.5NFERi

� Risk ofChange in Access to Electricity

4.4 Risk of change in access to water

Access to water in the context of this work does not solely consider
drinking water, instead examining access more broadly in a divergence
from existing methodologies including PSILCA. This constitutes a
challenge when identifying stimulating and de-stimulating factors,
with a majority of literature focussing on rural access to drinking
water (Mahama, et al., 2014; Ojuka and Tumwebaze, 2022) (Abubakar,
2019). Very little has been published concerning national-level water
access. Consequently, an analogous approach is taken to that used for
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the risk of change in access to electricity. Selected factors, listed below,
are chosen based on their alignment with the UN SDGs (goal 6) and
their focus on use as a function of national availability. Data is supplied
to the World Bank by partner FAO AQUASTAT (Food and
Agriculture Organization of the United States, 2023), and is
extracted directly from the database.

• Freshwater withdrawal as % of total domestic renewable water
resources (Stimulating)

• Water Stress (%) (Stimulating)

Minor issues around skew were identified within the two factors;
however, they are eliminated through utility function comparable to
that used for NNEIi. Therefore, any nation withdrawing more than
100% of its renewable water reserves is automatically considered to
be at a maximum value of 100% (normalised value of zero to reflect
detrimental national performance in the factor); the dataset’s skew is
consequently reduced from an unacceptably high value of 9.71 to a
more acceptable 1.86 (calculated using Equation 8). This strategy
quantifiably scores normalised renewable freshwater withdrawal
(NRFRi) through Equation 13.

Equation 13 - Normalisation of freshwater withdrawals as % of
total domestic renewable water resources. Where, NRFWi is the
normalised renewable freshwater withdrawals for country i, and
RFWi is the renewable freshwater withdrawal of country i.

NRFWi � 1 − RFWi

100
, for 0%<RFWi < 100%

0, forRFWi ≥ 100%

⎧⎪⎨⎪⎩
The same approach is taken to calculation of normalised

national water stress (NNWSi), capping reporting to a maximum
raw national water stress value (NWSi) of 100%, reducing the skew
from 9.68 to an acceptable 1.45. Having resolved the problematic
skewness and bounds, normalisation between limits of 0–100 is
carried out using Equation 14.

Equation 14 - Normalisation of water stress. Where, NNWSi is
the normalised national water stress for country i, and NWSi is the
water stress of country i.

NNWSi � 1 − NWSi
100

, for 0<NWSi < 100

0, forNWSi ≥ 100

⎧⎪⎨⎪⎩
With these normalised values for the two stimulating factors

generated over the 177 considered countries, their aggregation is
approached through an average using equal weights (Equation 15).
This gives the final national indicator scores for the risk of change in
access to water.

Equation 15 – Final indicator score calculation for the risk of
change in access to water.

0.5 NRFWi +NNWSi( ) � Risk ofChange in Access toWater

It should be noted that the small number of countries data points
that are artificially capped represent only 6.7% and 9.6% of the
177 considered countries for NRFWi and NNWSi respectively.

4.5 Risk of land use change

The potential risk of land use change was approached through
the consideration of current land use proportions and the associated
classifications. As per the overarching methodology, World Bank
data is utilised directly to populate the inventory. National data was
extracted directly from the World Bank database to quantify the
percentage of land mass occupied by;

• Agriculture
• Forest
• Protected land

These areas are determined to be of both the highest societal
value and risk of repurposing, giving rise to the greatest potential for
negative impact. It is considered that these areas are not necessarily
mutually exclusive, instead harbouring potential overlaps, as
indicated by Figure 2.

The inclusion of protected areas introduces the risk of double
counting, potentially also being classified as areas of forest, or in
current agricultural use. Examples of this can be seen within the
U.K.‘s New Forest National Park under the ‘Farming in Protected
Landscapes’ grant programme (Department for Environment, Food
& Rural Affairs, 2023), or the Wood Buffalo Protected Forest in
Canada (World Resources Institute, 2022). However, due to a lack of
more granular and openly available data, these categories must be
utilised in the most effective manner possible. In an idealised
scenario, or future revisions, factors such as the availability of
brownfield sites would also be incorporated into the CM.

When considering the sum of the three land classifications, the
double counting becomes apparent, with four countries’ values
exceeding 100% of their land area: Micronesia (123%), Marshall
Islands (119%), American Samoa (110%), and Sao Tome and
Principe (105%). A further seven exhibit precisely 100%. A

FIGURE 2
Visualisation of the overlap of land area World Bank data within
the categories of agricultural land, forest, and protected areas.
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solution to the double counting issue is attained through the use of
the larger value of either:

• Agriculture + Forest
• Protected areas

This method (expressed via Equation 16) is deemed acceptable
in the absence of more robust and openly available data, delivering a
lower bound for the nations denied land fraction (DLFi).

Equation 16 – Calculation of denied land fraction (%) of country
i (ALFi).

DLFi � max forest area %( ) + agricultural area %( )( ) ∨ protected area %( )( )( )
With this lower bound of the denied land fraction quantified

(DLFi), the upper bound of each country’s available land fraction
(ALFi) can be determined via Equation 17

Equation 17 –Determination of available land fraction of nation
i (ALFi) via the previously calculated denied land fraction of nation
i (DLFi)

1 −DLFi � ALFi

To account for disparities in population density, Equation 18 is
employed. The result is an estimated upper bound for the available
land per capita (ALPCi) suitable for responsible development,
offering a fair and comparable ranking metric.

Equation 18 – Calculation of available land area per capita for
country i (ALCi). Where, ALFi is the assigned land fraction (%) of
country i, NLAi is the total national land area of country i, and pi is
the population of country i.

ALFi × NLAi

Pi
� ALPCi

Having estimated the available land area per capita for the
204 countries with suitable World Bank data coverage, max zero
normalisation is applied (Equation 19), revealing the normalised
available land area per capita (NALPCi). However, Greenland
presents an outlier, returning an available land area per capita
18.36 times that of the second-highest score (Namibia); it is
consequential exclusion reduces the dataset’s skew from 14.07 to
a more acceptable but still highly significant 5.06 (using
Equation 8).

Equation 19 – Calculation of the normalised available land area
per capita for country i (NALPCi). Where, ALPCi is the available
land area per capita, and ALPCMax is the largest national available
land area per capita.

ALPCi

ALPCMax
� NALPCi

While achieving normalised national scores, the observed skew
of 5.06 is still significant, with a majority of values residing at the
lower end of the range. To combat this, a utility curve is employed.
After consideration of multiple exponents, 0.25 was ultimately
selected (Equation 20). This is owing to the balance observed

between additional resolution achieved at the lower values, while
maintaining a slight skew to reflect the original data character. It is
recognised that the selection of the exponent is, to some extent,
subjective. However, when communicated transparently, this is
deemed acceptable in the interest of heightened utility to
practitioners and assessments. The results of the CM for the
G20 countries can be seen in Figure 7.

Equation 20 – Calculation of the risk of land use change
indicator score. Where (NALCi) is the normalised available land
area per capita for country i

NALC 0.25
i � Risk ofLandUseChange

4.6 Occupational safety and health

Occupational safety and health (OSH) represents a common
impact category within SIA. Typically, this is assessed using primary
data from the process of interest. However, in the pre-deployment
setting of this research, no primary data will be available. Additional
complexity is encountered in the lack of OSH data available through
the World Bank. Several alternative data sources were considered,
with many offering poor coverage (e.g., only 96 countries from
ILOSTAT) (World Health Organisation, 2016; International Labour
Organization, 2023). Suitable alternative data was identified,
through a World Bank partner; ILO’s summary of work-related
mortality (International Labour Organization, 2003).

This ILO data exhibits excellent coverage with 216 countries
fully defined. However, its age is less than optimal, hailing from
2003.With the search for more recent literature returning nothing of
note, progression based on legacy data must be accepted. This
requires the assumption that the proportion of workplace injuries
and illnesses have remained largely proportional across the
examined countries and temporal shift, constituting a current
limitation and opportunity for future development.

Through this ILO data, the following stimulating factors are
extracted at the national level (International Labour Organization,
2003; International Labour Organization, 2003);

• Accidents causing 4 days of absence (Stimulating)
• Work-related disease (Stimulating)
• Work-related mortality (Stimulating)

Data manipulation is required to allow for fair comparison
between countries for each factor. To this end, accidents causing
4 days of absence, work-related disease, and work-related mortality
are converted to occurrence rates by dividing by the national
economically active population as provided within ILO’s data
(per 10,000 workers). These occurrence rates are then normalised
(max zero) and corrected for directionality using Equation 21) and
(22), and Equation 23.

Equation 21 – Calculation of normalised occurance rate of
accident related absence per capita (NORAi). Where, ORAi is the
occurance rate of accident related absence for country i, and
ORAMax is the maximum value observed for occurance rate of
accident realted absence across all countries.
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1 − ORAi

ORAMax
� NORAi

Equation 22 – Calculation of normalised occurance rate of work
related disease per capita (NORDi). Where, ORDi is the occurance
rate of work related disease for country i, and ORDMax is the
maximum value observed for occurance rate of non-fatal accidents
across all countries.

1 − ORDi

ORDMax
� NORDi

Equation 23 – Calculation of normalised occurance rate of
fatal accidents per capita (NORFi). Where, ORFi is the occurance
rate of fatal accidents for country i, and ORFMax is the maximum
value observed for occurance rate of fatal accidents across
all countries.

1 − ORFi

ORFMax
� NORFi

This delivers normalised national scores between 0–1 (higher
scores being preferable) for each stimulating factor. For the
characterisation of each country’s OSH performance, the three
factors are assigned equal weightings, resulting in Equation 24.
The final national scores for the G20 countries can be seen in
Figure 8.

Equation 24 – Aggregation of the stimulating factors
contributing to OSH indicator scoring.

1
3

NORAi +NORDi +NORFi( ) � Occupational Safety andHealth Indicator Score

4.7 Risk from utilisation of
hazardous materials

Characterisation of risk from the use of hazardous materials is
challenging as a consequence of its heavier dependence on the
industrial sector than the country of deployment. Aggravating
this, data is severely lacking. It is proposed that the risk from the
use of hazardous material should be represented through its impacts
rather than raw prevalence in a supply chain. Where these materials
are handled well, under properly enforced and effective regulations
that result in no negative impact, the value chain should not
be penalised.

An idealised characterisation approach would include a
breakdown of fatal and non-fatal incidents caused by the
industrial use of hazardous materials within each sector and
country. However, this scenario is far from being realised.
Furthermore, the World Bank does not provide any datasets
suitable for use as stimulating or de-stimulating factors. In the
absence of such data, an alternate approach is required. The ILO
provides data on the number of work-related deaths from
exposure to hazardous materials (WDHS) in each nation’s
economically active population (EAP) (International Labour
Organization, 2003). Equation 25 delivers a national-level value

for work-related deaths from exposure to hazardous materials per
10,000 workers.

Equation 25 – Calculation of the risk of death from exposure to
hazardous substances for country i (RDHSi), Where, WDHSi is the
workplace deaths from exposure to hazardous substances for
country i, and EAPi is the economically active population of
country i.

WDHSi
EAPi

× 10, 000 � RDHSi

With these risk values determined, normalisation can be carried
out (Equation 26) relative to the set’s maximum value. Directionality
is also reversed to deliver a higher score for lower risk. The resulting
national scores for the G20 (excluding the African and European
Unions) can be seen in Figure 9 (full list of national scores available
in ESI).

Equation 26 – Calculation of the risk from the utilisation of
hazardousmaterials in country i (RUHMi).Where, RDHSi is the risk
of death from exposure to hazardous substances for country i, and
RDHSMax is the highest observed risk of death from exposure to
hazardous substances.

1 − RDHSi
RDHSMax

� RUHMi

5 Results

Overall, the seven indicators examined within this study show
that it is possible to derive impact pathway-based SIA CMs
analogous to those observed in LCA. However, data reporting
and, therefore, availability is easily identified as the limiting
factor. The results of the CMs developed can be seen in Figures
3–9; for ease of interpretation, only the G20 countries are shown
(excluding the African and European Unions), and the full data set,
including all 239 examined countries, and the underpinning
literature data, is available in the electronic Supplementary
Material (ESI).

The developed SIA CMs exceeded initial ambitions concerning
coverage. However, this coverage was, in places, achieved through slight
methodological compromise (e.g., risk of land use change and risk from
utilisation of hazardous materials). Good geographical coverage is
essential to the development of SIA CMs; a perfectly defined impact
pathwaymodel is of no practical use if it relies on unavailable input data.
In total, 239 countries are listed by the World Bank data sets (The
World Bank, 2023c). Of these, 129 countries are fully defined (~54%),
with a further 32 (~13%) missing only one single data point.
Completeness of coverage is detailed in Table 1, Figure 10.

These calculations reveal that most indicator scoring profiles
(four of seven) exhibit a mean value of 0.5 ± 0.1, the midpoint of the
normalisation scale. These are: the risk of child labour, risk of change
in access to electricity, occupational safety and health, and utilisation
of hazardous materials.

Further examination shows that of these four indicators,
occupational safety and health, and utilisation of hazardous
materials exhibit significant skew (−1.3934 and −1.8647,
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respectively). In both cases, this can be attributed to very low scores
for African nations. While a statistically significant skew, this is not
considered a methodological shortcoming. Instead, it reveals
markedly poor national performance relative to the global

averages. Compopunding this, a correlation between these
indicators is expected. When these final indicator scores are
paired for each country, a correlation of 0.9229 is observed (ref.
Table 3), verifying the previous assumption.

FIGURE 3
Forced labour indicator results.

FIGURE 4
Child labour indicator results.
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In contrast, three indicators show mean scores with significant
deviation from the midpoint: risk of forced labour (0.7408), risk of
change in access to water (0.7699), and risk of land use change (0.3444).
Of these, only the risk of forced labour has an insignificant skew,
indicating generally high scores for most nations. This is attributed to
two factors: relatively low average national prevalence, and significantly
elevated national prevalence in the DPRK (resulting in a slightly outlying
lower bound for normalisation). The other two cases of deviated means

(risk of change in access to water and risk of land use change) can be
explained by regional concentrations of risk and security respectively,
producing sets of geographically related outlying nations. In the case of
risk of change in access towater, this is attributed to elevatedwater supply
risk in the Middle East, confirmed by the CM results in Figure 6 and the
ESI. The deviatedmean value for land use change, delivering typically low
national scores, is attributed to very low risk in countries with sparse
populations (e.g., Greenland, Iceland, and Australia).

FIGURE 5
Access to electricity indicator results.

FIGURE 6
Access to water indicator results.
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Collinearity of national indicator rankings is characterised within
Table 3, allowing for the identification of potentially related social
impacts. Where high collinearity is identified, the utility of assessing
both indicators may be reduced, helping practitioners and stakeholders
to streamline an assessment’s goal and scope. Several indicator pairs

exhibit a strong correlation: risk of forced labour and risk of child labour
(0.7259), risk of child labour and OSH (0.7609), and OSH and
utilisation of hazardous materials (0.9229). While an interesting
insight into inter-indicator causal relationships, this alone should not
independently drive the omission of an indicator if it is highly relevant

FIGURE 7
Land use change indicator results.

FIGURE 8
Occupational health and safety indicator results.
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to the scope of the SIA.However, itmay aid the selection of indicators in
time-constrained or screening assessments.

Examining the national scores across the CMs developed, some
intriguing findings are revealed. For example, the CM for risk of access
to electricity prescribes the highest overall score to the Democratic

People’s Republic of the Congo (0.9674). Since 2012, the country has
had a relatively stable, forward-looking, 99% renewable electricity mix,
with 96% of this being hydroelectric (Inga I and Inga II dams) (U.S.
Department of Commerce, 2022; International Renewable Energy
Agency, 2023), supporting the result.

FIGURE 9
Utilisation of hazardous material indicator results.

FIGURE 10
SIA characterisation model coverage map.
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When examining OSH, many of the highest-scoring nations are
micronations, such as Nauru, Tokelau and Turks and Caicos (scores
detailed within the Supplementary Material). These high scores are
explained by their import of many goods produced through hazardous
industries, themselves lacking the resources or demand to support
domestic operations. However, the scope of this assessment focuses

on value chains. Consequently, any assessment of goods derived through
hazardous industry would include the producing country, not simply the
country in which end-use resides. For this reason, the highly positive
scores for micronations are deemed accurate, however, do not impact
assessment validity.

6 Discussion

This work represents a first step towards value chain-oriented
impact pathway SIA CMs, delivering a novel development in the
pursuit of harmonised holistic sustainability assessment.
Previously, reference scale approaches have dominated within
parallel lifecycle, techno-economic and social sustainability
assessments (McCord, et al., 2021). This bifurcation in impact
characterisation methods has been identified in previous literature
as a barrier to fully integrated studies (Newman and Styring, 2023).
Through the this set of initial impact pathway SIA CMs, the
difficulties surrounding the integration of SIAs to holistic
assessments are rectified, most notably the subjectivity and
reliance on practitioner judgment observed within previous
reference scale approaches.

TABLE 1 Model coverage based on the number of indicators fully
characterised per nation.

Number of indicators fully defined Country count

7 129

6 32

5 17

4 33

3 1

2 25

1 2

TOTAL 239

TABLE 2 Mean and skewness values for the derived SIA indicator CM data sets.

SIA indicator Mean national score Skew Standard deviation

Risk of Forced Labour 0.7408 −0.8748 0.1387

Risk of Child Labour 0.5561 −0.4756 0.2551

Risk of Change in Access to Electricity 0.4877 −0.1173 0.2292

Risk of Change in Access to Water 0.7699 −1.5603 0.3036

Risk of Land Use Change 0.3444 1.3387 0.1676

Occupational Safety and Health (OSH) 0.5780 −1.3934 0.1844

Utilisation of Hazardous Materials 0.5999 −1.8647 0.2127

TABLE 3 Collinearity between national indicator scores. These values only include the 129 countries for which all seven indicators are fully defined. Green
denotes high collinearity, with red indicating low collinearity.

Risk of Forced Labour 1

Risk of Child Labour 0.7259 1

Risk of Change in
Access to Electricity

-0.3785 -0.4932 1

Risk of Change in
Access to Water

0.1965 0.0528 0.2360 1

Risk of Land Use
Change

0.0072 0.0232 0.1482 -0.0993 1

Occupational Safety and
Health (OSH)

0.4225 0.7609 -0.5255 -0.3091 -0.0120 1

Utilisation of Hazardous
Materials

0.2185 0.5662 -0.3944 -0.2945 -0.0626 0.9229 1

Risk of
Forced
Labour

Risk of Child
Labour

Risk of Change in
Access to Electricity

Risk of Change in
Access to Water

Risk of Land
Use Change

Occupational Safety and
Health (OSH)

Utilisation of
Hazardous
Materials
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Methodologically, the seven selected indicators follow similar
approaches, each utilising open literature to examine appropriate
stimulating and de-stimulating factors. They are then aggregated
using specified formulae. These are derived to both effectively utilise
the collected data, and to normalise the national scores. However, in
the cases of risk of change in access to electricity and risk of change
in access to water, significant skew (up to a magnitude of 14.07) can
be seen in the data sets of the stimulating and de-stimulating factors.
Causation can be traced to the presence of extreme outlier countries.
These are systematically removed by the specification of artificial
normalisation boundaries. Through this, outlier scores are assigned
a normalised value of either one or zero, depending on the direction
in which they exceed the boundaries. Failure to remedy such
extreme skews would lead to either a dampened or amplified
contribution of the factor to the overall aggregated indicator
scores. Positive skews lead to dominant factor behaviour, whereas
negative skews deliver recessive behaviour. Through the use of the
mentioned artificial normalisation boundaries, all indicators exhibit
final skews of < |2| (Table 2). While a magnitude of two is highly
significant, the aim is not to remove all skew; such data character is
often representative of real-life performance differentials.
Consequently, a balance must be struck to deliver meaningful
national indicator score profiles while still representing real
performance data (including a degree of skewness).

Examination of collinearity between indicators (Table 3) shows some
strong links; for example, a correlation coefficient of 0.9229 for OSH and
utilisation of hazardousmaterials.While these are not unexpected, it does
raise interesting questions around the selection of indicators. Should
strongly colinear indicators be assessedwithin the same study, or can their
correlations be used to evaluate factors vicariously?Ultimately, this should
depend on the goal and scopes of specific CM applications.

Several objectives, or requirements, of the CMs were detailed in
the introduction. These were specified to ensure relevance to the
development of novel CDU value chains and included; applicability
to a wide range of TRLs and technology types, assessment of pre-
deployment scenarios, reliance on open-source data, and a national
level geographic resolution. Each of these is discussed, determining
the degree of attainment realised.

The development of CDU oriented value chains, an unavoidable
challenge if such processes are to be commercialised at meaningful
scale, must often occur in the absence of primary or deployed data.
By adopting a red-flag approach, and removing all reliance on
primary process data, the CM procedures are successfully aligned
with the evaluation of CDU projects. Simultaneously, this avoidance
of primary data delivers the desired applicability to the broad TRL
range observed in CDU technologies. Consequently, a ‘level playing
field’ is attained, upon which overly cautious or optimistic low TRL
CDU processes do not receive an undue data-induced penalty or
advantage. Such comparative assessments of CDU projects was
previously identified in literature as lacking (McCord, et al., 2018;
McCord, et al., 2021), directly highlighting the utility and value
addition of the developed CMs.

The requirement to use methodologically prescribed, and open
source, databases (primarily the World Bank) delivers greater
assessment transparency to all stakeholders. If all assessments
were to utilise the same impact pathway reporting methods and
metrics, issues around comparability (as mentioned by
Zimmermann and Schomäcker (2017) in the context of CDU

TEA) would be significantly reduced. The World Bank is also
utilised as a primary data source within the PSILCA
v.3 methodology (Maister, et al., 2022), aligning this work’s
approach to that of methodologies examining deployed systems.
Furthermore, the use of the World Bank database facilitates the
incorporation of temporal updates, allowing the CMs to reflect
ongoing progress or regression at the national level. In effect, the
ranking order of countries against a given indicator becomes
dynamic, mirroring reality through the incorporated range of
real-world stimulating and de-stimulating factors.

Having identified early in the paper that the pre-deployment
state of many CDU projects necessitates impact risk characterisation
on a national level, data is extracted from the World Bank and
applied through the CMs on this basis. Examination of Table 1
shows that 129 countries, a majority of those listed by the World
Bank (53%), are fully defined across all seven indicators. Many
more (32 countries, or 29% of those not fully defined) require
remedial action over only a single data point. In total, only 12% of
nations realise coverage in less than half of the indicators.
Additionally, most countries exhibiting data gaps are, in terms
of land area, very small, or lack unanimous international
recognition (e.g., Taiwan). It is proposed that imputation be
used to remedy these issues where necessary, manually filling
the identified data gaps. However, this practice requires care in
order to select meaningful proxy values. Implemented procedures
should involve the use of data from an analogous nation, with
fitness being based on both the country’s GDP per capita and
geographic proximity. A more simplistic approach, such as the use
of a neighbouring country’s data, can lead to inaccuracies stemming
from factors such as incongruent socioeconomic profiles or the
State’s public spending capacity (e.g., PDRK and S. Korea). In
addition, where this is carried out, resulting studies should
acknowledge the use of proxy data and transparently
communicate the nature of any remedial action taken.

The most notable data coverage issues occur where performance
metrics are evaluated as an average for large geographic areas,
hampering granularity. National-level data is far more valuable to an
assessment practitioner than continental. The only encountered
example of continent-based reporting can be seen in UNICEF’s
child labour prevalence figures; the report also omits Oceania
(International Labour Organization and United Nations Children’s
Fund, 2021). In this specific case, the strong correlation between
causal factors of both forced and child labour permitted the
augmentation of scores using the WFF’s vulnerability score. This
effectively tunes the national performances within each UN SDG
region, delivering a more representative and granular indicator
score. Despite the positive impacts of this strategy, ideally, it will be
superseded in the future by more detailed child labour specific data.

Through these incorporated attributes the methods developed are
seen to be highly applicable in the context of CDUvalue chains, catering
to all of the identified nuances and difficulties. It should be recognised
that these CMs are less granular than LCA CMs, and potentially the
PSILCA database; however, this is currently unavoidable in the
evaluated context (extensive TRL range and pre-deployment). It is
proposed that once CDU as a field reaches maturity and widespread
deployment, more generically applicable SIA approaches can be taken.
However, the application of impact pathway-based methods should be
proliferated in favour of reference scales.
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As demonstrated, impact pathway assessments offer significantly
enhanced repeatability when compared to their reference scale
counterparts, circumventing the utilisation of practitioner judgement.
Using relevant quantitative data and clearly specified calculation
procedures, the delivered CMs are highly comparable to those of
LCA and TEA, with the only major deviation being the previously
noted geographic granularity. Consequently, any practitioner,
irrespective of experience or background, should derive identical
indicator results for the same system and assessment boundary. This
is one of the cornerstone values of LCA and TEA CMs and should be
adopted more comprehensively within SIA. In contrast, the reference
scale approach’s reliance on the practitioner’s placement of alternatives
on statement or criteria-based incremental scales, invites subjectivity and
bias while simultaneously delivering less accountability or justification.

Such benefits to CDU oriented assessments are, however, achieved
at the expense of other aspects. These include but are not limited to local
reporting completeness and practices, quantifying the effectiveness of
remedial actions, and perturbations in geopolitical stability. To fully
understand the net scientific value addition delivered by the proposed
CMs, these factors must be explored, and their implications clearly
communicated.

The utility of, and confidence in, the generated indicator results
would benefit significantly from the inclusion of reporting quality
metrics. It is a reasonable assumption that less industrially
developed nations will have less reliable reporting practices
around many indicators, for example, the utilisation of hazardous
materials. Quantification of reporting completeness is currently
absent from the utilised literature; however, it should be
incorporated as a measure of uncertainty if or when it is available.

Some of the assessed indicators also lack valuable stimulating and
de-stimulating factors due to their absence from open-source data. Key
examples include the percentage of the population with access to reliable
water and electricity. While such information is partially available,
covering specific countries within isolated assessments, a consistent
calculation method and broad coverage remain elusive. Aggregation
of data from independent assessments would result in an unreliable and
incomparable inventory, even in cases where full geographical coverage
can be achieved. If a levelized quantification procedure and results are
made available for these factors in literature, their integration would
significantly augment the insights generated through the CMs.

Despite the CM’s delivery of quantified indicator results, this does
not in itself help organisations to mitigate the risk of negative social
impact hotspots. As a red-flag risk-based assessment, this is expected.
Direct resolution strategies can realistically only be identified in
assessments of deployed activities. While this represents a limit of the
study, it is one that will impact all pre-deployment assessment
methodologies equally. Instead, it is suggested that maximum utility
is extracted from the CMs by using it to focusmonitoring andmitigation
efforts during the deployment phase on areas identified as high risk. This
will allow the operating organisation to plan and optimise CDU value
chains around these high-risk areas, hopefully reducing the final
realised impacts.

Geopolitical stability, or lack thereof, is another growing source of
inaccuracy within SIA. All organisations, including those targeting the
deployment of CDU technologies, are facing more frequent and severe
geopolitical events (The Economist Imapct, 2022). Such incidents can
significantly elevate the risks of negative social impact. While not
typically a consequence of the operating organisations actions, the

accuracy of results is clearly impacted. Where this issue is observed,
it is expected that the organisation would already be suspending
deployment, or at the very least exercising additional due diligence.
In light of this fact, and the case specific nature of such issues, they are
not targeted for resolution.

As noted in the literature review, there are several philosophical
commonalities between this work and the PSILCA database approaches.
The similarities and differences must therefore be assessed from a
methodological stance by consulting the PSILCA database’s
documentation (GreenDelta, 2022); a quantified results-based
comparison would require conduction of an applied case study and
access to the paywall protected database. To this end, the seven
developed indicator calculation procedures have been compared to
their PSILCA counterparts. Initially, it is noticed that several
indicators do not have a PSILCA equivalent and therefore cannot be
compared: access to electricity, risk of land use change, and utilisation of
hazardous material. Additionally, within PSILCA, reporting is not
carried out on a comparable numerical basis. Instead, the indicators
have their own quantified scoring approach which is then transposed to
a risk-based reference scale (e.g., no risk, very low risk, low risk, etc.).
Through this, the methodologies presented in this paper offer more
easily interpreted results and, overall, a greater degree of granularity
through the avoidance of reference scales.

Beyond these cases, subtle but notable divergences in methods can
be observed. The most notable case is seen in the child labour indicator.
Where the approach developed in this work examines both prevalence
and future vulnerability, the PSILCA database focuses on purely
prevalence; inclusion of future vulnerability represents a significant
additional insight. Furthermore, the threshold for what constitutes
child labour is lower within PSILCA’s offering, including anything
above 1 hour of economic activity per week as child labour. In
contrast, the proposed methodology uses the UNICEF definition (see
Figure 1) with more nuanced categorisation considering aspects such as
hazard level.

Forced labour is considered on a broader basis within PSILCA
then this paper’s methodology, incorporating debt bondage, forced
marriage, and child labour within the impact characterisation.While
this expands coverage, there is discussion to be had around whether
these impact mechanisms should fall under the umbrella of forced
labour, or if they deserve consideration within their own indicator.
At their cores, the two methods are procedurally very similar, both
utilising the Global Slavery Index as an initial data source.

Access to water is approached from opposing classification
ideologies. Where PSILCA evaluates access to drinking water, the
methodology developed in this work looks at the more general
availability of water as a resource. The PSILCA approach examines
the local proximity of potable water sources to domestic dwellings, while
generating high resolution insights, the approach conflicts with the lack
of geographic specificity often surrounding CDU projects.

Finally, the occupational safety and health indicator (referred to as
health and safety within PSILCA) is handled very similarly within the
two methodologies. The primary differentiator is aggregation. Within
this paper the non-fatal and fatal accidents are normalised, and the two
values averaged to deliver a single indicator value. In contrast, PSILCA
reports the two scores independently. While granularity is improved
through PSILCA’s approach, this brings with it difficulties in balancing
trade-offs between the two values. Utilisation of the same data sets
ensures highly comparable results between the two methods.
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Future work in the area should include the identification of a
quantified indicator score threshold, below which a clear red flag is
raised, indicating an elevated duty to due diligence. This would allow for
clear and consistent communication of results to non-practitioners.
Furthermore, such a standardised approach would remove the
dependency of hotpot identification on less repeatable practitioner
judgment. Remedial approaches may adopt a relative scale, flagging
results below an nth percentile of national scores. Alternatively, an
absolute threshold may be specified (the more likely solution), removing
the potential for misleading results within indicators exhibiting
significant data skewness.

Sensitivity analysis around the weighting of each CM’s
stimulating and restimulating factors would also add significant
value. Furthering understanding around the factors relationships
and influence on national rankings. Such work may inform a future
revision of weightings.

A final obvious avenue for development is the development of
CMs for additional indicators. As an initial proof of concept, this
work only tackles a sub-set of UNEP and SETAC’s noted impact
sub-categories. To achieve broader applicability to a diverse
range of goals and scopes, the current set must be expanded
relatively significantly. Once completed, a full foundation will
have been constructed for future impact pathway-based
screening SIAs.

7 Conclusion

In conclusion, this proof-of-concept exercise has successfully
demonstrated the utility of impact pathway SIA CMs in the context
of CDU value chain development, while also realising applicability
to more general use cases. The nuances of application scenarios,
usually including integration with LCA and TEA, significantly
reduce the effectiveness of reference scale-based social assessments.

Deployment of the developed methodology can repeatably and
transparently assess international value chains, highlighting likely
impact hotspots. The result is more efficient resource use concerning
impact-related due diligence. Significant value can be seen within the
setting of industrial strategic decision-making, expanding the
understating of social risk, and accelerating mitigation efforts.

As an example of utility in decision-making support, a process
relying on large process water feed rates (e.g., metal surface
finishing) would be more sensitive to deployment in regions
exhibiting poor performance within the ‘risk of change in access
to water’ indicator.With this identified as a potential issue at an early
stage, additional precautions can be taken to ensure that the process
is relocated, or that water demands are not met at the detriment of
social impact stakeholders.

As identified in the literature and earlier sections of this paper, the
complexity of social impact pathways represents a significant and
recognised challenge. An ideal scenario would incorporate hyper-
granular data, detailing every included community, allowing for the
accurate tracing of impact propagations. In this, temporally accurate,
bespoke models would be required for every constituent community,
accurately reflecting cultures, local behaviours, attitudes, and needs. This
is a significant and potentially impossible task. Consequently, this paper’s
proposal of red-flag-based value chain assessments provides a pragmatic
and balanced solution. With risk hotspots identified, more energy and

resources can be accurately deployed to formulate bespoke mitigation
strategies.

Indicator selection is far from uniform within the SIAs
observed in the literature, an unavoidable consequence of
highly diverse goal and scope requirements. However, it is
recommended that the development of impact pathway-
oriented SIA CMs continue to be developed in a manner
aligned with the impact categories and sub-categories found
within the UNEP and SETAC guidelines. These are selected due
to their wide acceptance as the gold standard within SIA
practitioner guidance. Furthermore, the development of
competing CMs, as seen in LCA, often further fragments the
field. If commonality can be achieved in the CMs used by
practitioners, more meaningful inter-assessment comparisons
can be made, adding significant value to all stakeholders.

A final notable step taken in this work is the delivery of fully
quantified impact indicator results, replacing the semi-quantitative
values produced via reference scales. In this, a greater degree of
granularity is realised through the use of a continuous scoring scale.
Differences between competing alternatives can, therefore, be
examined in higher resolution, avoiding the (typically) five-point
scales seen in existing work.

While significant future work is required to reach the maturity
seen in LCA CMs, the concept can be viewed as proven, albeit on a
modest scale.
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