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The household energy management system (HEMS) has become an important
system for energy conservation and emission reduction. In this study, home
energy management considering carbon quota has been established. Firstly, the
household photovoltaic output model, load model of various electrical
appliances, battery load model, and charging and discharging of electric
vehicles (EVs) model are established. Secondly, the carbon emission and
carbon quota of household appliances and EVs are considered in these
models. Thirdly, the energy optimization model of minimum the household
user’s total comprehensive operation cost with the minimum total electricity
consumption, carbon trading cost, battery degradation cost, and carbon quota
income are proposed, taking into account constraints such as the comfort of
users’ energy use time. Subsequently, the improved particle swarm optimization
(IPSO) algorithm is used to tackle the problem. Compared to the standard particle
swarm optimization (PSO), the IPSO has significantly improved the optimization
effect. By comparing the optimization results in different scenarios, the
effectiveness of the strategy is verified, and the influence of different carbon
trading prices on optimal energy scheduling has been analyzed. The result shows
that the comprehensive consideration of carbon trading cost and total electricity
cost can reduce the household carbon emissions and the total electricity cost of
the household user. By increasing the carbon trading price, the user’s carbon
trading income and the EV carbon quota income increase, and the overall
operating cost decreases; the guidance and regulation of carbon trading price
can make a valuable contribution to HEMS optimization. Compared to the
original situation, the household carbon emissions are reduced by 14.58 kg, a
decrease of over 21.47%, while the total comprehensive operation cost are
reduced by 14.12%. Carbon quota trading can guide household users to use
electricity reasonably, reducing household carbon emissions and the total cost of
household electricity.

KEYWORDS

home energy management, comfort, carbon quota, the battery degradation, IPSO

1 Introduction

With the economy increasing and society developing, carbon emission reduction has
become a hot research topic. The proportion of household electricity in economic and social
development is gradually increasing, and household energy management is becoming more
important. Analyzing users’ electricity consumption habits, adjusting their electricity
consumption mode, and realizing energy-saving and low-carbon operation will help to
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improve power system operation. It is effective in achieving the dual
carbon goal on the end user by reducing their electricity
consumption cost and carbon emissions.

The studies using home energy management systems (HEMSs)
essentially pursue the optimal energy consumption scheme for
energy users.

Researchers have focused the optimization problem on various
objectives. The objective of many studies is to minimize operation
cost (Javadi M S et al., 2020; Lu Q et al., 2020; Sarker E et al., 2020;
Thabo G et al., 2021; Ubaid ur Rehman et al., 2022). Sarker E et al.
(2020) studied a model of household load management, aiming to
minimize the total electricity cost. The response effects of different
types of households to price demand with the goal of minimizing
cost were analyzed. Javadi M S et al. (2020) proposed an effective
HEMS for the self-scheduling of users, and this model considered a
dynamic pricing scheme. Lu Q et al. (2020) proposed a model
aiming to minimize the peak load and electricity cost to better
coordinate household appliances. Thabo G et al. (2021) studied the
impact of user’s price and incentive demand response on dynamic
economic dispatch and established a multi-objective model
considering operating costs and renewable energy penetration.
Meanwhile, Marcos Tostado-Véliz et al. (2022) developed a
HEMS that incorporates three different strategies of demand
response; it also used a novel scenario-based approach. Marcos
Tostado-V´eliz et al. (2023) proposed a fully robust model and used
it to solve the inherent uncertainties whichmay arise in home energy
management. H. Merdanoglu et al. (2020) focused on optimal
appliance power to minimize energy cost. The uncertainties from
renewable energy, the end user, and the Real-time Transport
Protocol were incorporated into the mixed integer linear
programming problem through simple stochastic models. Based
on the purpose of reducing electricity charges, the above documents
considered the guidance of price and incentive on household energy
scheduling, but the user’s comfort requirements and other aspects
were not considered.

As mentioned above, these studies ineluctably require users to
compromise between electricity costs and comfort. This would
inherently change user’s energy comfort. Some researchers have
studied the end user’s comfort/discomfort from a multi-objective
optimization perspective. A.H. Sharififi et al. (2019) proposed a
method that can reduce electricity cost while taking into account the
residents’ comfort, and it can improve the peak-to-average ratio.
Pamulapati T et al. (2020) established a multi-objective optimization
model for intelligent electrical equipment based on economy and
comfort. ALIC O et al. (2021) considered the compromise between
user cost and comfort goal and analyzed the impact of various
electricity prices on user energy management. The above studies
considered the comfort of electricity, but the carbon emission cost
and carbon trading mechanism of the user were ignored. Li ZK et al.
(2020) established a bi-layer optimization model which mainly
considered the power station and fully participating
householders. Lu Q et al. (2020) aimed to minimize the energy
consumption cost and comfort deviation, and it built six modeled by
comfort deviation for different kinds of uncertain behaviors.

Optimizing the charging/discharging behaviors of both EVs and
energy storage in HEMSs has been widely discussed. Wang S et al.
(2020) and Marcos Tostado-V´eliz et al. (2023) studied the cost of
battery degradation. Sun C et al. (2016) focused on the economics

between lithium-ion battery aging and economic performance in
energymanagement. The battery degradation cost will affect the EVs
and energy storage participating in home energy management. To
encourage the users to participate in home energy management, a
main method is to design a reasonable method for battery
degradation costs’ compensation. Wang Y et al. (2020) and Nie
Q et al. (2022) thought the carbon trading mechanism is an
important way to compensate for the battery degradation cost.
Lu Q et al. (2021) proposed a two-level community integrated
energy service system optimization model. Gao JW et al. (2021)
proposed a comprehensive energy multi-objective scheduling
model, which considered the utility of decision makers. The
communities’ carbon emissions are taken into account. Tan QL
et al. (2019) proposed a model with multiple hybrid energy
scheduling for an integrated power system, and it considered five
different scheduling modes and a dynamic carbon trading system.
Cheng X et al. (2021) built a carbon emission flow model and used it
to reduce carbon emissions by carbon trading. These studies on
carbon emissions pay close attention to the energy sector,
production enterprises, and the community integrated energy,
but the end-users in HEMSs are often ignored. This paper will
focus on the optimization of the HEMS considering user’s
satisfaction and carbon emission.

Ali Abdelrahman O. Ali et al. (2022) have reviewed some
optimization schedule methods, which include the mathematical,
metaheuristic, and artificial intelligence optimization techniques.
Mathematical techniques contain two main groups: linear
programming and non-linear programming. Rahima S et al.
(2016) conducted a study verifying that the mathematical
methods cannot deal with large number of different domestic
appliances having unpredictable, non-linear, and complicated
energy consumption models. H. Merdanoglu et al. (2020) and El
Sayed F. Tantawy et al. (2022) thought heuristic optimization is a
strategy intended to solve any problem more efficiently when
mathematical approaches are too slow to solve complex
problems. Many heuristics optimization scheduling methods are
available for HEMS, such as Genetic Algorithm (GA) (Li S et al.,
2019; J. Zupan cic et al., 2020; A.H. Sharififi et al., 2019), PSO
(Rahima S et al., 2016), and hybrid algorithm A (Ahmad et al., 2017;
Z. A. Khan et al., 2019). To avoid the local optimal phenomenon in
the solution, improved algorithms are used to quickly solve the
model (Rezaee Jordehi A et al., 2019; Zhu J et al., 2019). Shintaro
Ikeda et al. (2019) used differential evolution (DE) to apply district
energy optimization, and it was proved the method has high
potential to provide comprehensive district energy optimization
within a realistic computational time. Ima O et al. (2019)
proposed an improved enhanced DE for implementing demand
response between aggregator and consumer. Its results show that the
algorithm is able to optimize energy usage by balancing load
scheduling and the contribution of renewable sources while
maximizing user comfort and minimizing the peak-to-average
ratio. It is clearly justified that heuristic optimization is suitable
for HEMSs. The IPSO has been proven to have good performance in
terms of computational speed and solution accuracy.

The main contributions of this paper are as follows:

(1) This paper classifies the loads and establishes models for
different loads, and the charging/discharging of household
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batteries (BT) and electric vehicles (EV) are considered. The
load working characteristics and power demand are taken as
constraints, and the energy consumption time of time-
transferable loads is used to represent user satisfaction.

(2) The household user carbon trading cost model and carbon
quota income model for EVs are established, and the battery
degradation cost is considered. The optimal scheduling model
of the HEMS is formed which aims to minimize the total
electricity cost and carbon trading cost, while obtaining the
EV carbon quota income of household users. It explores the
allocation of household energy and EV carbon.

(3) The IPSO algorithm is used; several scenarios are designed in
the calculation examples and the sensitiveness of carbon
trading price is analyzed. When carbon trading is
considered, the system obtains the carbon quota income,
the comprehensive total cost is reduced without carbon
trading, and its carbon emissions are also reduced.

The rest of the paper is as follows: Section 2 introduces the
HEMS framework; Section 3 constructs the load model; Section 4
establishes the household energy scheduling model considering
electricity price, user’s energy consumption time, carbon quota
mechanism, and battery degradation; in Section 5, the IPSO is
used to solve the problem. In Section 6, examples are given. The
household user’s energy management objective under fixed carbon
trading price and changing carbon trading price on dispatching are
analyzed. Section 7 gives some conclusions.

2 The HEMS framework

The HEMS is supported by advanced measurement monitoring
and control technology, a bidirectional communication network,
and artificial intelligence technology. The composition for the
HEMS is shown in Figure 1. It shows the proposed HEMS
integrates the photovoltaic power, household electricity
load, and BT.

For the effective dispatch of the household electricity load, this
study has classified the load into two categories: uncontrollable load
and controllable load. The uncontrollable load covers all necessary
appliances (e.g., light, television (TV), computer, and refrigerator).
Because of the user’s habits with these appliances, these devices can
acquire power at any time without interruption.

The other category is controllable load, including time-
transferable load and power-adjustable load. The power-
adjustable loads (e.g., EV, water heater, and air conditioner) are
scheduled with the user’s preferences. For the time-transferable load,
it includes the electric cooker, washing machine, dishwasher, etc.
Based on the reasonable electricity price and corresponding
constraints, the HEMS can execute the optimal scheduling for
the time-transferable loads.

This model contains the time of use pricing, photovoltaic power,
and the demand of household electricity loads considering
consumer personal preferences. This paper mainly focuses on the
energy management and carbon trading of the HEMS, the HEMS
structure is shown in Figure 1. The purpose of the HEMS is to reduce

FIGURE 1
HEMS structure.
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the electricity cost, satisfy the electricity needs, and reduce the
carbon emissions for household users, and it can also assist in
peak load shifting.

3 Load modeling

The usage status of the uncontrollable load has a huge
impact on normal life. The time-transferable load will not be
interrupted during the whole operation time, the power
consumption of such loads generally accounts for a large
proportion, and consumers can transfer such loads from
peak hours to other periods based on electricity price or the
users’ preference. The power-adjustable load can be switched on
and off under the condition of meeting the basic working hours,
and the power can be adjusted according to the demand.

3.1 Power-adjustable load model

pi t( ) � pN
i × ui t( )

ui t( ) � 0, t ∈ 1, 24[ ] ∪ t ∉ αi, βi[ ]∑t�βi
t�αi ui t( ) � Hi

αi < t< βi, αi − βi ≥Hi

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

As shown in Eq. 1, where i denotes power-adjustable load, pi(t) is
the power consumed by power-adjustable load i at time t, and pN

i is
the nominal power of power-adjustable load i. The ui(t) is the status
of load i at time t, where 0 is off and 1 is on; αi and βi are the working
time range for power-adjustable load i; and Hi is the duration time
of load i.

Air conditioners, water heaters, household batteries, and EVs are
power-adjustable loads. Air conditioners have two states, cooling
and heating, and its load models are as follows Eqs 2–6:

uAC,C t( ) �
1, TAC,C,S + ΔTAC,C <Tin t( )
uAC,C t − 1( ), TAC,C,S <Tin t( )≤TAC,C,S + ΔTAC,C

0, Tin t( )≤TAC,C,S

⎧⎪⎨⎪⎩ (2)

HC � ∑24

t�1uAC,C t( ) (3)

uAC,H t( ) �
1, TAC,H,S + ΔTAC,H <Tin t( )
uAC,H t − 1( ), TAC,H,S − ΔTAC,H <Tin t( )≤TAC,H,S

0, Tin t( )≤TAC,H,S

⎧⎪⎨⎪⎩ (4)

HH � ∑24

t�1uAC,H t( ) (5)

pj t( ) � PNC × uAC,C t( )refrigeration
pj t( ) � PNH × uAC,H t( )heating (6)

The relationship between the indoor temperature change and
operating power of air condition can be expressed as Eq. 7:

Tin t( ) � Tin t − 1( ) + a Tout t( ) − Tin t − 1( )( ) + bp t( ) (7)
where TAC,C,S and TAC,H,S are the temperature set in the cooling
and heating state of the air conditioner at time t, respectively;

ΔTAC,C and ΔTAC,H are the room temperature range set in the
cooling and heating state of air conditioners, respectively; Tin(t)
is the indoor temperature at time t; Tout(t) is the outdoor
temperature at time t; a is the influence coefficient of outdoor
temperature on indoor temperature; b is the operating coefficient
of the air conditioner, where b< 0 means that the air conditioner
operates in the cooling state and b> 0 means the air conditioner
operates in the heating state; and uAC,C(t) and uAC,H(t) are the
start-stop variable of the air conditioner at time t period, where
0 is stopping and 1 is starting.

The water heater load model is shown in Eq. 8:

uWH t( ) �
1, TWH t( )<TWH,S − ΔTWH

uWH t − 1( ), TWH,S − ΔTWH ≤TWH t( )<TWH,S

0, TWH,S ≤TWH t( )

⎧⎪⎨⎪⎩ (8)

where TWH,s is the water temperature set by the water heater;
ΔTWH is the set range of water temperature; TWH(t) is the water
temperature at time t; and uWH(t) is the start-stop variable of the
water heater at time t, where 0 is stopping and 1 is starting.

The output model of the BT is shown in Eq. 9:

SOCBT t( ) � CBT,net t( )/CBT,bct

SOCBT t + 1( ) � SOCBT t( ) + pBT,c t( ) ×Δt × θBT,c/CBT,bat

SOCBT t + 1( ) � SOCBT t( ) − pBT,d t( ) ×Δt × θBT,d/CBT,bat

0≤pBT,c t( )≤pBT,c,max

0≤pBT,d t( )≤pBT,d,max

SOCBT,min ≤ SOCBT t( )≤ SOCBT,max∑T
t�1 uBT t + 1( ) − uBT t( )| |≤ λBT

pBT,c t( ) × pBT,d t( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

Output model of an EV shown in Eq. 10:

SOCEV t( ) � CEV,net t( )
CEV,bat

SOCEV t + 1( ) � SOCEV t( ) + pEV,c t( ) ×Δt × θEV,c
CEV,bat

SOCEV t + 1( ) � SOCEV t( ) − pEV,d t( ) ×Δt × θEV,d
CEV,batt

0≤pEV,c t( )≤pEV,c,max

0≤pEV,d t( )≤pEV,d,max

SOCEV,min ≤ SOCEV t( )≤ SOCEV,max

∑T
t�1 uEV t + 1( ) − uEV t( )| |≤ λEV

pEV,c t( ) × pEV,d t( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where SOCBT(t) and SOCEV(t) are the BT and EV state of charging
(SOC) at time t, respectively; CBT,net(t) and CEV,net(t) are the
remaining battery capacity of the BT and EV at time t,
respectively; pBT,C(t) and pBT,d(t) are the charging and
discharging power of the BT at time t, respectively; pEV,c(t)
and pEV,d(t) are the EV charging and discharging power at
time t, respectively; θBT,c and θBT,d are the BT charging and
discharging efficiency, respectively; θEV,c and θEV,d are the EV
charging and discharging efficiency, respectively; PBT,c, max and
PBT,d,max are the maximum charging and discharging power of the
BT, respectively; PEV,c,max and PEV,d,max are the maximum
charging and discharging power of the EV, respectively;
SOCBT,max and SOCBT,min are the maximum and minimum
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charge state value of the BT, respectively; SOCEV,max and
SOCEV,min are the maximum and minimum SOC value of the
EV, respectively; uBT(t) and uEV(t) are the charging and
discharging variables of the BT and EV at time t, respectively,
where the value is 0 or 1; and λBT and λEV are limit of charging
and discharging times of the BT and EV, respectively.

3.2 Time-transferable load

The time-transferable load has the delayed start function, which can
transfer the working interval but cannot reduce the load. The startup
and running time can be flexibly set according to the needs of users.

pj t( ) � pN
j p uj t( )

ui t( ) � 0, t ∈ 1, 24[ ] ∪ t ∉ αj, βj[ ]
∑tendj

t�tstartj
uj t( ) � ∑βj

t�αjuj t( ) � Hj

tendj − tstartj + 1 � Hj

αj ≤ tstartj ≤ t≤ tendj ≤ βj
βj − αj ≥Hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

As shown in Eq. 11, where j denotes the time-transferable load;
pj(t) is the electricity power of the time-transferable load j at time t;
pNj is the rated power of time-transferable load j; uj(t) is start-
variable 0–1, where 1 represents the operation of time-transferable
load j and 0 indicates the time-transferable load is off; αj and βj are
the time-transferable load j allowable start and stop time of
operation, respectively; tstartj and tendj are the time-transferable
load j start and end time of actual operation, respectively; and
Hj is duration over which time-transferable load j needs to work.

3.3 Uncontrollable load

The uncontrollable load scheduling model is shown in Eq. 12:

uk t( ) � 0, t ∈ 1, 24[ ] ∪ t ∉ αk, βk[ ]
1, t ∈ αk, βk[ ]{ (12)

where uk(t) is the start-stop variable of uncontrollable load k at time
t, where 0 indicates off; αk and βk are the allowable start and end
time of uncontrollable load k, respectively.

4 Household energy scheduling model
based on time-of-use tariff and carbon
quota mechanism

An energy scheduling model is proposed considering the power
consumption cost, carbon trading cost, EV carbon quota income,
and battery degradation cost.

4.1 Household user electricity cost model

For household users, the electricity purchase costC1 includes the
electricity consumption cost of the uncontrollable load, time-
transferable load, and power-adjustable load. A complete

dispatching cycle can be divided into T periods, and the
household user’s electricity purchase cost C1 can be expressed as
Eq. 13:

C1 � ∑T

t�1E t( ) − pv,used t( )( )prib t( ) (13)

where prib(t) is the time-of-use electricity price at time t; pv,used(t)
is the photovoltaic power consumed by household appliances at time
t; and E(t) is the total energy consumption of all appliances at time t.

Ecc t( ) � ∑m

i�1 pi t( )ui t( )Δt (14)

Ecu t( ) � ∑m

j�1 pj t( )uj t( )Δt (15)

Eun t( ) � ∑m

k�1 pk t( )uk t( )Δt (16)
E t( ) � Ecc t( ) + Ecu t( ) + Eun t( ) (17)

As shown in Eqs 14–17, where pi(t), pj(t), and pk(t) are the power
of the power-adjustable load, time-transferable load, and
uncontrollable load at time t, respectively; m, n, and l are the
number of the corresponding load; Ecc(t), Ecu(t), and Eun(t) are
the power consumption of power-adjustable load, time-transferable
load and uncontrollable load at time t, respectively.

Household user’s profit C2 from selling electricity is shown in
Eqs 18–20:

C2 � ∑T

t�1 pg t( )prig t( ) (18)
pg t( ) � pv,g t( ) + pEV,d t( ) (19)
pv t( ) � pv,used t( ) + pv,g t( ) (20)

where pv(t) is the photovoltaic supply power at time t and pv,g(t) is
the photovoltaic power sold to the grid at time t. The pg(t) is the
power that household users sell electricity to the grid at time t;
prig(t) is the price that users sell electricity at to the grid at time t;
and pEV,d(t) is the discharge power of EV at time t.

The total electricity cost C includes electricity purchase cost C1

and profit from selling electricity, as shown in Eq. 21:

C � C1 − C2 (21)

4.2 Household user carbon trading
cost model

The carbon dioxide emission generated by the household user is
shown in Eq. 22:

Qc t( ) � Eth Ecc t( ) + Ecu t( ) + Eun t( ) − pv t( )( ) (22)
where Qc(t) is the carbon dioxide emission generated by the
household user’s electricity usage at time t, and Eth is the carbon
emission coefficient.

The amount of carbon emission quota Mc(t) obtained by
household users from external electricity purchase at time t is
shown as Eq. 23:

Mc t( ) � ε Ecc t( ) + Ecu t( ) + Eun t( ) + pEV,c t( )( ) (23)
where ε is the carbon emissions quota allocation coefficient.
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When the free carbon quota received by households is greater
than their actual carbon emissions, household users can sell their
excess carbon emissions to gain profits. If the free carbon quota
received by household users is less than their actual carbon
emissions, household users need to buy the required carbon
emissions from the carbon trading market. Therefore, the carbon
trading cost of household users at time t is shown as Eq. 24:

Rgenbon t( ) � qth Qc t( ) −Mc t( )( ) (24)

where Rgenbon(t) is the carbon trading cost of households at time t.
WhenRgenbon(t) is positive, it means households need to spend extra
money to buy the required carbon quota; when Rgenbon(t) is
negative, it means the income of households that can sell carbon
quota. qth is the carbon trading price.

4.3 Carbon quota income model for EV

The carbon quotaMEV(t) obtained by the discharge of an EV at
time t is as follows Eqs 25, 26:

MEV t( ) � pEV,c t( ) − pEV,d t( )( )ΔtLEVEgas − pEV,c t( )β t( )ΔtEth

+ pEV,d t( )ΔtEth

(25)
β t( ) � E t( ) − pv t( )

E t( ) (26)

where Δt is the time step;MEV(t) is the carbon quota owned by the
EV at time t; LEV is the distance that 1 kwh EV can travel; Egas is the
carbon emission of the fuel-using car driving 1 km; Eth is the carbon
emission of per output power of thermal power; and β(t) is the
proportion of thermal power capacity in EV charging quantity at
time t, with the proportion of the total thermal power output in the
total system output at time t used for calculation.

The carbon quota income Rcarbon(t) that the EV can sell at time t is
shown in Eq. 27:

Rcarbon t( ) � qevMEV t( ) (27)
where qev is the EV carbon quota price.

4.4 System objective function

Considering the total electricity cost of the household,
household user’s carbon trading cost, battery degradation cost,
and EV carbon quota income comprehensively, the objective of
the HEMS is to minimize the total comprehensive operation cost:

minF � min C +∑t�1
T

Rgenbon t( ) − Rcarbon t( ) + Cbattery t( )( )( ) (28)

As shown in Eq. 28, where Cbattery(t) represents the cost of battery
degradation in both the EV and the BT.

Cbattery t( ) � cbatEbat + cL( ) × pEV,d t( )
Lc × EbatDOD

(29)

As shown in Eq. 29, where cbat is the battery cost (which includes the
EV battery and BT); cL is the labor cost for battery replacement; Ebat

represents the battery capacity; Lc is the cycle life of batteries; and
DOD is the discharge depth at Lc.

The expected operation time represents the user’s comfort of
energy use. Therefore, the energy consumption time of the time-
transferable load is used to represent user satisfaction, and its
satisfaction constraint is shown in Eq. 30:

tstartj ≤ t≤ tendj (30)

During the scheduling process, users need to comply with the
following power balance constraints:

pbuy t( ) + pV t( ) + pEV,d t( ) + pBT,d t( ) � Ecc t( ) + Ecu t( ) + Eun t( )
(31)

As shown in Eq. 31, where the pbuy(t) is the user’s purchased power
at time t.

In summary, the objective function is Eq. 28, and the power
balance equality constraint is Eq. 31. Other relevant constraints have
been given in the corresponding load models above.

5 Optimization of HMES based on
IPSO algorithm

For the optimization of the HEMS, it requires a large amount of
calculation. Because there are too many variables in the HEMS,
heuristic algorithms can tackle these problems efficiently. At
present, heuristic algorithms are widely used in related fields
such as community and household energy scheduling. Although
heuristic algorithms may not ultimately obtain the ideal value, the
IPSO algorithms can obtain the optimal solutions that are extremely
close to the ideal value.

5.1 IPSO algorithm

During the parameter initialization phase, the standard PSO
algorithm initializes particle positions and velocities with
random numbers, resulting in suboptimal exploration of the
solution space and limited global search capabilities,
particularly in constraint optimization scenarios. Furthermore,
the standard PSO algorithm is susceptible to premature
convergence and loss of diversity, ultimately hindering its
ability to attain highly accurate optimal solutions in HEMS
optimization contexts.

The IPSO retains the population diversity, and the initial
population is within the feasible domain of particles, which
improves the quality of the initial population particle solution.
The initial moment the particle swarm population is generated as
shown in Eq. 32:

xi,int � Lbi + rnew Ubi − Lbi( ) (32)
where xi,int is the initial particle population of the IPSO; rnew are
uniform random numbers for the IPSO; Lbi is the lower limit of the i
th particle solution in the IPSO; and Ubi is the upper limit of the i th
particle solution in the IPSO algorithm.

After the improvement, the PSO algorithm first compares the
fitness value Fiti of each particle with the individual extreme pid, and
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if Fiti <pid, pid is replaced with Fiti. Fiti is then compared with the
global extremum pgd, and if Fiti <pgd, pgd is replaced with Fiti.

At the same time, in order to alleviate the shortcomings of
premature convergence and diversity loss in the standard PSO and
improve the solvability of the algorithm in constrained optimization
problems, the IPSO improves the update of the standard PSO, and
the update formula is shown in Eq. 33:

xi,n+1 � xi,n + beta × pid − xi,n( ) + alpha × rnew Ubi − Lbi( ) (33)
where n is the current iteration number, xi,n is the position of the i th
population in the IPSO; beta is adaptive coefficient; alpha is
convergence factor pid is Individual extremum.

The IPSO algorithm using Eq. 33 can update and be solved
during the optimization process, effectively improving the
algorithm’s constraint solving ability and enhancing the PSO
algorithm’s ability to find the global optimal solution. However,
after updating the position of particles in the population, there may
be situations where some particles exceed the population constraint
boundary, which greatly reduces the efficiency of the algorithm in
searching for particles in the feasible domain. The IPSO algorithm
improves the above situation by applying a boundary function to the
updated particle population, thereby enhancing the efficiency of the
algorithm in searching for feasible solutions. The boundary function
of the IPSO algorithm is as follows Eq. 34:

xi,n+1 �
Lbi, if xi,n+1 ≤ Lbi
xi,n+1, if Lbi< xi,n+1 <Ubi
Ubi, if xi,n+1 ≥Ubi

⎧⎪⎨⎪⎩ (34)

5.2 DE algorithm

DE has fewer parameters and is relatively simple to calculate,
making it widely used in power scheduling problems. The main
process of DE can be shown as five parts (Initialization, Mutation,
Crossing, Selection, and Termination):

(1) Initialization:

X i,G � xi1,G, xi2,G,/, xiD,G[ ]T, i � 1, 2,/, NP (35)
As shown in Eq. 35, where xid,G (d = 1, 2, . . . , D) is the dth
component of Xi,G, which satisfies the constraint condition xi,d ∈
[xid,low, xid,up]. The xid,low and xid,up represent the lower and upper
limits of the search range, respectively.

(2) Mutation: The most common mutation strategies are as
follows Eqs 36–38:
DE/rand1

V i,G+1 � Xr0 ,G + Fi Xr1 ,G − Xr2 ,G( ) (36)

DE/current-to-rand/1

V i,G+1 � X i,G + Fi Xbest,G − X i,G( ) + Fi Xr1 ,G − Xr2 ,G( ) (37)

DE/best/1

V i,G+1 � Xbest,G + Fi Xr1 ,G − Xr2 ,G( ) (38)

where r0, r1, r2 ∈[1,NP], NP is a random number that is not
identical to each other. The Xr1 ,G and Xr2 ,G is the difference of
randomly selecting two vectors. The Xbest,G is the optimal
individual in the G generation population. The scaling factor
is Fi.

(3) Crossing:

uij,G � vij,G, rand 0, 1[ ]#Pci or j � jrand
xij,G

{ (39)

As shown in Eq. 39, where Pci represents the probability of crossing,
with values ranging from 0 to 1, and jrand is a random integer
on 1, 2, . . . ,D.

(4) Selection:

X i,G+1 � X i,G, f X i,G( )<f U i,G( )
U i,G

{ (40)

As shown in Eq. 40, where Xi,G+1 refers to the parent individual who
successfully enters the next-generation after comparison.

(5) Termination: When G reaches Gmax, the requirement is
met.

5.3 Algorithm comparison

This study assesses the performance of the algorithm by
employing the Sphere, Ackley, Rastrigin, and Griewank functions,
with an optimal value of 0 for these functions. The pertinent
parameters of the test functions are presented in Table 1.
Additionally, the DE, PSO, and IPSO methods are concurrently
selected for comparison. Figure 3 illustrates the convergence
trajectories of these algorithms, each independently solving the
functions 500 times in a 100-dimensional space.

Figure 2 verifies the effectiveness of the IPSO. The IPSO has the
best convergence effect compared to PSO and DE, while its final
convergence value is closest to the optimal extreme value. The PSO
optimization effect is the worst. By adjusting with the introduction
of random learning factors, the convergence of the algorithm has
been improved.

From Table 2, comparing the algorithms in solving complex
functions, the IPSO has a faster convergence time than the DE. For
the optimization process of the HEMS, a large amount of computing

TABLE 1 Function for comparison.

Function Expression

Sphere F1(x) � ∑n

i�1 x
2
i

Ackley F2(x) � −20 exp(−0.2
��������
1
n∑n

i�1 x
2
i

√
)

− exp(1n∑n

i�1 cos(2πxi)) + 20 + e

Rastrigin F3(x) � ∑n

i�1 [x2i − 10 cos 2πxi + 10]

Griewank F4(x) � 1
4000∑n

i�1 x
2
i −∏n

i�1 cos xi�
i

√ + 1
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resources is necessary. After comparing the above algorithms, this
study selects the IPSO for optimization.

5.4 The IPSO algorithm process of HEMS

In summary, the IPSO algorithm can enhance
computational efficiency and global search capability. The
flow chart of the HEMS can be seen in Figure 3. The steps
and procedures of the HEMS optimization based on the IPSO
algorithm are as follows:

Step 1: Initialize the EV charging power, wind power generation,
etc., as well as the initial parameters of the PSO algorithm such as
attenuation coefficient alpha, beta, individual extremum pid, global
extremum pgd, etc.

Step 2: Determine whether the time condition and the number of
iterations conditions are met. If the conditions are met, proceed to
Step 3, otherwise exit the program.

Step 3: Calculate the medium and inequality constraints of the
household energy management system and their penalty functions.

Step 4: Obtain the objective function value.

Step 5: If the individual extremum pid is less than or equal to the
global extremum pgd, the value of the global optimization solution is
updated, otherwise Step 4 is returned at the same time.

Step 6: Update particle swarm attenuation coefficient alpha, beta.

Step 7: Update the position of the particle according to Eq. 33.

Step 8: Determine whether the end condition is met, and if so, exit
(error reaches set accuracy or reaches the maximum number of
cycles), otherwise return to Step 3 to continue the calculation.

6 Case studies

Simulations are given in some cases for the performance of the
proposed HEMS model. The scheduling time horizon is 24 h and the
scheduling slot is 1 h. The load curve is divided into three different
parts: the valley period (from 22:00 to 06:00), when the electricity price
is 0.3 CNY/kWh (China yuan/kWh); the off-peak period (from 13:
00 to 17:00), when the electricity price is 0.45 CNY/kWh; and the peak
period (from 06:00 to 13:00 and from 17:00 to 22:00), when the
electricity price is 0.6 CNY/kWh. The discharging of EVd and PV grid
price is 0.45 CNY/kWh. The EV battery capacity is 16 kWh, the
maximum power of charging/discharging is 1.5 kW, and the
charging/discharging efficiencies are 90%. The BT capacity is
10 kWh, the maximum power of charging and discharging is
1 kW, the charge and discharge efficiencies are 90%, and the
maximum/minimum state of charge of the EV and BT are 0.9/0.2.
When the indoor temperature is higher than 26°C, the air conditioner
is turned on; when the temperature is lower than 24°C, it is off. The
water heater starts heating while the water temperature is lower than
46°C, and stops heating while the water temperature is higher than
52°C. The electricity consumption of different appliances can be seen
in Tables 3, 4. The start-end time of the appliances shows the users’
preferable timings. Other simulation parameters [17] are listed in
Table 5. This article uses an IPSO algorithm to solve the problem.

FIGURE 2
Function value convergence curve.
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6.1 Optimization analysis of household
energy under fixed carbon trading price

The following scenarios are set for the comparison of several
different schemes:

Scenario 1: Initial household electricity cost and carbon emissions
do not consider optimal scheduling;

Scenario 2: Optimal scheduling of household energy does not
consider carbon trading and time satisfaction;

Scenario 3: Optimal scheduling of household energy only
considers time satisfaction and does not consider carbon trading;

Scenario 4: Optimal scheduling of household energy only
considers carbon trading and does not consider time satisfaction;

Scenario 5: Optimal scheduling of household energy considering
carbon trading and time satisfaction.

Scenario 2, Scenario 3 show that the carbon trading cost of
household users and the carbon quota income of EVs are not
considered. Scenario 4, Scenario 5 show that the carbon trading
cost of household users and the carbon quota income of EVs are
considered. Scenario 1 is the initial electricity cost and carbon
emissions of households without considering optimal scheduling;
in Scenario 2, time satisfaction constraints, user carbon trading
costs, and the carbon quota income of EVs are not considered,
and the goal is minimizing the total electricity cost; in Scenario 3,

TABLE 2 Comparison of results.

Function Sphere Ackley Rastrigin Griewank

Algorithm DE IPSO DE IPSO DE IPSO DE IPSO

Optimal result 2.88*10−15 2.31*10−20 9.89*10−06 7.86*10−10 20.4 0 7.77*10−16 0

FIGURE 3
The flow chart of the HEMS.
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carbon trading is not considered, but the time satisfaction
constraint is considered, and the total electricity cost is
minimized; Scenario 4 considers the user’s carbon trading
cost, EV carbon trading income, and the user’s total electricity
cost, and the objective is minimizing the user’s comprehensive
operation cost, but the time satisfaction constraint is ignored;
Scenario 5 considers the user’s total electricity cost, carbon
trading cost, and EV carbon trading income, with the
objective being minimizing the household user’s
comprehensive operating cost with time satisfaction
constraints. During the optimization process, the user’s typical
daily load in summer is selected as the optimization data.

Figure 4 shows the typical outdoor temperature, the optimized
indoor temperature, and the water heater temperature. Figures 5–10

show the power in Scenario 1, Scenario 2, Scenario 3, Scenario
4, Scenario 5.

As shown in Figure 4, the air conditioner remains on, the indoor
temperature decreases significantly, and the user’s room can reach
the required temperature range. After the water heater is turned on,
the water temperature rises to meet the user’s needs.

Figure 5 shows the load comparison between different scenarios.
The load increased sharply from 3:00 to 6:00, and the load also
increased between 22:00 and 24:00. From 8:00 to 16:00, the load of
users decreased sharply. The reason for this was that some of the
load was transferred to other periods to reduce the costs.

In Figure 6, the air conditioner has been turned on and the user
does not consider the influence of the electricity price on the total
household appliances’ cost. When the electricity price is high, the

TABLE 3 Description of time-transferable appliances.

Appliances Rated
power (W)

Working
hours (h)

Operating time
interval

Best run time Demand

Washing machine 750 1 16:00–24:00 17:00–22:00 —

Electric cooker 800 1 10:00–14:00 17:00–21:00 10:00–13:00 —

17:00–19:00

Dish washer 700 2 8:00–11:00 13:00–18:00 19:
00–24:00

8:00–11:00 13:00–16:00
19:00–22:00

—

Smoke exhaust
ventilator

225 1 10:00–14:00 17:00–21:00 11:00–13:00 17:00–20:00 —

Vacuum cleaner 1,200 1 14:00–22:00 5:00–11:00 17:00–21:00 6:00–10:00 —

Electric kettle 1,500 0.5 8:00–13:00 16:00–23:00 11:00–13:00 17:00–20:00 —

Water heater 1,500 — 19:00–24:00 — Temperature deviation shall not
exceed 2°C

Air conditioner 2,000 — 10:00–15:00 18:00–4:00 — Temperature deviation shall not
exceed 2°C

EV 1,500 — 18:00–9:00 — Emergency power: 15%, Leaving home
power: ≥90%

BT 1,000 — 0:00–24:00 — Emergency power: 15%, Leaving home
power: ≥90%

TABLE 4 Description of uncontrollable appliances.

Appliance Rated power (W) Working hours (h) Working time range

Refrigerator 610 24 0:00–24:00

Television 150 5 17:00–22:00

Computer 300 4 18:00–22:00

Headlamp 240 7 17:00–24:00

TABLE 5 The related parameters of carbon trading.

Parameter Meaning Value

LEV 1 kWh EV can travel distance (km/kWh) 5

qthqEV Carbon trading price and the EV carbon quota price (CNY/kg) 0.49

Egas Carbon emissions of fuel-using vehicles running 1 km (kg/km) 0.197

Eth Carbon emission per power of thermal unit (kg/kW) 0.91
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cost of electricity consumption increases accordingly. Discharge of
the EV is not used and the charging/discharging behavior of the BT
is relatively random. In Figure 7, all electrical appliances run at the
lowest electricity price within the allowable time period. Meanwhile,
EVs and batteries charge when at low electricity prices and discharge
when at high electricity prices. When the photovoltaic output and
BT discharge exceed the electricity used by electrical appliances, the
user will sell the excess electricity at noon.

In Scenario 1, the electricity cost of the air conditioner is
13.8 CNY; in Scenario 2, the operation time of the air
conditioner is significantly reduced, and its electricity cost is
3 CNY and 21.7% less than Scenario 1, and the indoor

temperature meets the requirements of the user. The total
electricity consumption of the water heater remains unchanged;
in Scenario 1, its running time is 19:00 to 22:00 and the electricity
cost is 2.7 CNY; in Scenario 2, the running time is 19:00 to 21:00 and
23:00 to 24:00 and the electricity cost is 2.25 CNY and 0.45 CNY,
respectively, and 16.7% less than Scenario 1. The user’s water
demand is met.

In Scenario 1, the EV is charged between 21:00 and 05:00, and
the battery is charged. In Scenario 2, the EV and battery are charged
between 23:00 and 07:00, and the electricity cost is 2.25 CNY less
than in Scenario 1. In Scenario 1, the EV does not discharge and the
BT discharges randomly. In Scenario 2, the discharge of the EV is at

FIGURE 4
Indoor/outdoor temperature and water heater temperature.

FIGURE 5
Load in different scenarios.
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19:00 to 23:00, the BT discharges at 10:00–15:00 and 20:00–23:00,
and the electricity cost of the EV and BT is 3.91 CNY less than
Scenario 1. The washing machine, rice cooker, dishwasher, vacuum
cleaner, and electric kettle all operate during the valley period, when
the electricity price is lowest, which significantly cuts the total
household electricity cost compared with Scenario 1. However, in

Scenario 2, the use of vacuum cleaners is advanced to 5:00, and the
use of washing machine and dishwashers is delayed to 23:00, but the
user’s usage habits are not considered, resulting in low satisfaction.
Compared with Figure 6, considering the time satisfaction of the
user with electricity consumption in Scenario 3 of Figure 8, the usage
time distribution of the electrical appliances is more reasonable. The

FIGURE 7
Power consumption in Scenario 2.

FIGURE 6
Power consumption in Scenario 1.
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vacuum cleaner is transferred from 05:00 to 09:00, the dishwasher
changes working time from 23:00 to 21:00, the washing machine
changes working time from 23:00 to 17:00, and the electric kettle
from 22:00 to 19:00. When the users’ time satisfaction constraint is

met, the electricity cost of the time-transferable load is 1.32 CNY
more than Scenario 2. In Figures 9, 10, the running conditions of
most appliances do not change greatly when carbon trading is
considered. In Scenario 4, Scenario 5, carbon trading is

FIGURE 9
Power consumption in Scenario 4.

FIGURE 8
Power consumption in Scenario 3.
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considered. The reduction in EV mileage is no less than the increase
in the discharge of the EV. Figure 11 gives a comparison of the cost
and emissions in each scenario, and the battery degradation cost in
each scenario is shown in Table 6.

As shown in Figure 11, compared with Scenario 1, the total
comprehensive operation cost and carbon emissions of Scenario

2, Scenario 3, Scenario 4, Scenario 5 have significantly
decreased. After considering the time satisfaction constraint
in Scenario 3, Scenario 5, compared with Scenario 2, Scenario
4, the electricity purchase cost increases by 1.13 CNY and
0.63 CNY, respectively. In Scenario 4, Scenario 5, when the
carbon trading is considered, the system obtains carbon quota

FIGURE 11
Cost and carbon emissions.

FIGURE 10
Power consumption in Scenario 5.
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income, and the comprehensive total cost is reduced without
carbon trading, and its carbon emissions are also reduced. As
shown in Table 6, the battery degradation cost in Scenario 1 is
much less than it in other scenarios, because EVs do not
participate in scheduling, there is no battery degradation cost
for EVs, and the overall battery degradation cost for households
is lower than in other scenarios.

6.2 Influence of carbon trading price on
dispatching

This paper discusses the influence of carbon trading price on
dispatching and adjusts the carbon trading price to
0.39 CNY/kg, 0.49 CNY/kg, 0.59 CNY/kg, and 0.69 CNY/kg,
respectively. Table 7 shows the impact of carbon trading prices
on the HEMS.

With the increase in carbon trading price in Table 7, the
negative carbon trading cost of users is increasing, the EV
carbon quota income is also increasing, and the overall
operating cost is decreasing. Therefore, the guidance and
regulation of carbon trading prices can play a guiding role
in the HEMS.

7 Conclusion

In this paper, the household users’ electricity consumption
behavior and carbon quota are considered, and the optimization
model of the HEMS which uses price incentives to encourage the
users to participate in the carbon interaction is established. A
comprehensive total operating cost considering carbon quota
and time satisfaction constraints is used to find the solution. The
constraints of the user’s load and consumption habits are
considered, while considering the cost of battery degradation
in both the EV and BT. Then the IPSO algorithm is used to
optimize the HEMS, and the effectiveness of IPSO has been
demonstrated by a comparison.

Five scenarios were designed based on the optimization
model. By the analysis and comparison, it is proved that the

comprehensive consideration of carbon trading cost, the battery
degradation cost, and total electricity cost can reduce the
household carbon emissions and the total electricity cost of
the household user better, giving consideration to the user’s
electricity habit, operation economy, and battery lifespan. It
encourages the end-users to allocate electrical power
reasonably. Compared to Scenario 1, the household carbon
emissions have been reduced 14.58 kg in Scenario 5, a
decrease of over 21.47%, while the total comprehensive
operation cost has been reduced by 14.12%. After considering
the time satisfaction constraint in Scenario 3, Scenario 5,
compared with Scenario 2, Scenario 4, the comprehensive
operation cost of the system increases by 1.27 CNY and
1.2 CNY, respectively.

On this basis, the guiding and regulating influences of the
carbon trading price on home energy management are analyzed.
By the increasing of carbon trading price from 0.39 CNY to
0.69 CNY, the user’s carbon trading income and the EV carbon
quota income are increasing from 0.36 CNY to 0.64 CNY, and the
overall operating cost is decreasing from 26.03 CNY to
24.79 CNY. The next research direction is to deeply analyze
the user’s comfort and load structure utilizing price incentives
and carbon trade. Lu and Zhang, 2020.
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TABLE 7 Impact of carbon trading price on the HEMS.

Carbon trading
price (CNY/kg)

Carbon quota
income (CNY)

User carbon
transaction cost (CNY)

Total electricity
cost (CNY)

Total comprehensive
operation cost (CNY)

0. 39 0. 36 −1. 54 26.03 32.62

0. 49 0. 46 −1. 94 25.32 31.82

0. 59 0. 61 −2. 36 25.31 31.66

0. 69 0. 64 −2. 72 24.79 31.10

TABLE 6 Battery degradation cost.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Battery degradation cost (CNY) 3.80 8.50 6.95 6.85 6.95
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