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The widespread adoption of renewable energy sources presents a significant
challenge to the flexibility of power system. To assess the flexibility of the power
system in scenarios with uncertain renewable energy output, it is crucial to
quantify it quantitatively. This evaluation plays a vital role in planning flexible
regulatory resources and dispatching resources for both the energy source and
load. This study introduces a novel flexibility assessmentmodel tailored for power
grids with high renewable energy penetration, specifically addressing uncertainty
associated with wind and PV. By analyzing the impact of wind and PV uncertainty
on system flexibility, the paper proposes an improved cohesive hierarchical
cluster analysis method, incorporating reliability considerations based on the
Davies-Bouldin classification reliability index. Additionally, the study develops
models for flexibility resources and demands within high renewable energy
power systems, along with quantitative assessment indicators across three key
aspects. Through a structured flexibility assessment process accounting for wind
and PV uncertainty, the effectiveness of the proposed approach is validated using
real-world data from a renewable energy power grid in Shandong province. A set
of typical renewable energy output scenarios with uncertainty is constructed
using the improved hierarchical cluster analysis method. The study then analyses
the impact of different wind and PV penetration rates and the proportion of
energy storage units on system flexibility by the flexibility assessment model to
validate the proposed method's effectiveness.
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1 Introduction

In recent years, power systems have seen an increasing penetration of renewable energy
sources. The rapid expansion of the renewable energy scale and the reduction of the non-
clean energy ratio have contributed to improving the green and low-carbon levels of the
energy industry. However, the typical uncertainty associated with renewable energy output
poses significant challenges to the power system with high proportions of renewable energy
access. The net load fluctuation of the system increases due to the high-frequency
fluctuation and low-frequency intermittency of wind power generation, which, in turn,
leads to insufficient allocation of flexible regulation resources and difficulties in balancing
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source–load dispatch. Moreover, there is no common flexibility
assessment process to quantitatively calculate the flexibility
adequacy of highly proportional renewable energy power systems
to judge whether the flexibility regulation capacity of the system can
meet the operation requirements. This is a key challenge that needs
to be addressed.

In the field of wind and PV power uncertainty research, most of
the existing studies are based on scenario analysis methods to
process possible scenarios of wind and PV power by means of
simulation, sampling, or clustering to obtain multiple typical
scenarios of wind and PV power and their probability
distributions so as to transform the uncertainty problem of
wind and PV power into deterministic scenarios for solution
and analysis and effectively realize the uncertainty description
and characterization of wind and PV power. Ai et al. (2014),
Zhang et al. (2014), and Yu (2015) described typical wind
power scenarios in grid dispatching models, considering the
influence of uncertainty based on Monte Carlo sampling
methods. Liu et al. (2022) obtained a typical set of
wind–light–load output scenarios by downscaling the
wind–light–load massive high-dimensional scenarios through a
principal component–Gaussian hybrid clustering algorithm.
Zheng et al. (2022) applied a multi-scene clustering method to
divide the scene space into several roughly equal subspaces,
considering the temporal and stochastic nature of distributed
units and loads, and the point corresponding to the algebraic
mean of the coordinates of each dimensional component in
each subspace is taken as the cluster center of the scene,
respectively. Hou et al. (2023) used the Latin hypercube
sampling method to sample from the joint probability
distribution interval of wind and PV and then obtained the
initial sample scenarios of wind and PV output. Martins and
Borges (2011) designed a new E-C-K-means clustering
algorithm to cluster the wind speed and irradiance in four-
season scenarios, considering the time series characteristics of
load and distributed power output to obtain typical scenario
daily curves. Li et al. (2021) described the source and load
uncertainty problem as a deterministic multi-scenario problem
by constructing planning scenarios that may exist in active
distribution network planning. The above methods are usually
based on large-scale data fitting to generate typical scenarios to
characterize the uncertainty of wind power and PV output, but they
are less capable of handling outliers and large amounts of data, and
the efficiency of the model solution decreases with the increase in
the size of the input data. At the same time, the number of typical
scenarios needs to be set by human beings beforehand, which may
lead to a strong similarity between different scenarios because of
too many divisions or too few divisions, resulting in large
differences between the samples in each category of the selected
scenarios, which lacks representativeness. In summary, the
traditional uncertainty analysis method has limitations in the
processing of large-scale renewable energy output data, and
further research is needed to improve the accuracy and
rationality of the classification of uncertainty scenarios.

In a high-percentage renewable energy power system,
flexibility is the power regulation ability of the power system to
cope with the volatility and randomness of renewable energy
output by optimizing the deployment of various types of

flexibility resources, i.e., the ability of the system flexibility
resources to meet the flexibility demand, and based on the
shortage of the flexibility regulation ability of the system, the
power, capacity, and response speed requirements of the
flexibility resources such as energy storage can be quantitatively
evaluated. In the study of the flexibility assessment of systems
containing renewable energy, by studying the power output
characteristics of wind power and photovoltaic, a mathematical
morphology algorithm is used to obtain the flexibility evaluation
index system for different time scales and climbing directions by
Tong et al. (2023). For the problem of flexibility assessment of
power systems containing a high proportion of wind power access,
based on the Monte Carlo simulation method and economic
dispatch model for the calculation of flexibility metrics, Li et al.
(2015) and Liu et al. (2019) proposed a flexibility evaluation index
system based on the fluctuation of wind power and load, as well as
the inherent flexibility supply capacity of various generation
resources in the system. Li et al. (2017) conducted a
quantitative analysis from the perspective of the regulation
range of system flexibility resources, and a practical system
flexibility adequacy calculation method was proposed based on
the power balance constraint to realize the evaluation of system
renewable energy consumption capacity. Gholizadeh-Roshanagh
and Zare (2019), Huang et al. (2023), and Lu et al. (2023)
constructed the main types of flexibility resources, the principle
of flexibility balance, and the quantitative flexibility assessment
index system, and the core content and solution ideas of
coordinated planning of power system flexibility including
energy storage devices were proposed. Yasuda et al. (2013)
proposed a flexibility radar diagram to characterize system
flexibility, and the installed percentages of various types of
flexible resources (such as hydroelectric plants, cogeneration,
pumped storage, gas turbines, and interconnected grids) and
wind power were given in the form of radar diagrams. Zhao
et al. (2015), Xu et al. (2021), and Xu et al. (2022) established a
unified framework system for flexibility assessment and proposed
key factors of flexibility, including time scale, system action
behavior, and cost. Following the concept and idea of a safe
operation domain of power systems, the concept of a flexible
operation domain is proposed by Ulbig and Andersson (2014),
which is a three-dimensional space consisting of a climbing-
flexible domain, power-flexible domain, and energy-flexible
domain, and the multi-node flexibility tidal model is obtained
from the power injection analysis of a single node. Although the
above studies have proposed the evaluation index process for
various types of flexibility resources and demands, they are still
exploratory in the field of quantitative analysis of power system
flexibility, and their evaluation models often focus on considering
one aspect of flexibility resources, lack synergy and universality,
and are difficult to be coupled with the operation and planning of
flexibility resources, such as energy storage, in the system. At the
same time, the traditional methods do not include the output
uncertainty of wind turbines in the scope of system flexibility
analysis and assessment. In summary, future research should
realize the quantitative analysis and assessment of grid
flexibility based on the consideration of the impact of a high
percentage of renewable energy uncertainty. This research
content is of great significance for the rational planning of
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power system flexibility resources, as well as for meeting the
challenges of renewable energy access to the safe and stable
operation of the power grid.

This study adopts an improved cohesive hierarchical clustering
method in the given context to construct a quantitative assessment
model for the flexibility of high-proportional renewable energy
power systems, considering uncertainties in wind and photovoltaic
sources. First, a method for improved cohesive hierarchical clustering
analysis, considering reliability indicators, is proposed. The study also
discusses the specific process of optimizing the classification of
typical scenarios using historical renewable energy output data.
Second, the study models the flexibility of resources and demands
of high-proportional renewable energy power systems. It also
proposes quantitative evaluation indicators for flexibility,
considering the expectations of insufficient peak flexibility,
expectations of insufficient climbing flexibility, and the probability
of inflexibility. The study establishes a multi-scenario flexibility
assessment process for high-proportional renewable energy power
systems, incorporating uncertainties in wind and photovoltaic
sources. Finally, a case study is conducted using historical data
from a high-proportional renewable energy power system. The
study constructs a typical set of renewable energy output
scenarios, incorporating uncertainties, using the proposed
improved hierarchical clustering analysis method. These scenarios
are then substituted into the flexibility assessment model to analyze
the impact of different renewable energy penetration rates and energy

storage unit percentages on system flexibility. The effectiveness of the
proposed flexibility evaluation method is verified.

2 Mechanism of the impact of
renewable energy uncertainty on
power systems

2.1 Analysis of the impact of renewable
energy output trends on net load
peaking demand

The connection of large-scale wind power and photovoltaic
generating units to the power system greatly reduces the pressure
of the system power supply during peak load hours and reduces the
environmental pollution problems caused by the reliance on fossil fuel
combustion of traditional generating units, but at the same time, the
uncertainty characteristics inherent in the high proportion of
renewable energy generation put forward higher requirements on
the reliability of system operation and the stability of power quality. In
order to study the impact of uncertainty on system peaking, the
renewable energy output is treated as the reverse load, the uncertainty
is characterized by the trend of renewable energy output under
different scenarios by analyzing the net load output curve, and the
mechanism of uncertainty on the net negative peaking demand of the
system is investigated. The impact of renewable energy grid

FIGURE 1
Three types of peaking of renewable energy output. (A) Positive peaking; (B) Excessive peaking; (C) Reverse peaking.
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connection on peaking can be summarized into three types: positive
peaking, excessive peaking, and reverse peaking.

According to Figure 1A, in the same sampling period, the power
output trend of renewable energy units is similar to the power
demand trend of load, and the difference between the peak and
valley of the source load in this period is not much. At this time, the
net load curve of the system is flatter than the original load curve,
and the net load peak–valley difference, i.e., the system peaking
demand, decreases while the flexibility regulation demand decreases.
In this case, the impact of renewable energy output on power system
operation is positive peaking.

According to Figure 1B, in the same sampling period, the power
output trend of renewable energy units is similar to the power
demand change of the load, but the peak-to-valley difference of
renewable energy output in this period is much larger than the
power change of the load. At this time, the net load curve of the
system changes the peak regulation direction compared with the
original load curve, and when the peak-to-valley difference of
renewable energy output is greater than twice the peak-to-valley
difference of the load, the peak regulation demand of the system will
increase in the opposite direction compared with the original
working condition, and the flexibility regulation demand rises. In
this case, the impact of renewable energy output on power system
operation is excessive peaking.

According to Figure 1C, in the same sampling period, the power
output trend of renewable energy units is opposite to the power demand
trend of the load. At this time, the net load output curve of the system
will increase its peak regulation demand in the same direction
compared with the original load output curve, and the flexibility
regulation demand rises. In this case, the impact of renewable
energy output on power system operation is reverse peaking.

According to the above analysis, the high proportion of
renewable energy sources connected to the grid may both reduce

the intra-day peaking pressure of the system and increase the
regulation demand of flexibility, so it is necessary to propose the
quantification method of system flexibility supply and demand
under the condition of considering uncertainty factors to cope
with the problems of wind and light abandonment caused by
high renewable energy penetration.

2.2 System net load demand at different
renewable energy penetration levels

In order to quantify the flexible regulation demand of the system
at each time scale when the renewable energy penetration reaches
different levels, the upward (downward) net load creep demand is
defined as the ratio of the maximum upward (downward) regulation
demand of the net load in a day to the average annual load; the net
load upward (downward) regulation demand is defined as the ratio of
the maximum daily power upward (downward) regulation demand to
the average daily load power in a year. Taking the renewable energy
penetration rate of 30%–90%, the defined net load regulation demand
is estimated, and the results are shown in Figure 2.

With the increase in renewable energy penetration, the net load
regulation demand caused by the uncertainty of wind and PV power
output also increases gradually, which poses a great challenge to
both power regulation and energy regulation of system flexibility
resources. As shown in the estimation results in Figure 2, when the
renewable energy penetration is ≤ 30%, the net load regulation
demand of the system is small, and the regulation margins of the
flexibility regulating units can realize the envelope to the fluctuation
of the renewable energy output in the usual case; when the renewable
energy penetration is ≥ 40%, the net load climbing and peaking
demands increase significantly, and the upward and downward net
load regulation demands show a similar change trend. The

FIGURE 2
Net load regulation demand with different renewable energy penetration rates.
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estimation shows that under the condition of maintaining a certain
installed capacity of adjustable units, as the penetration of renewable
energy increases, the system net load peaking and climbing
regulation demand gradually grows to an extremely high level,
and the existing flexibility resources are unable to maintain the
power balance state of the system in terms of both power regulation
and energy regulation. In this context, how to quantitatively assess
the flexibility supply and demand of a high percentage of renewable
energy power systems and fully utilize the regulation capability of
system flexibility resources is the key to the future power systems to
cope with the uncertainty of a high percentage of renewable energy.

3 Improved cohesive hierarchical
cluster analysis method with reliability

In power systems with high proportions of renewable energy
access, the output of renewable energy is closely related to
meteorological conditions, geographical distribution, and system
operation status, resulting in typical stochasticity and uncertainty.
After analyzing the influence mechanism of renewable energy output
uncertainty on power grid flexibility, in order to solve the above
problems, this study employs an improved hierarchical clustering
algorithm to conduct a typical scenario clustering analysis on
renewable energy output data in order to effectively characterize
the uncertainty of renewable energy output. To optimize the
number of clustering scenarios, the Davies–Bouldin classification
reliability index is incorporated into the traditional hierarchical
clustering analysis method, and an improved cohesive hierarchical
clustering analysis method is introduced to account for reliability.

Based onN days of renewable energy output data on power systems
under a high proportion of renewable energy access and using cluster
analysis, the daily data points are designated as T for sampling, and each
day’s renewable energy output sample is treated as an initial cluster;
then, the regional renewable energy output sample Xi �
[xi1, xi2 . . . , xiT] on day i, and the initial clustering set matrix of
renewable energy output in the region is thus constructed as shown
in Eq. 1:

X �
X1

X2

...
XN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � x11 x12 ... x1T

x21 x22 ... x2T

... ... ...
xN1 xN2 ... xNT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×T

, (1)

where xit represents the power output data for the sampling point in
the area on day i. In the initial cluster set matrix, the Euclidean
distance method is used to calculate the similarity between each
cluster, and the Euclidean distance between two clusters can be
quantified and expressed as shown in Eq. 2:

d Xi,Xj( ) �

�����������∑T
t�1

xit − xjt( )2√√
. (2)

When the similarity between clustersXi andXj is larger, d(Xi,Xj)
is smaller; otherwise, its value is larger and satisfies
d(Xi,Xj) � d(Xj,Xi).Calculating the Euclidean distance between all
N initial clusters yields a symmetric N-dimensional inter-cluster
distance matrix D, which as shown in Eq. 3:

D �
0 d X1 ,X2( ) ... d X1 ,XN( )

d X2 ,X1( ) 0 ... d X1 ,X2( )
... ... ...

d XN,X1( ) d XN,X2( ) ... 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

. (3)

The interclass squared distance d2(Xu,Xv) between any two initial
clustersXu andXv is defined as the average of the squared distances
between the samples of the two classes, which can be expressed
quantitatively as follows:

d2
Xu,Xv( ) �

1
nunv

∑ d2
Xu,Xv( ), (4)

where nu and nv are the sampling points in clusters Xu and Xv,
respectively. Using Equation 4 to calculate the mean of squared
distances between all N initial clusters, a symmetric N-dimensional
distance squared mean matrix can be obtained as shown in Eq. 5:

D2 �
0 d2

X1 ,X2( ) ... d2
X1 ,XN( )

d2
X2 ,X1( ) 0 ... d2

X2 ,XN( )
... ... ...

d2
XN,X1( ) d2

XN,X2( ) ... 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

. (5)

Let the non-diagonal elements of matrix D2 have the minimum
value d 2

min � d2(Xa ,Xb).Xa andXb are combined into a new classXab
(1),

i.e., Xab
(1) � Xa,Xb{ }, and the number of samples in the new class

Xab
(1) is nab � na + nb. The a, b rows and a, b columns are deleted in

the distance square matrix D2, and the distance squared mean between
the new class A and other classes Xo

(1)(o ≠ a, b) in the last row and
column of the matrix are added; then, the number of clusters is reduced
from N to N-1, the first clustering is finished, and the new distance
squared mean matrix D2(1) is obtained. The distance squared between
the new classXab

(1) and the other classXo
(1)(o ≠ a, b) is the following:

d2
X 1( )
ab

,X 1( )
o( ) �

na
nab

d2
Xa ,X

1( )
o( ) +

nb
nab

d2
Xb ,X

1( )
o( ), (6)

where Xab
(1) and Xab

(1) � Xa, Xb{ } are the new classes after
completing the first clustering division, and Xa and Xb are the
initial clusters. Equation 6 is used to continue calculating the

FIGURE 3
Clustering branch tree diagram.
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squared mean of the distance between the new class and the other
classes to complete the kth clustering.

In order to visualize the similarity and tightness relationship
between the clustered samples of renewable energy output, a tree
diagram is used to represent the clustering process of renewable
energy output samples within N days, as shown in Figure 3.
Taking the k+1st clustering as an example, hk+1 represents the
interclass distance in Xu

(k) and Xv
(k). When the interclass

distance difference is the smallest, a new class Xuv
(k) can

be merged.
The traditional hierarchical clustering analysis method requires

the manual setting of the branch cut of the clustering tree diagram
based on historical experience after obtaining the clustering
hierarchy tree diagram. This paper introduces the
Davies–Bouldin classification reliability index to quantitatively
evaluate the reliability of the clustering results with different
numbers of branches in order to achieve optimal selection of the
number of clustering scenarios. The classification reliability index of
hierarchical clustering can be expressed as follows:

KDBI � 1
h

∑
i,j ∈ Ωh

Si + Sj
Ci − Cj

���� ����( )
i≠j

, (7)

where KDBI is the classification reliability index under different
numbers of clustering scenes, and the smaller the value of the index,
the better the clustering result under that number of branches; h is
the number of clustering scenes; Si and Sj are the mean values of the
distances from all elements in clusters i and j to the central curve of
clusters, respectively, indicating the degree of curve dispersion
within the clustering scenes; ‖Ci − Cj‖ is the distance between
clusters i and j.

By calculating the reliability index of different clustering
scenarios and considering engineering requirements, the
minimum value of KDBI is selected as the optimal result for the
clustering of typical output scenarios of renewable energy sources.
This approach avoids the issue of improper setting of the number of
scenarios caused by the manual selection of h values in the
traditional hierarchical clustering process and improves the
reliability and accuracy of typical scenario clustering analysis.

4 Assessment of high-percentage
renewable energy power system
flexibility considering wind and PV
uncertainty

With the large-scale integration of renewable energy sources
into the power grid, the supply capacity of the system has greatly
increased. However, due to the close correlation between renewable
energy generation and factors such as weather conditions,
geographic location, and system operating conditions, the output
exhibits significant uncertainty and randomness, posing significant
challenges to the stable and economic operation of the power grid. In
this context, considering the uncertainty of wind and photovoltaic
power generation, it is important to study the quantitative
evaluation method of the flexibility of the high-proportion
renewable energy power system, which plays an important role
in the flexible regulation of power grid resource planning and
bidirectional resource scheduling.

4.1 Theoretical overview and impact analysis
of flexibility

The broad flexibility of power systems refers to the system’s
responsive regulation ability to cope with internal and external
uncertainties. In the high percentage of renewable energy power
systems, the large-scale grid connection of scenery causes a
significant challenge to the flexibility regulation ability of the
system, which is prone to wind and light abandonment and load
shedding caused by insufficient peak regulation and ramp climbing
flexibility. Therefore, flexibility can be defined as the ability of the
system to maintain a balance between power supply and demand on
both sides of the system source and load by coordinating various
types of flexible regulation resources.

For example, due to the change in weather conditions, when the
sudden increase of wind power and photovoltaic unit output makes
the system net load power demand suddenly decrease, the adjustable
generating unit output should be reduced accordingly. If the unit
output continues to decrease until it works in the minimum normal
operation power state and the energy storage unit is charged with
maximum power, the load still cannot completely consume the
renewable energy output, that is, if the system flexibility cannot meet
the balance of output supply and demand, then the problem of
insufficient downward flexibility arises. At this time, the dispatcher
needs to issue wind and light abandonment instructions and wind
power and photovoltaic unit output reduction to maintain the
system supply and demand balance.

As shown in Figure 4, the solid blue line is the downward flexibility
margin of the system flexibility resources and the solid red line is the
downward flexibility demand of the net load. When the downward
flexibility supply is less than the net load demand, the downward
flexibility of the system is insufficient, and wind or PV will be
curtailed to consume the excess renewable energy output. Similarly,
when the supply of upward flexibility of the system is less than the net
load regulation demand, the dispatch will issue a load-shedding
command to maintain the power balance of the system. The
source–load output comparison curve and the insufficient flexibility
capacity are shown in Figure 5.

Due to the immature development of energy storage technology,
in the operation of the power system, the supply and demand of
power from both sides of the source and load need to be
corresponded in real time. When the renewable energy output is
at peak hours or the load power demand changes suddenly, the

FIGURE 4
Schematic diagram of downward inflexibility.
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problem of lack of flexibility caused by insufficient system regulation
speed andmargin is likely to occur. Therefore, a quantitative analysis
of the flexibility of the power system with a high proportion of
renewable energy is important for the rational planning and real-
time dispatch of the power system.

4.2 Modeling of flexibility requirements and
resources for high-percentage renewable
energy power systems

Compared with traditional flexible resources (such as gas, coal,
and storage units), scenic renewable energy can be regarded as the
reverse load of the system because the power output variation in
scenic renewable energy is determined by meteorological conditions
and almost does not actively participate in the power adjustment of
the grid. Let the sequence of renewable energy power plant output in
the system be Pres,t � Pres,1,t, Pres,2,t, . . . , Pres,M,t{ }; the load output
demand Pload,t � Pload,1,t, Pload,2,t, . . . , Pload,N,t{ }. Therefore,
according to the definition of net load, the net load output
demand of the system at time t is expressed as shown in Eq. 8:

Pnet,t � ∑N
n�1

Pload,n,t − ∑M
m�1

Pres,m,t, (8)

where N is the number of load nodes, M is the number of renewable
energy stations, n is the load node number, and m is the renewable
energy station number.

The sampling time interval is set as Δt, and first-order differential
calculation is performed on the system net load time series to obtain
the unit time output demand ΔPnet,t of the net load, which can be
decomposed according to its power direction as shown in Eq. 9:

ΔPdem,up,t � max ΔPnet,t, 0( )∣∣∣∣ ∣∣∣∣
ΔPdem,up,t � min ΔPnet,t, 0( )∣∣∣∣ ∣∣∣∣{ , (9)

where ΔPdem,up,t is the upward flexibility demand in the output
period t, which represents the increase in net system load output
demand per unit time period, and ΔPdem,down,t is the downward
flexibility demand in the output period t, which represents the
decrease in net load output demand per unit time period.

System flexibility resources refer to units with flexibility
regulation capability that can actively participate in system power
regulation through unified dispatch and control, including coal-fired
units, gas-fired units, adjustable hydropower units, and energy
storage. Corresponding to the upregulation (downregulation)
flexibility demand of the system, the upregulation
(downregulation) flexibility supply of the system is defined as the
difference between the upper bound (lower bound) of the system
flexibility resource output at a certain moment and the system
flexibility resource output at the previous moment, which is
expressed as shown in Eq. 10:

ΔPsup ,up,t � Psup ,max , t+1( ) − Psup ,t

∣∣∣∣ ∣∣∣∣
ΔPsup ,down,t � Psup ,min , t+1( ) − Psup ,t

∣∣∣∣ ∣∣∣∣{ , (10)

where ΔPsup ,up,t is the up-adjusted flexibility supply in the output
segment t, which indicates the increase in system flexibility resource
output supply per unit time period; ΔPsup ,down,t is the down-adjusted
flexibility supply in the output segment t, which indicates the
decrease in system flexibility resource output supply per unit
time period; ΔPsup ,max ,(t+1) is the upper bound of system
flexibility resource output in the output segment (t + 1);
ΔPsup ,min ,(t+1) is the lower bound of system flexibility resource
output in the output segment (t + 1); and ΔPsup ,t is the system
flexibility resource output in the output segment t.

4.3 A multi-scenario flexibility evaluation
model accounting for wind and PV
uncertainty

Because of the randomness of renewable energy output, during
peak output periods, renewable energy output reduction can occur
due to insufficient downward adjustment capacity of the system,
i.e., insufficient system absorption capacity. Similarly, during peak
net load demand periods, load reduction can occur due to
insufficient upward adjustment capacity of the system,
i.e., insufficient supply of system flexibility resources, defining the
expectations of insufficient peak flexibility, reflecting the severity of
the deficiency of the system’s adjustment margin. By subtracting the
system flexibility supply–demand output curve, the expected
indicator of insufficient system flexibility for adjusting peaks can
be calculated as follows:

Er � kmEm + klEl

� km ∑
s∈Ωm

∑
t∈TN

πm
Psup ,s,t − 1 + μ( )Pnet,s,t( )

Ns,t
+ kl ∑

s∈Ωl

× ∑
t∈TM

πl
Pnet,s,t − Psup ,s,t( )

Ms,t
, (11)

where Em is the downward peak capacity shortage expectation of the
system, which indicates that the system regulable generating units
work at the minimum normal operating power, and the energy
storage units and load still cannot fully consume part of the output
expectation; El is the upward peak capacity shortage expectation of
the system, which indicates that the system regulable generating
units work at the maximum normal operating power, and the
flexible resource supply still cannot envelop the net load

FIGURE 5
Comparison curve of source and load output.
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regulation demand part of the output expectation; km, kl is the
weighting coefficient of the peak capacity shortage indicator, which
can be set according to the energy loss costs of wind abandonment
and load shedding; Ωm is the set of scenarios where the system has
insufficient capacity to consume and needs to abandon wind and
light; Ωl is the set of scenarios where the system has insufficient
supply of flexible resources and needs to cut load; TN and TM are
collections of inflexible outgoing segments under scenarios Ωm and
Ωl, respectively; Ms,t and Ns,t are the number of under-flexible
output segments under scenarios Ωm and Ωl , respectively; Psup ,s,t is
the flexible resource output in output segment t; and μ is the
generator set standby factor.

The increase in net load output demand per unit time is defined
as positive and the decrease as negative; according to the definition
of flexibility demand and flexibility supply, the time series of
fluctuations of system upward (downward) flexibility supply and
demand per unit time can be differentiated from the perspective of
system output supply and demand balance, and the system’s supply
and demand flexibility assessment index ΔPt is obtained as follows:

ΔPt � ΔPup,t

∣∣∣∣ ∣∣∣∣ � min ΔPsup ,up,t − ΔPdem,up,t, 0( )∣∣∣∣ ∣∣∣∣,ΔPnet,t > 0
ΔPdown,t

∣∣∣∣ ∣∣∣∣ � min ΔPsup ,down,t − ΔPdem,down,t, 0( )∣∣∣∣ ∣∣∣∣,ΔPnet,t < 0{ ,

(12)
where ΔPsup ,up,t is the upregulated flexibility supply in the output
section t, ΔPsup ,down,t is the downregulated flexibility supply in
output section t, ΔPdem,up,t is the upregulated flexibility demand
in output section t, ΔPdem,down,t is the downregulated flexibility
demand in output section t, and ΔPnet,t is the unit time output
demand of net load.

When ΔPnet,t >0, that is, the direction of the system’s flexibility
demand per unit time is upward, ΔPup,t is the upward climbing
flexibility deficiency in the outgoing power section. If the upward
flexibility supply of the system in that time period can envelop its
flexibility demand,ΔPt =0; if the upward flexibility supply of the system
in that time period is smaller than its flexibility demand, ΔPt ≠0.
Similarly, when ΔPt < 0, that is, the direction of the system’s flexibility
demand per unit time is downward, ΔPdown,t is the downward creeping
flexibility deficit in the outgoing power section. If the downward
flexibility supply of the system in that time period can envelop its
flexibility demand, ΔPt = 0; if the downward flexibility supply of the
system in that time period is smaller than itsflexibility demand,ΔPt ≠ 0.
The larger ΔPt is, the more serious the lack of system-climbing
flexibility is. Based on the supply–demand flexibility assessment
index, the power deficit of the climbing flexibility-deficient output
section can be filtered and calculated, thus establishing the system
climbing flexibility deficiency expectation index. This indicator reflects
the shortage of system flexibility regulation speed by calculating the
power difference expectation of system flexibility supply as less than the
flexibility demand power output section by counting the corresponding
power output section when ΔPt ≠ 0. The expectations of insufficient
climbing flexibility are as follows:

Ec � ∑
s∈Ωc

∑
t∈TK

ΔPs,t

Ks,t
, (13)

where Ωc is the set of all scenarios with insufficient climbing
flexibility, TK is the set of inflexible outgoing segments in
scenario Ωc, Ks,t is the number of inflexible climbing outgoing

segments in that scenario, and ΔPs,t is the supply and demand
flexibility index in the outgoing segment t.

The probability indicator of flexibility insufficiency reflects the
dynamic stability and balance of the system by calculating the
proportion of the time periods where the flexibility supply is less
than the flexibility demand during the total sampling period, based
on the statistics of the number of time periods corresponding to the
insufficiency of climbing and peaking flexibility. It indicates the
probability of the system’s flexibility insufficiency. The probability of
inflexibility is as follows:

Rl � ∑
s∈Ωcr

∑
t∈TL

Ls,t

T
· 100%, (14)

where Ωcr is the concatenation of scenarios with insufficient peak
regulation flexibility and insufficient climbing flexibility, TL is the set
of insufficient flexibility output segments under scenario Ωcr, Ls,t is
the number of insufficient flexibility output segments under this
scenario, and T is the number of sampling periods on the daily
output curve.

Based on the flexibility assessment indexes proposed in this
paper, the typical scenarios of renewable energy output are extracted
through an improved hierarchical clustering algorithm, which
converts the linearly correlated multiple groups of wind and PV
output data into several linearly independent renewable energy
output clustering center curves to reflect the uncertainty
characteristics of the original output data in a reduced
dimensional way, effectively reducing the complexity of flexibility
calculation. The specific process of the multi-scenario flexibility
assessment of high-percentage renewable energy power systems
with wind and PV uncertainty is shown in Figure 6.

FIGURE 6
Flexibility assessment calculation process.
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Step 1: Based on the improved hierarchical clustering algorithm, the
historical wind and PVoutput data on the high proportion of renewable
energy power systems are clustered to build a set of typical renewable
energy output scenarios taking into account the uncertainties.

Step 2: The central curve of renewable energy clustering in case I
scenario and the single-day generating units, energy storage units, and
load output data are substituted with the highest net load peaking
demand in this scenario, and the load output and renewable energy
output are compared to obtain the net load output curve, i.e., the
demand flexibility curve; the sum of energy storage units and adjustable
generating units output constitutes the supply flexibility curve.

Step 3: The scenario in which the supply of peaking flexibility is
greater than the demand in the sampled supply–demand
comparison curve is selected, making the difference between the
supply and demand curves to obtain the system renewable energy
reduction power, thus calculating the system downward peaking
capacity shortage expectation index; then, from the scenario in
which the supply of flexibility is less than the demand, the
system load reduction power and upward peaking capacity
shortage expectation index are calculated. After weighting and
summing the indicators, the expectations of insufficient peak
flexibility are obtained.

Step 4: First-order difference processing is carried out on the system
flexibility supply and demand output data, which is decomposed into
upward and downward system flexibility supply and demand per unit
time, according to the power direction, and then, the fluctuation series
of system flexibility supply and demand per unit time are differenced
to obtain the upward and downward flexibility supply and demand
evaluation index. By counting the corresponding output segments
when ΔPt ≠ 0, the system climbing flexibility supply is less than the
flexibility. By counting the power shortage of the demand output
section, the expectations of insufficient climbing flexibility are
obtained; by counting the number of peak regulation and climbing
flexibility shortage output sections, the probability of the system
inflexibility indicator is obtained.

Step 5: The system flexibility assessment index under this condition
is recorded, the capacity of energy storage and renewable energy
units is changed, steps 1–4 are repeated, and the flexibility change in
the high proportion of renewable energy power systems under the
condition of different influencing factors is obtained.

5 Example

5.1 Algorithm setup

This example selects a typical intra-day operation of a high
proportion of distributed PV and wind power pilot area in Shandong
Province for flexibility calculation and analysis. The total installed
capacity of all types of units in the regional grid is 79.93 MW,
including approximately 49.83 MW of adjustable generating units
and 30.10 MW of renewable energy units, with a maximum system
load of 61.00 MW and a maximum network supply load of
55.45 MW. The specific unit types and installed capacities are

shown in Table 1. The distribution of major wind power, PV,
and energy storage in Shandong Province is shown in Figure 7.

5.2 Typical scenarios of renewable energy
output taking into account the uncertainty

Based on an improved hierarchical clustering algorithm, a
typical scenario analysis of historical power output data is
performed for the installed renewable energy generating units in
the region. The original data were provided by the power company
in the region, and the inverter control strategy used power
synchronization control (Zhang et al., 2009; Harnefors et al.,
2021; Xiao et al., 2023a; Xiao et al., 2023b). The cohesive
hierarchical clustering algorithm is used to divide the renewable
energy output curve into scenes, and the clustering branch tree
diagram of wind and PV output curve is obtained. Then, the
Davies–Bouldin classification reliability indexes under different
numbers of clustering scenes are calculated by Equation 7, and
the reliability of the clustering results is quantitatively evaluated to
achieve the optimal selection of the number of clustering scenes. The
calculation results of the reliability index under each number of
scenes are shown in Table 2. Based on the reliability analysis results
of different clustering schemes, the clustering scheme with the
smallest reliability index is selected, and the number of clustering
scenes h is set to three. Based on the robust uncertainty processing to
eliminate the interference of bad data, the set of renewable energy

TABLE 1 Types of generating units and installed capacity.

Unit type Capacity/MV

Distributed PV units 21.67

Distributed wind units 8.43

Thermal power unit 48.24

Energy storage unit 1.59

Total 79.93

FIGURE 7
Distribution of major wind power, PV, and energy storage in
Shandong Province.
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typical power output scenes is obtained, as shown in Figure 8, and
the probability and number of each scene are shown in Table 3.

5.3 Analysis and the solution process of
high-percentage renewable energy power
system flexibility

Assuming that the solar irradiation and wind resources in the
region do not affect each other, the clustering center curves of each
wind and PV output obey independent distribution. The dataset
with the highest probability of occurrence in each scenario is used as
an example for analysis, and the central curve of wind and PV
clustering in this scenario is summed up as the input of regional
renewable energy output data. Under the conditions of PV output
clustering scenario II and wind power output clustering scenario III,
the single day with the highest net load peaking demand is selected
as the research object, and the thermal power units, energy storage,
and load data of this day are substituted into the flexibility
assessment. The model is used to calculate and analyze the data
and show the solution process. Different wind and PV penetration
rates and energy storage units are set as variables to differentiate the

working conditions and calculate the change in flexibility under
different working conditions.

The net load output curve, i.e., the demand flexibility curve, is
obtained by finding the difference between the load output and
the distributed wind and PV unit output, and the supply
flexibility curve is formed by the sum of the energy storage
unit and thermal unit output. After sampling on the scale of
Δt =15min, the supply flexibility and demand flexibility output
curve of the system is shown in Figure 9, which reflects the real-
time supply and demand balance of the high-proportion
renewable energy system.

The system flexibility supply and demand output curves are
first-order differential processed and decomposed into upward and
downward system flexibility supply and demand per unit time,
according to the power direction, as shown in Figures 10, 11,
where the system flexibility demand output sequence is affected
by the output of the wind and PV unit, and the creeping flexibility

TABLE 2 Calculation results of wind and the PV clustering reliability index
for each number of scenarios.

Number of clustering
scenes h

3 4 5 6 7

KDBI, PV 2.76 2.83 3.68 4.82 5.56

KDBI, WIND 2.03 2.70 3.77 3.96 3.25

FIGURE 8
Clustering results of PV and wind power. (A) Clustering results of PV; (B) Clustering results of wind power.

TABLE 3 Number and probability distribution of the occurrence of
clustering scenes.

Clustering scenario Quantity Probability (%)

PV output clustering scenario Ⅰ 71 19.45

PV output clustering scenario Ⅱ 193 52.88

PV output clustering scenario Ⅲ 101 27.67

Wind power output clustering scenario Ⅰ 55 15.07

Wind power output clustering scenario Ⅱ 131 35.89

Wind power output clustering scenario Ⅲ 179 49.04
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deficiency situation where the system output supply is smaller than
the demand per unit time will occur in the time period with a larger
output fluctuation range.

According to Equation 12, the time series of fluctuations of
system upward (downward) flexibility supply and demand per unit
time are made differential, and the upward and downward system
supply and demand flexibility assessment index ΔPt is obtained.
When ΔPnet,t > 0, i.e., the direction of system flexibility demand per
unit time is upward, ΔPup,t is the upward creeping flexibility
deficiency in this outgoing segment; when ΔPnet,t < 0, i.e., the
direction of system flexibility demand per unit time is downward;
ΔPdown,t is the downward creeping flexibility deficiency in this
outgoing segment. The larger ΔPt is, the more serious the system
creeping flexibility deficiency is.

The system flexibility supply and demand output curves will be
differential, and the expectations of insufficient peak flexibility can
be calculated by Equation 11; the power deficiency of ΔPt ≠0 output
section can be calculated by Equation 13, and the expectation of
insufficient climbing flexibility can be obtained. The number of peak
regulation and climbing flexibility deficiency output sections is

counted as the proportion of the total sampling period, and the
probability of system flexibility deficiency under the initial working
condition can be obtained by Equation 14.

5.4 Analysis of the impact of renewable
energy and energy storage on system
flexibility

The evaluation index of system flexibility under this working
condition is recorded. Keeping the load capacity and the total
installed capacity of generating units unchanged, the distributed
wind and PV unit penetration rate and the proportion of the
installed capacity of energy storage units to the capacity of
renewable energy units are changed, and the system source load
data under the scenic penetration rate of 20%–80% and the energy
storage ratio of 0%–10% are implemented in the model to iteratively
calculate the system flexibility index values under different wind, light,
and energy storage parameters. Based on the MATLAB CFTOOL
toolbox, the calculated data points are fitted to the 3D polynomial,
and the continuous variation in the flexibility indexes under different
operating conditions is obtained, as shown in Figure 12.

In the high proportion of renewable energy power systems, the
access of energy storage units plays an important regulating role for
the system flexibility. Based on the calculation results of the
flexibility assessment index, the influence mechanism of different
wind and PV penetration rates and energy storage proportions on
system flexibility is analyzed: with the increasing wind and PV
penetration rate and decreasing energy storage unit proportion, the
expectations of insufficient peak flexibility increases continuously
from 0 to 10.19 MW; the expectation of insufficient climbing
flexibility increases from 0 to 7.86 MW; the system flexibility
deficiency probability increases from 0% to 60.42%. The system’s
flexibility deficiency continues to intensify.

According to the analysis of Figures 12A, B, because the total
installed capacity of the generators and load power demand is certain,
the higher the renewable energy units generate, the more difficult it is
for the load to completely dissipate the energy. At the same time, with
the continuous increase in the installed renewable energy capacity,

FIGURE 9
Comparison curves of supply and demand flexibility.

FIGURE 10
System flexibility supply sequence.

FIGURE 11
System flexibility demand sequence.
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when thewind andPVpenetration rate exceed a certain range to reach a
very high proportion of the renewable energy access level, the
proportion of generating units with flexible power output regulation
capability is very low, resulting in a serious shortage of the power
support capacity of generating units to system load during the low time
of wind and PV unit power output, leading to a situation of imbalance
between the system active power supply and demand. At this time, in
order to maintain the stable operation of the system, a large amount of
load-shedding on the power system is required, causing incalculable

losses to the economy and even production and life. In order to avoid
the above situation, energy storage can be configured to cope with the
problem of insufficient system flexibility. It can be seen from the index
data that under different wind and PV penetration conditions, the
access of energy storage units can effectively reduce the expectation of
insufficient peak regulation and climbing flexibility of the power system,
and the flexibility adequacy of the system is improved comprehensively,
which verifies that the energy storage system can solve the problem of
the insufficient supply of flexibility resources in the power systemwith a
high proportion of renewable energy through power regulation and
energy storage.

According to the analysis in Figure 12C, when the proportion of
wind and PV is low, the access of energy storage units can effectively
reduce the probability of insufficient flexibility, which is because in the
system with a lower proportion of renewable energy access, the main
reason for insufficient flexibility is the fluctuation of wind and PV output
in a short time, and the access of the energy storage system can make up
for the shortcomings of a lower climbing rate and longer response
regulation time of traditional generating unit flexibility. However, with
the increase in wind and PV penetration in the power system, the effect
of energy storage units on the management of the probability of
insufficient system flexibility gradually decreases, which is because
when the wind and PV penetration rate is too high, the proportion
of traditional generating units decreases, the system load power demand
is too dependent on renewable energy generation, and the flexibility
regulation capacity of generating units is insufficient during the low
hours of renewable energy output, and the generating units appear in
most output sections. Inmost of the output periods, the power supply of
generating units and energy storage reaches the upper limit, but the
system power supply is still less than the load demand, resulting in a
certain capacity of energy storage unit access that still cannot effectively
reduce the probability of insufficient system flexibility. New flexibility
resources need to be added to the system to maintain the balance of
power supply and demand in the power system.

In summary, in power systems with a high proportion of
renewable energy sources on the grid, the access of energy storage
units can effectively improve the system’s climbing and peaking
flexibility and significantly reduce the probability of insufficient
flexibility of the system. However, in the power system with a very
high proportion of renewable energy sources on the grid, the access of
the energy storage system should take into account the economic
impact factors and combine it with other adjustable units for
cooperative scheduling to improve the flexibility of the system and
ensure the stable and economic operation of the power system.

6 Conclusion

This paper presents an analysis and evaluation of operational
flexibility in high-percentage renewable energy power systems using
an improved hierarchical clustering algorithm. The proposed
flexibility evaluation method offers significant guidance for
quantifying power system flexibility, analyzing the balance
between the supply and demand of electric power, and allocating
flexibility resources effectively. Initially, the traditional hierarchical
clustering analysis method is applied, augmented by the
Davies–Bouldin classification reliability index to optimize the
number of clustering scenarios. Additionally, an enhanced

FIGURE 12
Continuous variation in the flexibility indexes under different
operating conditions. (A) Insufficient peaking expectations. (B)
Insufficient climbing expectations. (C) Inflexibility probability.
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cohesive hierarchical clustering analysis method is introduced to
incorporate reliability considerations. Subsequently, a structured
flexibility assessment process is devised for high-proportion
renewable energy power grids, considering uncertainties
associated with wind and PV sources. Furthermore, leveraging
power grid data with notable distributed wind power and PV
integration, a typical renewable energy output scenario is
formulated, accounting for uncertainties in wind and PV sources.
The system’s flexibility is then comprehensively calculated and
analyzed under diverse operating conditions. The results indicate
that, at a certain proportional renewable energy penetration rate, the
inclusion of energy storage units can effectively alleviate flexibility
regulation pressures arising from the uncertainty in renewable
energy output. However, in cases of extremely high renewable
energy penetration, relying solely on energy storage
configurations becomes insufficient to meet the flexibility
demands of the power system. Consequently, a strategic planning
approach incorporating multiple flexibility resources is necessary to
address the flexibility challenges posed by high levels of renewable
energy grid integration. Although this paper has achieved some
results in the study of flexibility assessment modeling for high-
percentage renewable energy grids, there are still some issues that
have not been studied in depth. For example, the special scenarios in
the inflexibility situation are not defined, and the impact of multiple
types of energy storage access systems is not considered. In the
future, further research will focus on applying the flexibility
assessment indexes proposed in this paper to the planning and
scheduling of high-ratio renewable energy distribution grids and
continue to conduct in-depth research on reducing the operating
costs of distribution grids with high-ratio renewable energy access
and improving the system’s flexible regulation capability,
contributing to valuable solutions to the challenges of meeting
the “dual-carbon” target and the integration of high-ratio
renewable energy into the grid.
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