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The intermittent renewable energy in a virtual power plant (VPP) brings generation
uncertainties, which prevents the VPP from providing a reliable and user-friendly
power supply. To address this issue, this paper proposes a gated recurrent unit
proximal policy optimization (GRUPPO)-based optimal VPP economic dispatch
method. First, electrical generation, storage, and consumption are established to
form a VPP framework by considering the accessibility of VPP state information. The
optimal VPP economic dispatch can then be expressed as a partially observable
Markov decision process (POMDP) problem. A novel deep reinforcement learning
method called GRUPPO is further developed based on VPP time series
characteristics. Finally, case studies are conducted over a 24-h period based on
the actual historical data. The test results illustrate that the proposed economic
dispatch can achieve a maximum operation cost reduction of 6.5% and effectively
smooth the supply–demand uncertainties.
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1 Introduction

1.1 Background and motivation

With the global energy shortage and environmental deterioration becoming increasingly
prominent, distributed renewable energy resources have gained popularity in the power
system and developed rapidly (Naveen et al., 2020; Huang et al., 2021; Liu et al., 2023).
Although the renewable energy implementation can generally reduce the dependence on fossil
generation, the low unit capacity and high fluctuation hinder its reliable supply. As a result of
inherent temporal–spatial complementarities, virtual power plants (VPPs) integrated with
cooperative and transactive energy management can effectively cope with the core issues and
enhance the overall economy (Koraki and Strunz, 2017).

The VPP is defined as an aggregator of distributed supply–demand resources, which would
independently perform a transactive behavior with the market or operator (Etherden et al., 2015;
Lin et al., 2020; Gough et al., 2022). However, due to its lower capacity and inherent sporadic
nature, its integration into the current power system is complicated (Xu et al., 2021). Although
VPPs have developed rapidly, the high penetration of renewable energy and the proactive end
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usersmakeVPPsmore uncertain. These uncertainties cause disturbances
in the optimalVPP economic dispatch and preventVPPs fromproviding
a reliable and user-friendly power supply. Therefore, it is essential to
design an effective VPP economic dispatchmethod to enhance economic
benefits and smooth the supply–demand uncertainties.

1.2 Literature review

In order to handle the uncertainties in the VPP dispatch, various
optimization methods have been proposed, including stochastic
optimization and robust optimization. Liu et al. (2018) proposed an
interval-deterministic combined optimization method to maximize the
deterministic profits and profit intervals of VPPs (Liu et al., 2018). A data-
adaptive robust optimizationmethodwas proposed byZhang et al. (2018)
to optimize the dispatch scheme with adjustable robustness parameters.
A deterministic price-based unit commitment was proposed by
Mashhour and Moghaddas-Tafreshi (2010), and a genetic algorithm
was used to solve the uncertainties. Chen et al. (2018) presented a fully
distributed method for VPP economic dispatch using the alternating
direction multiplier method (ADMM) and the consensus algorithm
(Chen et al., 2018). Yang et al. (2013) proposed a consensus-based
distributed economic dispatch algorithm through the iterative
coordination of local agents.

When faced with the supply–demand uncertainties, these
traditional optimization-based methods usually rely on accurate
system models and a priori knowledge, which are difficult to obtain
in practice (Xu et al., 2019). Although robust optimizationmethods can
deal with uncertainties to some extent, these methods are very
conservative. Meanwhile, these methods cannot deal with dynamic
and random changes, due to which real-time information and
interactions with various energy sources may not be able to capture.
Traditional optimization-based methods also rely on reliable solvers or
heuristic algorithms (Xu et al., 2020), which is time-consuming and
cannot meet the real-time requirements of practical VPP problems.

Reinforcement learning has become a highly effective approach
for addressing optimization problems in various domains (Książek
et al., 2019). Unlike traditional optimization methods that often rely
on extensive domain knowledge or problem-specific heuristics,
reinforcement learning allows agents to discover effective
strategies through trial-and-error processes (Bui et al., 2020).
Reinforcement learning is well suited for sequential decision-
making. In many optimization problems, decisions must be made
in a sequential manner with each decision influencing future
decisions. Reinforcement learning algorithms, such as Q-learning
and policy gradient methods, explicitly model this sequential aspect
of decision-making by updating the agent’s policy based on the
outcomes of previous actions. This allows the agent to learn optimal
sequences of decisions that lead to desired outcomes (Huang et al.,
2021). In many real-world optimization problems, the agent may
not have complete information about the state of the system.
Reinforcement learning agents learn to make decisions based on
partial information, effectively reasoning about the most likely state
of the system and taking actions accordingly. This ability to handle
incomplete information makes reinforcement learning suitable for a
wide range of real-world optimization problems with uncertainties.

Deep reinforcement learning integrates deep learning and
reinforcement learning, which has been widely adopted for solving

VPP problems in the Internet of Energy (IoE) domain. For instance,
Sun et al. (Hua et al., 2019) mainly studied IoE management, and
reinforcement learning was adopted to formulate the best operating
strategies. Du et al. (2018) studied the IoE architecture design and
adopted reinforcement learning to optimize electric vehicle charging.
Liu et al. (2018) combined deep learning with reinforcement learning for
improving the generating unit tripping strategy. Combining
reinforcement learning and deep neural network, Lu et al. (2019)
presented a demand response algorithm for the IoE system based on
real-time execution. However, the reinforcement learningmethods in the
above studies are all based on Q-learning or deep Q-learning methods,
which are limited to discrete action spaces. To address this problem, Zhao
et al. (2022) adopted a proximal policy optimization (PPO)-based
reinforcement learning method, which contains both continuous and
discrete action spaces. Zhao et al. (2022) proved that the system cost is
reduced by 12.17% compared to the Q-learning method.

However, two problems still remain to be addressed in the
existing reinforcement learning-based VPP economic dispatch
method. The first problem is that the historical VPP information
is not considered in the above studies. Actually, the VPP economic
dispatch cannot follow the Markov decision process (MDP) since
the integration of renewable energy sources makes it a sequential
decision process problem. As a type of artificial neural network, the
recurrent neural network (RNN) is commonly used to address these
ordinal or temporal problems, which can extract the time series
information effectively. The gated recurrent unit (GRU), which
optimizes the update and reset gates, is another type of the long
short-term memory network. Compared to RNN, GRU offers
computational efficiency, superior long-term dependency capture,
effective vanishing gradient solution, and remarkable generalization
capabilities (Canizo et al., 2019). These key advantages make the
GRU an excellent choice for various sequential learning tasks,
particularly in domains where capturing long-term dependencies
is of paramount importance (Thanh et al., 2022).

The second problem is that the above methods all need a central
agent to coordinate the VPP supply–demand balance. Actually, the
VPP would not be managed with a single operator, and this
centralized management would give rise to various disadvantages,
including intensive information transmission and low-efficiency
operation. It is a foreseeable trend that the VPP would gradually
form a distributed manner, which could potentially satisfy
geographical end users. Various decomposition techniques,
including ADMM (Chen et al., 2018; Xu et al., 2019) and
consensus algorithm (Yang et al., 2013), have been successfully
applied for decentralized/distributed decision-making. Compared
with the central method based on the single agent, the multi-agent
optimization method can assign dispatch tasks to multiple agents for
processing, which improves the processing capacities and solution
efficiency. In addition, even if one agent fails or another agent is
added, the entire system can still maintain a stable operation. In
other words, the multi-agent approach will be more scalable,
adaptive, and robust (Gronauer et al., 2023).

1.3 Contribution

To sum up the above discussion, this paper proposes a gated
recurrent unit proximal policy optimization (GRUPPO)-based
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optimal VPP economic dispatch method. The contributions of this
article are as follows:

(1) The PPO-based deep reinforcement learning method is
developed to handle both continuous and discrete action
spaces. Compared with the traditional method, including
the deterministic optimization and robust optimization in
Mashhour and Moghaddas-Tafreshi (2010), Yang et al.
(2013), Chen et al. (2018), Liu et al. (2018), and Zhang
et al. (2018), the proposed approach can better deal with
the supply–demand uncertainties and meet the real-time
economic dispatch requirement for the VPP.

(2) The GRU network is equipped into the PPO-based deep
reinforcement learning method to form the GRUPPO
approach. Different from the reinforcement learning
approaches in Sun et al. (2017), Du et al. (2018), Liu et al.
(2018), and Lu et al. (2019), the proposed GRUPPO scheme
can fully consider the historical time series information for
economic decision-making, effectively reducing the VPP
operation cost.

(3) A multi-agent optimization framework is developed to
capture the distributed characteristics in the VPP. The
optimization framework adopts centralized training and
distributed execution, thereby performing higher flexibility
and scalability against complex situations.

The remainder of this paper is organized as follows: in Section 2,
the modeling of the VPP economic dispatch is established, and its
objective function is designed. In Section 3, the GRUPPO strategy
and its multi-agent framework are proposed for the optimal VPP
economic dispatch. In Section 4, case studies are conducted based on
the actual historical data. Conclusions are drawn in Section 5.

2 VPP economic dispatch

2.1 Framework and assumptions

The VPP leverages advanced information communication
technology to aggregate and coordinate multiple distributed
energy resources. The core concept of a VPP is aggregation and
coordination. The following assumptions and simplifications are
considered:

1) The VPP is assumed to have access to real-time data on
generation, demand, and grid conditions. These data are
necessary for the VPP to make decisions about power
generation and distribution.

2) The VPP is assumed to have efficient and reliable control and
communication systems to coordinate multiple distributed
energy resources.

3) Thermal properties of heating, ventilation, and air-
conditioning (HVAC), including heat generation, storage,
and transfer, are assumed to happen only in thermal nodes.

Though raising concerns over the inaccuracy issues, reasonable
assumptions and simplifications here could render the model a more
computationally tractable and more practically meaningful analysis.

2.2 VPP supply–demand model

The VPP components comprise thermal power generation,
photovoltaic generation, battery energy storage, the basic load,
the power flexible load, and the temperature-adjustable load.

1) Thermal power generation unit

The VPP relies on small-scale thermal power units to maintain
the flexibility and stability. The operation of thermal power
generation unit in the VPP meets the output constraints and the
ramp constraints:

PTH,min ≤PTH,t ≤PTH,max; (1)
RTH,min ≤PTH,t − PTH,t−1 ≤RTH,max, (2)

where PTH,t and PTH,t-1 are the thermal power output at moments t
and t−1, respectively; PTH,min, PTH,max, RTH,min, and RTH,max are
minimum output power, maximum output power, ramp-down
power, and ramp-up power of the thermal unit, respectively.

2) Power flexible loads

The power flexible loads, including LED lights with adjustable
brightness or electric fans with adjustable speed, can participate in
the VPP economic dispatch as a flexible load. In general, these loads
can be adjusted within the rated capacity range. Their total power
needs to meet the following constraints:

Ppf,min ≤Ppf,t ≤Ppf,max; (3)
Ppf, exp ,t � Ppf, exp ,t−1 + Ppf,t( ); (4)

Ppf, exp ,T ≥Ppf, exp, (5)

where Ppf,min and Ppf,max are minimum power and maximum
power of these loads, respectively; Ppf,exp,t, Ppf,exp,T, and Ppf,exp
are total power of the previous moment t, the total power of
the whole time period T, and the minimum power to meet user
needs, respectively.

3) Temperature flexible loads

Heating loads, including pitch heating, water heating, and
HVAC, are taken as temperature-adjustable loads. The common
feature of these heating loads is that the operating temperature t can
be adjusted according to artificial settings. The working temperature
t should be enforced to ensure the safe and reliable operation of
the equipment:

THVAC,t � THVAC,t−1 + a1 Tout,t − THVAC,t−1( ) + a2aHVACPHVAC,heat,t

− a2 1 − aHAVC( )PHVAC,cool,t;

(6)
aHVAC ∈ 0, 1{ }; (7)

Tmin ≤THVAC,t ≤Tmax, (8)
where Tmin and Tmax are the lower and upper temperatures,
respectively; a1 and a2 are the physical parameters which is
jointly calculated via thermal capacities and resistances; THVAC,t-1

is the temperature of the last time moment t−1; Tout,t represents the

Frontiers in Energy Research frontiersin.org03

Gao et al. 10.3389/fenrg.2024.1357406

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1357406


current outside temperature; PHVAC,heat,t and PHVAC,cool,t denote the
heating and cooling power of the air-conditioner, respectively; and
aHVAC is the running state of the air-conditioner, where aHVAC =
1 and 0 indicate that the air-conditioner is in a state of heating and
cooling, respectively.

4) Battery energy storage

Battery energy storage is an important energy storage, which has
the advantages of strong environmental adaptability, short
construction period, and convenient small-scale configuration.
The charge and discharge states of the battery energy storage
system must be limited to a certain range so as to avoid
overcharge or discharge:

SOCt � SOCt−1 + ηchaSOC,tPSOC,ch,t−1Δt
ESOC

− 1 − aSOC,t( )PSOC,dis,t−1Δt
ηdisESOC

;

(9)
aSOC,t ∈ 0, 1{ }, (10)

where SOCt and SOCt-1 are the current charge of the battery energy
storage and the charge of the last time t−1, respectively; ηch, ηdis,
PSOC,ch,t-1, and PSOC,dis,t-1 are charge efficiency, discharge
efficiency, charge power, and discharge power, respectively; Δt
is the unit time; and aSOC,t is the status of the battery charge and
discharge, where aSOC,t = 1 indicates that the battery is being
charged and aSOC,t = 0 indicates that the battery is being
discharged.

In addition, the operation of the battery energy storage needs to
meet the battery capacity limit:

SOCmin ≤ SOCt ≤ SOCmax; (11)
0≤PSOC,ch,t ≤PSOC,ch,max; (12)
0≤PSOC,dis,t ≤PSOC,dis, max, (13)

where SOCmin and SOCmax represent the minimum and maximum
battery capacities, respectively; PSOC,ch,max and PSOC,dis,max are the
maximum charging and discharge power, respectively.

5) Power balance

With the regulation from energy storage and market buying/
selling, power generation can be used to fulfill the power demand:

Pbuy,t + PTH,t + PSOC,dis,t + PPV,t � PSOC,ch,t + Ppf,t + PHVAC,heat,t

+ PHVAC,cool,t + Psell,t,

(14)
where Pbuy,t, PPV,t, and Psell,t are the purchased electricity power,
photovoltaic power, and electricity sold, respectively.

2.3 Objective function

The objective function in the VPP economic dispatch consists of
the coal consumption cost, battery degradation cost, air-
conditioning discomfort cost, and buying/selling electricity cost.

1) Coal consumption cost

The coal consumption cost function of the thermal power unit
can use the quadratic function related to the unit output:

CTH � ∑
T

t�1
a · P2

TH,t + b · PTH,t + c, (15)

where a, b, and c are the coefficients of the quadratic function; PTH,t
is the power of thermal power. Through the linearization of the
quadratic function, the cost function of the coal consumption is
divided into M parts and denoted by

CTH � ∑
T

t�1
∑
M

m�1
Km,tPTH,m,t + Ct; (16)

Ct � a · P2
TH,min + b · PTH,min + c;

0≤PTH,m,t ≤
PTH,max − PTH,min

M
;

PTH,t � ∑
M

m�1
PTH,m,t + PTH,min;

Km � 2a 2m − 1( )PTH,max − PTH,min

M
+ b,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where Km,t is the slope of section m at time t of the coal
consumption function after piecewise linearization; Ct is the
coal consumption caused by starting up the thermal power unit
and running at the minimum output PTH,min; and PTH,m,t

represents the output power of the thermal power unit in the m
section at the t period.

2) Battery degradation cost

The battery degradation cost can be represented by

CSOC � ∑
T

t�1
μSOC PSOC,ch,t + PSOC,dis,t( )Δt, (18)

where T, Δt, PSOC,ch,t, and PSOC,dis,t are dispatch cycle, unit time,
charging power, and discharge power, respectively; μsoc is the unit
average/amortized degradation cost of charging/discharging over
the whole service time, which can be calculated with its capital cost,
cycling numbers, capacity, and reference state of charge (Xu
et al., 2021).

3) Air-conditioning discomfort cost

While the constraints (Eqs 6–8) enforce the physical operation
of air-conditioning, the discomfort level is introduced to measure
the degree of satisfaction. The air-conditioning discomfort cost is
related to the set temperature and current temperature.

CHVAC � ∑
T

t�1
μHVAC Tset − THVAC,t( )2Δt, (19)

where Tset and THVAC,t are set temperature and current time period
temperature, respectively; μHVAC is the discomfort cost coefficient,
which is used to measure the discomfort level.

4) Buying and selling electricity costs

The buying and selling electricity costs are calculated as follows:
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Cbuy � ∑
T

t�1
abuy,tλbuy,tPbuy,t − 1 − abuy,t( )λsell,tPsell,t( )Δt; (20)

abuy ∈ 0, 1{ }, (21)

where abuy,t denotes the status of buying and selling electricity in the
VPP, where abuy = 1 means that the VPP buys electricity from the
market and abuy = 0 means that the VPP sells electricity to the
market; λbuy,t and λsell,t are electricity buying price and electricity
selling price, respectively.

The objective function is defined as

C � λTHCTH + λSOCCSOC + λHVACCHVAC + λbuyCbuy, (22)

where λTH, λSOC, λHVAC, and λbuy represent the cost coefficients of
the coal consumption, battery degradation, air-conditioning
discomfort, and buying and selling electricity, respectively.

3 The GRUPPO-based optimal VPP
economic dispatch

In this section, the designed GRUPPO-based optimal VPP
economic dispatch will be presented. First, the VPP economic
dispatch is expressed as a partially observable Markov decision
process (POMDP). Then, a GRUPPO-based deep reinforcement
learning approach is introduced to optimize the VPP
economic dispatch.

3.1 POMDP for the VPP economic dispatch

When using the reinforcement learning method to solve
problems, MDP is usually used to describe the environment.
MDP is characterized by the environment that is completely
observable, and the current state can fully represent the process.
That is, according to the current state, the next state can be
deduced, the current state captures all relevant information
from history, and the current state is a sufficient statistic for
the future. However, for the VPP economic dispatch problem,
the model contains random renewable energy. In the dispatch
process, the next state of the VPP is not only completely
determined by the current state but also depends on external
random factors. The model state is not completely observable,
and it is reasonable to express the VPP economic dispatch problem
as a POMDP. Its structure diagram is shown in Figure 1. Generally,
POMDP can be realized as a 7-tuple model {S, A, s, a, T, R, λ}
(Wang et al., 2023).

The VPP model shown in Figure 1 represents the environment,
and the agent is a hypothetical entity responsible for the VPP
economic dispatch. The agent makes a corresponding decision
based on the state of the environment, where the state and
decision represent the observations and actions of the agent,
respectively. The environment accepts the action of the agent and
produces the corresponding change, which depends on the state
transfer function T(st, at, χ). The environment gives the
corresponding reward according to the agent action, and the
reward received by the agent is related to the objective function
of the VPP economic dispatch.

1) Environment

Considering the supply–demand uncertainties, the
reinforcement learning environment operates according to the
individual device models in Chapter 2 and also needs to satisfy
their physical constraints in Chapter 2. These devices include
thermal power generation, photovoltaic power generation,
battery storage, base load, flexible load, and temperature-
adjustable load.

2) Agent

The VPP dispatch agent is a deep neural network, which obtains
the reward by constantly interacting with the environment and then
updates the neural network parameters according to the reward. The
interaction process between the agent and environment is to output
the VPP dispatch instructions through the neural network and
calculate the corresponding objective function value. The
construction process of the specific agent will be described in
detail in the next section.

3) State and observation

The agent needs to implement the corresponding action
according to the environment state, which is the state space. For
the VPP economic dispatch, the state observation space st ∈ S of the
agent is shown as follows:

st � λbuy,t, λsell,t, PTH,t, SOCt, THVAC,t, PPV,t, Pbase,t, Ppf, exp ,t{ }. (23)

4) Action space

The action carried out by the agent according to the
environment state is the action space. Lower-dimensional
actions help the agent learn faster. Since battery charging and
discharging cannot take place simultaneously, the charging and
discharging of the battery are combined into a single action
(instead of positive and negative). The same applies to the air-
conditioner. For the economic dispatch task, the action space is
expressed as follows:

at � PTH,t, PHVAC,t, PSOC,t, Ppf,t{ }; (24)
PSOC,t � aSOC,tPSOC,ch,t − 1 − aSOC,t( )PSOC,dis,t; (25)

PHVAC,t � aHVAC,tPHVAC,heat,t − 1 − aHVAC,t( )PHVAC,cool,t. (26)

5) State transition

Based on a policy π(at|st), the agent could calculate and perform
an action after its current observation st. Afterward, based on the
state transition function st+1 = T(st, at, χ), the environment proceeds
to st+1, which is impacted by state st, actions at, and the
environmental randomness χt.

Here, χt = [λbuy,t, λsell,t, THVAC,t, PPV,t, Pbase,t] indicates the
exogenous states, which are unrelated to the agent’s actions and
show model variability. In general, reinforcement learning could
cope with such variabilities in a data-driven way. It does not rely on
precise probability uncertainty distributions and updates state
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characteristics from the dataset. The state of χ′t = [PTH,t, SOCt,
THVAC,t, Ppf,exp,t] has no association with the external environment
but is associated only with the policy π(at|st). The state update is
required to satisfy the system constraints.

6) Reward

The reward function is to drive the agent’s decision-making, and
reward signals can be of any value (Canizo et al., 2019). The reward
function is generally set in the range of 0–1 to enhance and ensure
the convergence and optimality. Since the goal is to minimize the
dispatch cost, the establishment function of each time step is
designed as follows:

rt � λTHCTH,t + λSOCCSOC,t + λHVACCHVAC,t + λbuyCbuy,t. (27)

7) Objective

Each episode is divided into discrete time nodes t∈{0,1,2, . . . ,T}.
The agent starts from an initial state s0. At each time point t, the
agent moves to the next state st+1 based on the observation of the
environment state st, action at, and an immediate reward rt. Based on
this, the agent creates its trajectories of observations, actions, and
rewards: τ = s0, a0, r0, s1, a1, r1 . . . , rT. In the POMDP, the agent seeks
an optimal policy π(at|st) for the maximization of the
discounted reward:

R � ∑
T

t�0
γtrt, (28)

where γ∈[0,1] is the discount factor to decide the importance of
immediate and future rewards.

3.2 GRUPPO-based deep
reinforcement learning

In this subsection, a reinforcement learning method called
GRUPPO is used for optimizing the VPP economic dispatch
based on the POMDP. The GRUPPO approach includes the
following three crucial steps:

1) Update the dispatch policy via a standard PPO algorithm

PPO, as a policy gradient algorithm, has been employed in a
multitude of optimization models. Generally, PPO is featured by an
actor–critic network and is able to handle high-dimensional
continuous spaces. Through the Gaussian distribution, a
stochastic policy πθ (at|st) of the actor network could be
developed to feature the continuous action spaces in (24). It gives
the standard deviation σ and mean μ, sampling the action at on st for
all VPP economic dispatch agents. The PPO renews the policy πθ (at|
st), maximizing the following clipped surrogate.

Jt θ( ) � Et min ζ tÂt, clip ζ t, 1 − ε, 1 + ε( )Ât( )[ ], (29)

where the product of ζt and Ât is the policy gradient; ζt is the
probability ratio clipped by clip(.). ε∈[0,1] is used to limit the policy
gradient update against its old version, if ζt is beyond [1−ε, 1+ε]. This
technique ensures that the policy gradient is updated to a stable area.

ζt in the PPO clipped policy (29) is expressed as follows:

ζ t � πθ at st|( )
πold
θ at st|( ), (30)

where πθ (at|st) and πθ
old (at|st) are the current and old policies,

respectively. The advantage function Ât is expressed as follows:

FIGURE 1
POMDP of the VPP economic dispatch.
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Ât � δt + γλ( )δt+1 + · · · + γλ( )T−t+1δT−1; (31)
δt � rt + γVϕ st+1( ) − Vϕ st+1( ), (32)

where Vϕ(s) denotes the state-value function approximated by a
critic network parameterized by ϕ; γ ∈ [0,1] and λ ∈ [0,1].

2) Introduce GRU into PPO to consider the time characteristics

Since the proposed VPP economic dispatch model is partially
observable, the Markov property is not valid. Compared with MDP,
the next state in a POMDP is not completely determined by the
present observations and actions (Ma et al., 2023). Conversely, the
complete history of the observation sequences ought to be taken into
account. By adding a GRU layer before the multi-layer perceptron
(MLP) to concisely capture the history, recursion is introduced to
deal with the non-Markovian nature of the POMDP.

GRUs are well suited for capturing and modeling time series
characteristics due to their ability to control information flow using

gates and adapt to long-term dependencies. GRUs comprise two
gates: the reset gate (r) and the update gate (z). The reset gate
controls how much of the previous hidden state is passed on to the
next time step, while the update gate determines how much of the
new input information is incorporated into the updated hidden
state. The reset gate effectively “forgets” or disregards part of the
previous state, allowing the network to focus on relevant
information and adapt to changing patterns in the time series. By
using gates to control the flow of information, GRUs can handle long
sequences more effectively than traditional RNNs. They are less
likely to suffer from exploding or vanishing gradients, which can be a
problem for long sequences. GRUs also have fewer parameters than
some other RNN variants, making them more efficient and less
prone to overfitting. When applied to a time series analysis, GRUs
can capture dependencies across time steps and generate meaningful
representations of the sequence data. GRUs can also be combined
with other techniques, such as attention mechanisms, to further
improve their performance in specific tasks.

The GRU and actor–critic networks are given in Figures 2, 3.

rt � σ Wrxt, Urht−1( ); (33)
zt � σ Wzxt, Uzht−1( ); (34)

~ht � tanh Wcxt, Uc rt · ht−1( )( ); (35)
ht � zt · ht−1 + 1 − zt( ) · ~ht, (36)

where rt is the reset gate; zt is the update gate;Wr,Ur,Wz,Uz,Wc, and
Uc are neural network weight matrices; σ is the sigmoid activation
function; and tanh is the hyperbolic tangent activation function.

The leveraged GRUPPO method is used to apply the PPO
algorithm together with the recurrent neural network. The actor
and critic networks include GRU and MLP layers. The network
structure is regulated via tuning the amounts of network layers and
neurons. For the activation function, tanh is chosen in the GRU layer
and the output layer of MLP. In other layers of MLP, ReLU is used
due to its fast convergence and low computational complexity.
However, the phenomenon of gradient disappearance and
gradient explosion will occur when the ReLU is used directly in
the experiment. In order to solve the problem of gradient

FIGURE 2
GRU network.

FIGURE 3
Actor–critic network.
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disappearance and gradient explosion caused by the ReLU activation
function, the layer is standardized to the neural network. In the
actual experiment, this operation can effectively alleviate the
phenomenon of gradient disappearance and gradient explosion
so that the neural network can be trained normally.

The VPP dispatch problem using the PPO algorithm is realized
through the neural network. The actor network uses the Gaussian
strategy to output mean and variance. πθ obeys the following
Gaussian distribution:

πθ a | s( ) � 1���
2π

√
σθ s( )e

− a−μθ s( )( )2
2σθ s( )2 , (37)

where a represents the action taken in state s; θ represents the policy
function parameters; μθ(s) represents the average value of action a in

state s; and σθ(s) represents the standard deviation of action a in state
s. The real action is randomly sampled according to the mean and
standard deviation of the actor network output. The other network is
the critic network, which outputs the value of the state according to
the current state of the VPP.

3) Construct the safety layer to meet the VPP model
constraints

The training reinforcement learning algorithm is an unconstrained
optimization algorithm via deep neural networks, which disregards
model constraints. Deploying the reinforcement learning actions to the
VPP would violate the constraints, and thus a safety layer is introduced.
It shows that the calculated reinforcement learning actions would be
slightly updated (only when facing system safety).

FIGURE 4
Performance comparison of PPO and GRUPPO.

FIGURE 5
Results of the economic dispatch of the VPP under the GRUPPO approach.
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Safe operation is the premise of VPP economic dispatch
tasks. For the VPP economic dispatch, the physical
constraints are to ensure the normal operation, while the
illegal actions will violate the constraints. In general, there are
two ways to ensure the constraint satisfaction of the action
output. The first method is to add the penalty terms for the
constraint violations to the reward so that the agent can avoid
making illegal action. The other method is to set the agent to take
action within the allowable range. The first step is to calculate the
boundary between the current state and the constraint. The
action lower boundary a− and upper boundary a+ are
calculated based on the current state st and constraints as follows:

a−t � P−
TH,t, P

−
HVAC,t, P

−
SOC,t, P

−
pf,t{ }; (38)

a+t � P+
TH,t, P

+
HVAC,t, P

+
SOC,t, P

+
pf,t{ }. (39)

The second step is to cut the action according to the clip
function. a is a constant value when the action meets the above
range. When action a exceeds the boundary, the clip function is used
to limit the action a within its boundary.

at � clip at, a
−
t , a

+
t( ). (40)

For the GRUPPO training process, the agent is equipped with πθ
(a|s) to interact with the environment. Then, the trajectory τ is

collected and utilized to evaluate the discounted reward

R̂t � ∑
T

h�t
γh−trh. The goal of πθ (a|s) is to find actions that are

FIGURE 6
Results of the economic dispatch of the VPP under the PPO approach.

FIGURE 7
Results of the non-economic dispatch.
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potentially more rewarding so that they correspond to greater
probabilities, and thus the strategy is more probable to choose
them. For this purpose, the maximization objective function can
be defined as follows:

max
θ

Jα θ( ) � max
θ

Eτ~πθR τ( ) � max
θ

∑
τ

P τ; θ( )R τ( ). (41)

According to the PPO algorithm, the corresponding gradient
formula can be derived. Ât can also be computed with the state-value
function Vϕ(s) and trajectory τ. The actor network can be trained
while maximizing

Ja θ( ) � ∑
T

t�1
min ζ tÂt, clip ζ t, 1 − ε, 1 + ε( )Ât( ). (42)

Accordingly, the critic network of GRUPPO can be trained by
minimizing the following loss function of the mean-
squared error:

Jc ϕ( ) � ∑
T

t�1
Vϕ st( ) − R̂t( )2. (43)

A weighting update for the actor and critic networks is

θ ← θ + αθ∇θJ
a θ( ); (44)

ϕ ← ϕ + αϕ∇ϕJ
c ϕ( ), (45)

where αθ and αϕ are the learning rates of actor and critic networks,
respectively.

FIGURE 8
Operational results of the battery energy storage.

FIGURE 9
Operational results of the flexible adjustable load power.
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Finally, the pseudo-code of GRUPPO is given in Algorithm 1.
First of all, GRUPPO initializes the agent’s policy network and value
function network. The agent collects empirical data by interacting
with the environment and stores these data for subsequent training.
Then, the value function network is used to compute the advantage
function of the agent. Finally, the agent’s strategy network is updated
until a satisfactory level of performance is reached.

1: Initialize θ, ϕ for the actor–critic network

2: Set learning rates αθ, αϕ

3: For episode (i.e., an operating day) data � 1 to E

4: Initialize VPP state s0
5: For the VPP agent, create a new trajectory τ = []

6: For each time step (e.g., 1 hour) t � 1 to T

7: Chooses PPO action at according to observation st via

the policyπθ (a|s)

8: Correct action at values based on the security layer

9: Observes reward rts and the next observation st+1
10: Stores the sample experience into trajectory τ + =

[st, ats, rts]

11: Updates observation st → st+1 for the VPP agent

12: End for

13: Approximates discounted reward-to-go r̂t r and

advantage function Ât utilizing trajectory τ

14: Updates the parameters θ, ϕ of networks in (44)–(45)

15: End for

Algorithm 1. GRUPPO for the agent.

3.3 Multi-agent framework for GRUPPO

When using a single agent for the VPP economic dispatch, the
stable operation can be drastically affected by agent failure or a new
plug-and-play framework. The motivation behind the multi-agent
framework is to harness the power of autonomous agents and

enable collaborative problem-solving in VPP systems. By distributing
tasks among multiple agents, the multi-agent framework enhances
scalability, robustness, adaptability, and coordination. They allow for
parallel processing, fault-tolerance, and efficient utilization of resources,
making them suitable for various domains and dynamic environments.
The multi-agent-based GRUPPO strategy can be developed based on
the above GRUPPO approach. In the multi-agent GRUPPO method,
each agent is directly responsible for its own device or area, which
makes it easy to expand. Here, the detailed implementation method of
the multi-agent GRUPPO is given as follows:

st ∈ S, si,t ∈ st, (46)
where st represents the overall observation value of the agent at
time t; si,t represents the observation value of the i agent
at time t.

The training steps for the multi-agent framework differ from
those of the single-agent framework, specifically in the computation
of gradients and rewards. The reward function needs to compute the
overall value since multiple agents are included. During training, the
actor and critic network update of each agent i is

Ja θi( ) � 1
N

∑
N

i�1
∑
T

t�1
min ζ i,tÂi,t, clip ζ i,t, 1 − ε, 1 + ε( )Âi,t( ); (47)

Jc ϕi( ) � 1
N

∑
N

i�1
∑
T

t�1
Vϕ si,t( ) − R̂t( )2; (48)

θi ← θi + αθi∇θiJ
a θi( ); (49)

ϕi ← ϕi + αϕi∇ϕiJ
c ϕi( ), (50)

where ζt, Ât, and Vϕ(s) represent probability ratio, advantage function,
and state-value function, respectively; αθ and αϕ denote the learning
rates of actor and critic networks of the ith device, respectively.

Finally, the pseudo-code of multi-agent GRUPPO is given in
Algorithm 2. First of all, multi-agent GRUPPO initializes the

FIGURE 10
Operational results of the thermal power unit.
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policy network and the value function network of each agent. The
agents collect experience data by interacting with the environment
and store these data in a shared experience pool so that other
agents can access and learn from it. Then, centralized-distributed
training is performed, where agents perform training locally but
share global information to facilitate better collaborative learning.
A value function network is utilized to compute the advantage
function for each agent. Finally, the policy network is updated for
each agent until a satisfactory level of performance is reached.

Initialize θi, ϕi for the actor–critic network

Set learning rates αθ, αϕ

For episode (i.e., an operating day) data � 1 to E

Initialize both the local observation si,0 and

global state s0
For each time step (e.g., 1 hour) t � 1 to T

For VPP agents, i = 1 to N do

Chooses PPO action ai,t according to observation si,t via

the policy πθi (a|s)

Correct action ai,t of all agent values based on the

security layer

Observes reward rts and the next observation si,t+1
Stores the sample experience into trajectory τi + =

[si,t, ai,ts, rts]

End for

Updates observation si,t → si,t+1 for the VPP agent i

End for

For VPP agents, i = 1 to N

Approximates discounted reward-to-go r̂t r and advantage

function Âi,t utilizing trajectory τi

Updates the parameters θi, ϕi of networks in (49)–(50)

End for

End for

Algorithm 2. Multi-agent GRUPPO for agents.

4 Case studies

In this section, case studies are conducted to show the
effectiveness and advantages of the proposed GRUPPO approach
for the VPP economic dispatch. The simulation tests are undertaken
based on the actual historical data, which are compared with the
other two schemes: the PPO scheme and the non-economic dispatch
scheme. The detailed parameters of electrical generation, storage,
and consumption can be found in Xu et al. (2020), Wang et al.
(2023), and Xu et al. (2023).

4.1 Comparison of the convergence and
stability performance

In order to compare the stability and convergence, the
GRUPPO and PPO algorithms are implemented to optimize
the VPP economic dispatch. In order to avoid the randomness
of the test results, 10 different random seeds are used to conduct
1,000 rounds. In order to capture the uncertainties of PV power
and base load, the Monte Carlo method is implemented to obtain
1,000 scenarios for simulation, where forecasting errors were
assumed to follow a normal distribution function.
Subsequently, the optimization results of 10 groups of
economic dispatch are recorded and depicted in Figure 4. The
mean variances of the corresponding 1,000 rounds are also
calculated to further explain the differences in stability and
convergence performance.

It can be seen in Figure 4 that both methods can achieve
almost stable rewards after approximately 30 rounds. However,
the reward in the PPO scheme shows a significant increase after
420 rounds in the test, i.e., from approximately −4,600 to −4,900. In
contrast, the reward of the proposed GRUPPO still fluctuates up and
down near −4,600. Thus, it can be concluded that the GRUPPO
approach has better convergence and is more stable to optimize the

FIGURE 11
Operational results of the HVAC power.
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VPP economic dispatch. These results also illustrate that the
introduction of the GRU network into PPO can fully consider the
historical time series information and effectively improve the
performance of the PPO algorithm.

4.2 Comparison of the VPP
economic dispatch

Based on the actual data, the VPP economic dispatch results are
tested using GRUPPO and PPO approaches. The general
supply–demand results under three schemes are shown in Figures
5–7, and Figures 8–11 depict the detailed operational results of VPP
components. Compared with other two schemes, the battery energy
storage under the GRUPPO approach can appropriately store the
excess photovoltaic power for later release. It can be observed that the
flexible load of the VPP can increase its demand as the PV generation
increases. In contrast, in the non-economic dispatch scenario, these
loads are evenly distributed over the 24-h period. Although the PPO
method can also dispatch all components, the flexible loads do not
exhibit higher demand during the high PV generation for 10–15 h.
This would increase the pressure on the thermal power units and the
power purchase cost.

It can be seen in Figure 10 that the power generation of the
thermal power units in the GRUPPO method shows more intense
fluctuations compared to that in the other two methods. This
indicates that the proposed method can better adjust the thermal
power generation to follow the changes in PV power, thereby
reducing the VPP operating costs. Moreover, it can be observed
from Figure 11 that the HVAC power increases with the increase in
PV power. In contrast, in the absence of the economic dispatch, the
HVAC power changes with the daytime temperature. Although
PPO can also dispatch the HVAC power to follow the power
fluctuation, its sensitivity is lower than that of the GRUPPOmethod.

The overall operating costs of three schemes are 4,322$, 4,431$, and
4,620$, respectively. It is evident that the operating cost of the GRUPPO
method is the lowest. Specifically, compared to the PPOmethod andnon-
economic dispatch scheme, the proposed GRUPPO method reduces the
operating costs by 2.4% and 6.5%, respectively. Overall, these results
demonstrate the effectiveness and superiority of the proposed GRUPPO
method in reducing the VPP economic dispatch costs.

5 Conclusion

This paper proposed a deep reinforcement learning-based VPP
economic dispatch framework. The VPP economic dispatch is
captured via a POMDP, which is then solved using a novel
GRUPPO approach. The findings of this paper are summarized
as follows:

(1) Compared with PPO, the proposed GRUPPO approach can
make full use of the time series characteristics, improving its
convergence and stability performance.

(2) Based on the POMDP, GRUPPO learns to make decisions
based on partial information, which is suitable to handle real-
world optimization problems with uncertainty.

(3) Both continuous and discrete actions can be effectively
handled using the proposed GRUPPO approach, thereby
achieving a maximum cost reduction of 6.5%.

(4) The GRUPPO strategy can outperform other methods in
higher economy and scalability, exhibiting huge development
and application potentialities in the high-renewable modern
power system.

Electrical market development has become an inevitable trend
under the background of economic globalization and industrial
revolution. Further research would focus on strategic offering of
the VPP in the electrical market.
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