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A digital process was developed to facilitate additive manufacturing for ceramic
materials using digital light processing (DLP). A numerical model that predicts
DLP sample properties can be generated from manufacturing inputs to forecast
the effect of resin age on mechanical strength of the printed part based
on data collected from experiments. Key parameters for printing the green
bodies included determining the depth of cure, layer thickness, material
composition, and solids loading. Thermogravimetric analyses were used to
develop debinding and sintering curves. Debinding is used to remove the
volatile organics comprising the photopolymer resin. Sintering is performed after
debinding to increase density and mechanical strength of the printed parts.
The sintered parts were then subjected to characterization and mechanical
testing. The ensemble of data for various DLP-printed ceramic materials were
added to a database. A design of experiments can be generated from the
manufacturing process defined in the database with selected changeable
parameters randomized over a range. Because the database is defined with
an architecture to capture manufacturing processes, it can persist as a more
generic platform for manufacturing digital twins. This can ease the development
of future digital twins and can grow as a common repository for the insights
gained from manufacturing research. Creating a digital twin of a DLP system
for 3D printing parts enables manufacturers to simulate and assess the impact
of resin age on printing parameters and part quality, facilitating optimization,
predictive maintenance, and cost reduction.

KEYWORDS

digital twin, digital light processing, ceramics, additivemanufacturing, response surface
modeling

1 Introduction

Additive manufacturing, a revolutionary approach to fabricating complex structures,
has found a niche in ceramic materials through the advent of Digital Light Process
(DLP) printing. This innovative digital process has been tailored to facilitate the
additive manufacturing of ceramics, specifically Yttria-stabilized Zirconia (YSZ). In this
study, we delve into the development of a digital model capable of predicting the
properties of DLP-printed YSZ samples. The model’s foundation lies in manufacturing
inputs and key parameters governing the production of ceramic-resin green bodies.
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Following the printing process are the stages of debinding
and sintering, which contribute to the enhancement of density
and mechanical strength in the final printed parts. Following
the manufacturing process, the sintered parts underwent
comprehensive characterization and mechanical testing. While
other studies have been performed using DLP for YSZ printed
parts, the effect of resin age on the mechanical properties has not
been evaluated. This study compares the mechanical strength of
resin at 114 days from production to 324 days from production.
Understanding how resin age affects printing quality can help
in forecasting when maintenance or resin replacement might
be needed in the actual system. This predictive maintenance
approach can save time and resources by avoiding unexpected
downtimes, part failures, and procurement inefficiencies.
Assessing the effect of resin age digitally can potentially save
costs associated with physical testing and experimentation. It
enables fabricators of 3D printed parts to identify optimal resin
usage strategies and minimize waste, thus reducing overall
production costs.

In this study, sample characterization results were uploaded
to a unique digital model built around a data ontology specific
to advanced manufacturing methods. The use of a data ontology
allows the data to be managed in a manner that both strictly
controls the validity and completeness of the manufacturing data,
but also provides the flexibility to define variants of This digital
twin framework organized the varying manufacturing inputs,
detected factors that changed between experiments, and generated
a predictive model of YSZ strength in bending based on days
since material feedstock synthesis and ambient humidity. The
ontology is explored in its role to define both the data that is
involved in the details of manufacturing and also the performance
characteristics of interest with specific designs of experiment that tie
them together.

The digital twin framework realized several advantages that
would not be accomplished traditionally: the completeness
of the data was enforced by the ontology meaning each
experiment is fully defined with material properties, preform
geometry, and all manufacturing settings, which is important
for future reuse of data; the data was preprocessed automatically
for analysis with a Gaussian process model; and, data entry
efforts resulted in a queryable model that would return the
predicted strength in bending value of YSZ samples (and
accompanying measure of uncertainty) for a given combination
of ambient humidity and days since synthesis of feedstock
materials.

The predictive model resulting from the digital twin was
tested with a random sampling of characterization results
withheld from the modeling engine and used as a verification
set. The model is reliable within the bounds of uncertainty
returned by the Gaussian process. While a trend of decreasing
strength was observed in the samples due to both increasing
humidity and feedstock age, the strength of the whole set of
materials was well below results expected based on published
performance characteristics of YSZ. A discussion of factors
that likely led to under performance is included. Future work
should take greater care to apply a debinding/sintering heat
treatment sourced from literature instead of manufacturer-
supplied settings.

2 Materials and methods

2.1 Yttria-stabilized zirconia

YSZ is a material of interest for the design and manufacture
of various energy systems. YSZ has unique balance of physical
properties, encompassing electrical (Lanagan et al., 1989), thermal
(Tojo et al., 1999; Hayashi et al., 2005), mechanical (Ren and Pan,
2014), and optical (Alaniz et al., 2009) properties. Because of
its electrical performance it has been implemented in energy
products such as solid oxide fuel cells (Butz, 2009) and because
of its mechanical resilience at high temperatures it has been used
as a thermal barrier coating (Zhao et al., 2006; Liu et al., 2019;
Chen, 2006), both of which are of interest for energy applications.
YSZ has been manufactured via traditional sintering (Laberty-
Robert et al., 2003), colloidal suspension extrusion (Peng et al.,
2018; Ghazanfari et al., 2017), and digital light processing
(Coppola et al., 2022). In this study, 3 mol% YSZ was used for the
DLP printing. Biomedical applications for this material include
dental crowns Snyder (2022).

The YSZ used in this study was used to generate samples
via a three-dimensional printing method that cures layers of
photosensitive resin. As such, the green body for samples generated
in this study makes use of granular YSZ suspended in a slurry of
photosensitive resin which creates a layer-by-layer scaffolding to
define geometry. The organic resin scaffold is later removed via
postprocessing techniques, leaving only the YSZ in the final sample.

2.2 Digital light processing

DLP is an additive manufacturing method that uses ultraviolet
light to cure thin layers of photosensitive liquid polymer resin to
form solid samples (Zhao et al., 2020). Thanks to the possibility
for far greater light intensity than other photocuring techniques,
DLP printing can be used to fabricate parts from resin slurries
that are made semiopaque through the addition of ceramic
and metallic powders. The cured polymer-ceramic/metallic green
bodies resultant from printing can then undergo the subsequent
postprocesses of debinding to remove the polymer matrix and
sintering to solidify the remaining material, resulting in printed
parts consisting purely of the ceramic or metal. This method
has been successfully applied to alumina (Santoliquido et al., 2019;
Shuai et al., 2020), silicone oxycarbide (Schmidt andColombo, 2018;
He et al., 2020), zeolite (Guillen et al., 2023), zirconia compounds
and barium titanate (Mamatha et al., 2022; Mu et al., 2022). An
illustration of the components of the printing stage of the process
is shown in Figure 1.

2.2.1 Resin matrix
The photosensitive resin that acts as a temporary matrix for

the YSZ acts is hardened via the interaction of the resin polymer
and an additive photoinitiator. The photoinitiator is a constituent
that is reactive to light exposure. When the photoinitiator is
activated by light energy it generates molecular constituents that
attract areas of the free floating polymer chains that make up
the resin. The photoinitiators selected for these resins bind to
them in such a way that multiple polymer chains can bind to a
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FIGURE 1
Components of digital light processing (printing stage).

single activated element (Allen, 1996). As free floating polymers
in the path of the directed light are bound together in large
networks with cross linked elements, the engineering-scale effect
of this process is that the material is hardened and fixed in those
regions. These photoinitiating additives are known to degrade along
with other resin elements over time after the resin mixture is
formulated (Nagaoka et al., 2020).

2.3 Digital representation of manufacturing
processes

2.3.1 Ontology
A digital approach to manufacturing often raises the

issue of ontologies. An ontology is a set of concepts and
classes that define the entities in a domain, their relationships,
and their properties. Ontologies in manufacturing have been
explored as a method to query information from manufacturing
data (Usman et al., 2013), to automate manufacturing design
and decision making (Sanfilippo et al., 2019), and to create
interoperability among different manufacturing design software
applications (Chungoora et al., 2013).

While efforts to create an ontology to link design engineering
and manufacturing methods (Chhim et al., 2019) have been
explored, the ontology efforts of this project are geared toward
making a single model of a manufacturing process that can be
be used for experimental design generation (via the response
surface method), manufacturing, and simulation, all in the
service of sample performance prediction. The ontology is called
Advanced Manufacturing Basic Entity Relationships (AMBER) and
is based on the ontology Data Integration Aggregated Model and
Ontology for Nuclear Deployment (DIAMOND), funded by an
award from the Department of Energy’s Office of Nuclear Energy
(Browning et al., 2020). Both ontologies make use of the Basic
Formal Ontology (BFO) entities (Arp et al., 2015) near the root
for future interoperability with other BFO-compatible models. A
diagram of the classes in the ontology is shown in Figure 2.

The classes in the ontology are built around representing the
properties and relationships that describe factors relevant both to
the manufacturing of samples with DLP, and also the data modeling
activities and numeric models necessary for making predictions
from the relationship between these factors and the resultant
performance of the samples.

The AMBER ontology is implemented in the Deep Lynx
data lake (Darrington et al., 2020), a DOE-funded open source
software utility. Deep Lynx allows ontologies to initialize a database,
which can be used for storage, querying, and version control. For
this project, the elements of a manufacturing build, decomposed
by the definition and constraints of the process that generated it,
feedstock material properties, and preform geometry, are all located
in the same knowledge graph. The ontology also defines entities to
store the resultant characteristics, that may be physical or simulated,
and the predictive models themselves that are generated from the
relationship between manufacturing inputs and outputs.

2.3.2 Predictive modeling
The response surface method (RSM) has been used widely

in the search for optimal manufacturing parameters (Sik Shim,
2021; Geng et al., 2017; Al-Ahmari et al., 2016; Seo et al., 2017;
Jagadish et al., 2016; Öktem et al., 2005). The method uses a
constellation of techniques to systematically approach the discovery
of optimal resultants in parameterized systems; the components of
modern RSM involve generating a design of experiments, carrying
out the designs, and using statistical techniques to correlate the
relationship between design parameters and experimental resultant
values. Typically, for techniques in which design parameters can
be set continuously and independently within a set of ranges, the
designs are generated using the central composite design or Box-
Behnken design (de Oliveira et al., 2019). These methods define
efficient designs that explore the contribution of parameters of
interest across their available ranges. An alternative experimental
design method was used for this study due to the constraints
imposed by the manufacturing technique. Although layer height is
of interest, batches of samples printed together must have the same
basic layer height in order to print together. Because manufacturing
was carried out in batches, there are discrete layer heights. As such
the design method used in this study is a single parameter design.

Typically, once the experiments are carried out and the
results recorded, the response surface is generated using a simple
least squares regression. This study opts instead for a Gaussian
Process Model (GPM), in order to create surfaces that not only
predict regions of results inside the design envelope but also
return uncertainty measurements as surfaces that bound the
prediction surface. The RSM models were generated using utilities
on the stochastic tools module (Slaughter et al., 2023) of the
Multiphysics Object-Oriented Simulation Environment (MOOSE)
simulation library (Lindsay et al., 2022). The library’s GPM is
implemented as follows:

Given a set of input parameters X = {x⃗1, x⃗m}, and a set of
corresponding outputs of the form Y = {y⃗1, y⃗m} that result from the
function or process Y = f(X) the Gaussian model should return a
new set of results Y∗ = {y⃗∗1, y⃗∗n} given new input parameters X∗ =
{x⃗∗1, x⃗∗n} without incurring the cost of evaluating Y∗ = f(X∗ ).

In much the same way a multivariate Gaussian distribution
is fully defined by its mean and covariance matrix, the Gaussian
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FIGURE 2
The inheritance relationships among the classes of the AMBER ontology.

Process [shown in Equation 1] is defined by two functions: themean
function and the covariance function, where μ(x⃗) are the parameters
from the training set and μ( ⃗x′) are the parameters being evaluated.
The mean function μ(x⃗) and the covariance function k(x⃗, ⃗x′) are
tuned on the training data.

GP (μ (x⃗) ,k(x⃗, ⃗x′)) (1)

The mean function returns the mean value for any combination
of parameters. The covariance function is meant to describe the
relationship that the input parameters in the study have to one
another. The output of the covariance function (also called a
kernel function) is a covariance matrix that describes the complete
set of parameters (every parameter’s relationship to every other
parameter). The complete set of covariance matrices available from
the kernel function are as follows in Equations 2–4:

(2)

(3)

(4)

With this definition of the covariance function and its output,
along with the assumption that the distribution of the training
data and the evaluation data will be roughly the same the model
can undergo conditioning. The Gaussian Process Model starts with
an infinite collection of functions such that any random selection
of output variables from the collection will produce a normal
distribution. In the conditioning process functions are winnowed
down from the infinite set to only those functions that agree with

the training and evaluation sets, according to the following in
Equations 5, 6:

μ⋆ = μ+K⋆K
−1 (Y− μ) (5)

Σ⋆ = K⋆⋆ −KT
⋆K−1K⋆ (6)

and the output of themodel will be given as shown in Equation 7

Y⋆ ∼N (μ⋆,Σ⋆) (7)

The particular kernel function used for this study was the radial
basis function. It contains the additional terms (or hyperparameters)
l, which is a length scale termwhich correlates loosely to the standard
deviation of a given model parameter and affects the smoothness of
the fitted model; σ2

f , which represents the true signal variance and
acts as an overall length scale term; and σ2

n, which acts as a signal
noise termwhich generally improvesmodel fitting even when acting
on relatively noiseless data. The radial basis function is shown as
follows in Equations 8, 9:

k(x,x′) = σ2
f exp(−

rℓ(x,x′)
2

2
)+ σ2

n δx,x′ (8)

where rℓ(x,x′) is expanded as

rℓ (x,x′) = √∑
n
(
xi − x
′
i

ℓi
)

2

(9)

In this study’s implementation, the Gaussian process pulls its
training data from the digital representation of a set of experiments.
It prompts the user for initial hyperparameter values, trains the
model, and stores the model executable in the graph for future
reference and execution. Although the Gaussian process requires
more data preparation and more operations than a simple fit
using linear or polynomial regression, the digital twin framework
uses the GPM in order to deliver models that return uncertainty

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1356571
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Harris et al. 10.3389/fenrg.2024.1356571

TABLE 1 Printing parameters used across all samples in the study.

Layer height (µm) LED power (%) Pixel value (%)

20 30 100

Exposure per layer (s) Delay before exposure (s) Delay after exposure (ms)

2 30 500

Transport speed (µm/s) Transport acceleration (µm/s2) Transport distance margin (µm)

20,000 20,000 50,000

Up/down distance (µm) Up/down speed (µm/s) Up/down acceleration (µm/s2)

20,000 10,000 7,500

Slow up distance (µm) Slow up speed (µm/s) Slow down distance (µm)

2000 300 500

Slow down speed (µm/s) Scale Fans PWM freq (Hz)

200 1 0

Anti-aliasing Power calibration mask Power mask type

Enabled Enabled Load

Z-axis min accuracy (nm) Z-axis homing spd (µm/s) Z-axis homing acc (µm/s2)

15,000 10,000 10,000

Z-axis zero current (mA) Z-axis zero spd (µm/s) Z-axis zero acc (µm/s2)

800 10,000 10,000

Z-axis zero slow spd (µm/s) Z-axis zero slow duration (s) Z-axis max manual spd (µm/s)

20 40 10,000

Foil tension distance (µm) Transport error margin (µm) Transport jog spd (µm/s)

2000 15,000 15,000

Transport jog acc (µm/s2) Min transport distance (µm) Transport calc height (µm)

15,000 0 200

Delayed transport Pump PWM freq (Hz) Pump PWM duty cycle (%)

Enabled 60 80

Transport max speed (µm/s) Refill pump freq (Hz) Refill pump duty cycle (%)

100,000 60 100

Refill sensor level (ppm) Current refill level Refill sensor margin (ppm)

465,000 Update 5,000

Max refill pump duration (s) Max refill foil distance (µm) End pump back

500 750,000 Enabled

End pump back spd (µm/s) End pump back dist (µm) End pump back duration (s)

5,000 2,000,000 600
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TABLE 2 Debind/sinter profile, shaded cells indicate the sintering phase.

Temperature (C°) Rate (C°/hr) Time (min)

25–150 25 ↑ 300

150 dwell 30

150–290 8 ↑ 1,050

290 dwell 90

290–400 8 ↑ 825

400 dwell 60

400–600 12 ↑ 1,000

600–1,000 60 ↑ 400

1,000 dwell 60

1,000–25 100 ↓ 600

25–1,000 200 ↑ 300

1,000–1,500 100 ↑ 300

1,500 dwell 180

1,500–20 200 ↓ 450

bounds along with every point of evaluation. In the digital twin’s
implementation, the manual data management usually involved
with using the Gaussian model is handled by an interface that
automates most onerous data preparation tasks.

2.4 Manufacture of physical samples

2.4.1 Sample geometry
Miniature three-point bend bars (25 mm × 4 mm x 1 mm)

were printed using an Admatec Admaflex 130 DLP printer with
commercially available photocurable YSZ resin (Admatec, Alkmaar,
Netherlands). The samples printed in the study were designed using
the ASTM C1161-18 design specification (ASTM International,
2018).This is a prismatic geometry optimized for testing the flexural
strength of ceramic samples at ambient temperatures. The tesselated
geometry was stored in the digital twin architecture as an STL file
and also exported as a batch to the printer. Since the Admatec 130
build plate can accommodate 20 samples arranged in a grid pattern,
20 became the batch size wherein the layer height was held constant.

2.4.2 Feedstock formulation and print settings
The print settings given in Table 1 were applied to all samples.
The layer height was determined by a depth of cure test in which

a small amount of the slurry is placed on the printing surface and
exposed to a certain duration of light exposure. The cured material
is measured from the printing base After printing, each sample
was post-processed with the same thermal treatment that debinds
the organic resin matrix and then sinters the remaining ceramic

FIGURE 3
Three-point bend test frame.

material to its final density. The profile of this heat application
is listed in Table 2.

One of the factors impacting the quality of printed samples is
exposure to atmospheric humidity. The room in which the printing
took place did not have a dehumidifier for the printing area nor for
the lab space. Because of this, average humidity values during the
time of printing (from 12:00 to 18:00, each day) was considered as a
variable in the modeling effort, and as an element of the digital twin
framework.

2.5 Mechanical testing

2.5.1 Flexural strength
Flexural strength is the ultimate strength (the stress at which a

tested sample breaks or cracks) when subjected to a bending load.
The flexural strength and the tensile strength of amaterial, especially
a ceramic, are correlated values (Leguillon et al., 2015). The general
standard practice for materials that are brittle, such as ceramics, is to
use determinematerial performance for an application fromflexural
strength, as these measures tend to be the most representative of
application performance (Yamaguchi et al., 2019).

Samples were measured for flexural strength using a three-point
configuration as illustrated in Figure 3. Conducting three-point
bend tests on ceramic materials, as opposed to tensile tests, is driven
by several considerations rooted in the inherent characteristics of
ceramics. Primarily, ceramics exhibit brittleness, and their tensile
strength is notably lower than their compressive strength. Tensile
loading can lead to premature and catastrophic failure due to the
limited capacity of ceramics to withstand tensile stress. The high
friction jaws used in tensile testing lead to many samples cracking,
making this technique impractical for this study. In contrast, three-
point bend tests provide a controlled environment for studying
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TABLE 3 Per-sample flexural strength values (MPa) gathered from bending tests organized by days since slurry synthesis. Outlier values are marked with
an asterisk ∗. Validation samples are marked with a T.

Days 114 143 175 205 236 273 324

Humidity (%) 51 37 40 44 62 49 34

MPa

∗50.275

∗61.896 111.326 96.393 56.985 ∗110.389

∗20.009 89.629 ∗117.785 124.939 107.027 76.538 T145.004

∗30.337 146.793 ∗122.669 141.539 117.671 94.23 145.251

90.259 152.957 ∗123.581 150.44 119.977 104.218 149.645

T90.804 159.699 146.211 150.909 120.104 105.895 155.593

T113.717 160.17 153.555 151.968 133.599 114.405 155.967

118.642 172.906 158.241 153.526 138.35 118.799 156.761

123.733 177.145 158.368 154.516 140.989 133.107 156.78

125.815 178.561 159.588 156.865 142.973 133.972 159.409

126.276 186.418 164.161 158.345 151.516 T134.565 162.62

127.171 T186.811 165.436 T166.89 156.192 136.695 163.231

127.273 198.395 167.076 171.518 T158.21 142.59 165.764

127.602 199.791 168.161 174.172 159.065 146.99 169.915

T130.425 204.586 169.017 177.424 170.406 152.016 170.904

131.437 209.837 174.752 180.567 170.949 157.836 175.632

136.102 T220.923 178.212 T183.195 181.52 158.131 180.142

138.558 T221.284 186.058 183.276 T186.312 164.166 182.722

142.871 226.269 190.457 187.49 186.354 169.966 T183.565

147.432 235.105 194.898 195.942 193.42 179.725 190.437

∗406.74 236.888 ∗218.689 201.104 197.376 198.757 192.845

248.215

249.586

fracture mechanics, including crack initiation and propagation,
which is essential for understanding how ceramics fail. Fracture
mechanics in ceramics are better captured through three-point
bend tests, as these tests facilitate the controlled study of crack
propagation. Tensile tests may not effectively capture critical flaw
sizes or stress intensity factors crucial for assessing the fracture
process in brittle materials.

Practically, ceramics are often employed in structural
applications where they experience bending or flexural loads
rather than tension. three-point bend tests simulate these real-
world loading conditions, offering more relevant insights into

how ceramics behave in practical applications. Additionally, the
geometry of ceramic components frequently involves bending,
making three-point bend tests more representative of actual
service conditions. Moreover, the size and shape of samples
for three-point bend tests are more manageable, requiring
smaller specimens compared to the larger cross-sectional areas
needed for tensile tests. Interpreting data from three-point
bend tests is often more straightforward, with a more uniform
stress distribution across the sample compared to tensile tests.
This simplicity aids in relating the test results to the material’s
properties.
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FIGURE 4
Graph view of the data making up the YSZ manufacturing model.

TABLE 4 Printing parameters used across all samples in the study.

Scale (l) Signal variance (σ2f ) Noise variance (σ2n)

1 1 0.3

Standardization further supports the preference for three-
point bend tests in ceramics. Widely recognized testing methods,
such as ASTM C1161-18, recommend three-point bend tests as
the preferred approach for determining flexural strength and
modulus of rupture. This standardization ensures consistency and
comparability of results across different studies and laboratories,
contributing to the robustness of data obtained from such tests.

3 Results

3.1 Sample performance

Seven sets of samples were printed from the same slurry
batch which was synthesized on 15 May 2023. The sets were

printed at the following days since synthesis: 114, 143, 175,
205, 236, 273, and 324. The long gap between synthesis and
the first batch print was due do a shipping delay with the
Admatech slurry. The flexural strength values from each sample
are shown in Table 3. Each set was subjected to the interquartile
range test for outliers, and the outliers were thrown out of the model
development and analysis. The general trend of the progressively
older samples is decreasing strength. Another thirteen samples were
randomly selected and withheld as validation samples to test the
confidence interval.

The observed strength of the samples is well under the strength
in bending for DLP-printed samples previously committed to
literature. (Coppola et al., 2022; Zhang et al., 2020). The average
strength in bending for samples in this study is about 160 MPa,
while published results for DLP-printed samples for 3% mol YSZ
have exceeded 350 MPa by Zhang et al. and exceeded 750 MPa by
Coppola et al. Beyond humidity control, it is likely that the debind-
sintering profile suggested by the manufacturer (shown in Table 2)
led to poor densification of the material. Both listed studies sintered
samples at a higher temperature than that suggested for our slurry
by the manufacturer. Future work should control for the humidity
during printing and also use the heat treatment parameters that
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FIGURE 5
The results of the GPM shown inside the range of non-constant output. The color surface represents the predicted strength in bending value. The
x-axis represents humidity and the y-axis represents days since synthesis. The grey surfaces represent the upper and lower 95% confidence bounds.
The black dots are measured experimental values.

FIGURE 6
2D profiles for days since synthesis and humidity with each paired parameter locked at a specific value. (A) Time profile at 0.375 humidity (B) Time
profile at 0.25 humidity (C) Humidity profile at 171 days (D) Humidity profile at 392 days

led to optimum performance in published studies instead of slurry
supplier recommendations.

3.2 Digital twin

The use of the term “twin” in digital twin implies the that
there is another entity to which the digital system is coupled.
Each digital twin should have a corresponding physical twin
or process twin. Digital twins are digital representations of the
state of a physical system, but also “designed around a two-
way flow of information that occurs when object sensors provide
relevant data to the system processor and then happens again
when insights created by the processor are shared back with the

original source object.” (IBM, 2021) AMMONOID, in this study,
becomes a digital twin as it mirrors the features of the materials,
geometry, and manufacturing parameters and records characterized
data, but also exports control settings from the digital twin to
the DLP printer to manufacture the samples according to the
design of experiments generated in the digital system. In this
study, all the material parameters, printer settings, and preform
geometry values are saved such that the experiments could be
replicated. The Gaussian model takes in ambient humidity and
days since sythesis as inputs and predicts strength in bending as
the output.

The use of the AMMONOID digital framework to record and
model the experimental work resulted in a knowledge graph of the
sample geometry, material properties, settings, post-processes, and
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experimental results of characterization. The graph also holds the
resulting predictive model files that were generated using the GPM.
A representation of the digital model is shown in Figure 4.

The digital model functions to store and query the
manufacturing data, but also to prepare the manufacturing data for
use by the GPM. The digital twin enforces completeness of the input
parameters and resultant data, then formats the data as input to the
modeling engine. Figure 4 shows nodes colored by their class types
from theAMBERontology (which are all displayed in Figure 2).This
graph organization allows the data to be saved in a context outside
of any particular study or design of experiment. Future studies that
add more data with similar or dissimilar manufacturing parameters,
materials, or preform geometry can find their way in the graph.
By forced gathering of all manufacturing parameters in the study,
future models that focus on parameters beside humidity and days
since expiration for YSZ can make use of the data. This framework
also creates a clear thread between the particular components of
inputs andmethods that generated a predictivemodel and themodel
itself. Changes to the upstream data can trigger a notification that a
component of the model has been altered and that the model needs
to be refit. This framework led to a progressive set of models that
became more and more refined as new characterization results were
added to the platform.

3.3 Outcome of RSM model

Different iterations of the model were trained until the
95% confidence intervals captured 95% of values. The final
hyperparameter values are shown in Table 4. A randomized set of
10% of the characterized values was withheld from the model to
use as a validation set. Twelve of the thirteen samples fell within the
bounds of the 95% confidence interval, for a capture rate of 92%.
The only sample to fall outside the interval is the sample with the
strength of 90.804 in the 114 days set.

Since the model was trained on both humidity and days since
synthesis, the resultant model can be viewed as a 3D response
surface, or as a 2D graph with one value held constant.The output of
the GPM is shown in Figure 5. The model demonstrates the GPM’s
ability to return confidence data which narrows in regions where
training data is richer.

The 3D model, unsurprisingly, shows a peak in sample
performance when both the humidity and the days since synthesis
are lowest. Figure 6 shows the 2D cross sections of the surface at
various single-value selections of the parameter that demonstrate
trends for each variable, and also variability in the model results for
different regions of the parameter space. The model demonstrates
both a general negative correlation between humidity and strength
and days since synthesis and strength. The areas of highest
confidence (as represented by the narrowest confidence interval
bands) show the decline in strength most strongly.

The outcome of the experimental results, the digital twin,
and the RSM show that the use of these research modalities in
conjunction provide a unique enabling of advanced manufacturing
research for high energy applications. Manufacturing researchers
and technicians, in the normal course of sample production,
create a searchable knowledge graph of their data for future study.

They also are able to create data-driven predictive models of the
performance characteristics of the samples they are creating. In
summary, creating a digital twin of a DLP system for 3D printing
allows for comprehensive exploration and understanding of how
resin age affects printing performance and part quality, leading to
more efficient and optimized production processes.
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