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Introduction: The characteristics of intermittency and volatility brought by a high
proportion of renewable energy impose higher requirements on load forecasting
in modern power system. Currently, load forecasting methods mainly include
statistical models and machine learning methods, but they exhibit relative rigidity
in handling the uncertainty, volatility, and nonlinear relationships of new energy,
making it difficult to adapt to instantaneous load changes and the complex
impact of meteorological factors. The Transformer model, as an algorithm used
in natural language processing, with its self-attention mechanism and powerful
nonlinear modeling capability, can help address the aforementioned issues.

Methods: However, its current performance in time series processing is
suboptimal. Therefore, this paper improves the Transformer model through
two steps, namely, Data-Slicing and Channel-independence, enhancing its
adaptability in load forecasting.

Results: By using load data from Northern Ireland as an example, we compared
GRU, CNN, and traditional Transformer models. We validated the effectiveness of
this algorithm in short-term load forecasting using MAPE and MSE as indicators.

Discussion: The results indicate that, in short-term load forecasting, the MDS
method, compared to GRU, CNN, and traditional Transformer methods, has
generally reduced the MSE by over 48%, and achieved a reduction of over 47.6%
in MAPE, demonstrating excellent performance.
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1 Introduction

The escalation in the integration of renewable energy within the power system stands as
a pivotal pathway toward achieving decarbonization (Yang et al., 2022; Østergaard, 2009).
Power systems marked by a substantial share of new energy sources are progressively
emerging as a forefront issue in the energy sector. In contrast to conventional power
systems, those featuring a substantial share of new energy sources often contend with
significant fluctuations in instantaneous loads, stemming from the intrinsic instability of
these sources (Infield and Freris, 2020). The variability inherent in wind and solar energy
can lead to rapid surges or drops in system loads over short periods, thereby placing
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heightened demands on the stability and dispatchability of the
power system. The characteristics of uncertain loads in such
systems necessitate the adoption of advanced scheduling and
energy storage technologies to effectively mitigate energy
fluctuations and ensure the seamless operation of the grid (Wang
et al., 2022). Consequently, in power systems characterized by a

substantial share of new energy sources, addressing the variability of
load characteristics becomes a crucial issue warranting thorough
consideration and resolution.

Advanced load forecasting technology emerges as a vital
approach in tackling these challenges. The intricacies in this
technology predominantly revolve around two key aspects:
spatiotemporal complexity and precision. Firstly, owing to the
uncertainty and variability of new energy sources, power system
load forecasting must adeptly grapple with spatiotemporal
complexity (Tascikaraoglu and Sanandaji, 2016). This entails
accurately capturing the variations in new energy sources such as
wind and solar energy across diverse regions and timeframes,
facilitating more nuanced load forecasting for timely and precise
adjustments in the face of instantaneous load changes. Secondly, the
elevated proportions of new energy source integration necessitate
heightened accuracy in load forecasting to ensure the reliability and
stability of the power system (Aslam et al., 2021). Precision in load
forecasting contributes to the rational planning of generation,
storage, and dispatch strategies, thereby enhancing the
operational efficiency of the power system and diminishing
reliance on conventional backup generation sources. In addition,
residential and building loads, especially those related to predicting
elastic loads, are also emerging issues this year (Qi et al., 2020; Wan
et al., 2021; Qi et al., 2023; Li et al., 2021).

Traditional methods of power system load forecasting
predominantly encompass statistical models and machine
learning algorithms (Ibrahim et al., 2020). Time series analysis, a
common approach among statistical models, relies on historical load
data trends and seasonal variations for predictions. Conversely,
regression analysis considers various factors influencing load,
such as weather and economic activities, and establishes
mathematical models for forecasting. While these statistical
methods offer simplicity and ease of use, they face limitations in
handling intricate nonlinearities and spatiotemporal changes. With
the surge of machine learning, an expanding array of algorithms is
introduced into the load forecasting domain. Artificial Neural
Networks (ANN) represent one such category, simulating
complex relationships in load data by mimicking the connections
of neurons in the human brain. Moreover, Support Vector Machines

FIGURE 1
The overview of Transformer model.

FIGURE 2
The overview of MDS-Transformer model.
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(SVM) model nonlinear relationships in data, and ensemble
learning methods like decision trees and random forests find
application in load forecasting.

However, these methods exhibit shortcomings when
confronted with the integration of new energy sources. Firstly,
the uncertainty and variability of new energy sources render
traditional statistical models relatively inadequate in capturing
their spatiotemporal changes (Zhu and Genton, 2012). This
results in the inflexibility of traditional time series and
regression analyses when addressing instantaneous load
changes caused by new energy sources. Secondly, traditional
methods face limitations in handling nonlinear relationships,
whereas the characteristics of new energy sources often involve
intricate nonlinear relationships, such as the nonlinear
connection between photovoltaic power generation and solar
radiation. This may lead to a performance decline of
traditional algorithms in adapting to the complex scenarios of
integrating new energy sources into the power system. The main
root of this problem lies in the characteristics and assumptions of
the models themselves. Traditional statistical models like linear
regression are built on the assumption of linearity, while complex
relationships in the real world are often nonlinear, making it
challenging for these models to accurately capture them. Machine
learning algorithms may face issues of overfitting or underfitting,
and the curse of dimensionality leads to a decline in the
generalization performance of models on high-dimensional
data. Factors such as parameterization constraints, lack of
flexibility, and reliance on large-scale annotated data also
contribute to the inadequacies. Additionally, the seasonal and
meteorological factors of new energy sources impact load
forecasting, and traditional methods may lack the flexibility
required for modeling these factors. Therefore, when
confronting the challenges of integrating new energy sources
into power systems, more advanced and flexible load forecasting
methods are essential, such as algorithms based on deep learning.

The Transformer model, initially designed for natural language
processing, has exhibited exceptional performance in addressing
these challenges (Lauriola et al., 2022). Firstly, the Transformer
model excels in capturing spatiotemporal relationships by modeling
global correlations in sequence data through self-attention
mechanisms. This capability allows it to flexibly adapt to the
intricate spatiotemporal characteristics of new energy load
fluctuations, effectively managing their uncertainty and
instantaneous changes compared to traditional statistical models
and machine learning algorithms. Secondly, the Transformer model
possesses robust nonlinear modeling capabilities (Martinez and

Mork, 2005). Given that the characteristics of integrating new
energy sources into power systems may involve complex
nonlinear relationships, the Transformer can capture intricate
dependencies between different features through multi-head self-
attentionmechanisms, better accommodating the nonlinear changes
in load. Furthermore, the Transformer model performs well in
addressing long-term dependency issues, critical for factors such
as seasonality and meteorological influences in load forecasting.
Through self-attention mechanisms, the Transformer can effectively
capture dependencies between different time steps in time series
data, contributing to more accurate predictions of load changes at
various time scales (Rao et al., 2021).

However, recent studies have indicated that a very simple linear
model outperforms all previous Transformer-based models in a
series of common benchmark tests, casting doubt on the practicality
of Transformers in time series forecasting. These challenges include
high spatiotemporal complexity and insufficient learning ability for
long look-back windows, hindering the further advancement of
Transformer models in power system load forecasting.

Therefore, this paper introduces the Multivariate Data Slicing
Transformer (MDS-Transformer) Model to optimize the
performance of the Transformer model in load point
forecasting, addressing these challenges. This model
incorporates two key designs: Data-Slicing and Channel-
independence. Firstly, recognizing that the goal of time series
forecasting is to comprehend data correlations between different
time steps, the model aggregates time steps into slices at the sub-
series level to extract local semantic information, enhancing
locality and capturing comprehensive semantic information
not available at the point level. Secondly, in the context of
multivariate time series as a multi-channel signal, each
Transformer input token can be represented by data from a
single channel or multiple channels. The Channel-independence
design ensures that each input token contains information from a
single channel only, differing from previous methods applied to
CNN and linear models.

2 The framework of multivariate data
slicing transformer model

2.1 Fundamental components of
transformer model

The Transformer model is a type of deep learning model
originally proposed by Vaswani in 2017 (Rao et al., 2021) for
sequence-to-sequence tasks. The overview of Transformer model
can be seen in Figure 1. It introduces a self-attention mechanism,

TABLE 1 Model hyperparameter Configuration.

Prediction
model

Neuron
quantity

Attention
head

quantity

Learning
rate

MDS-
Transformer

Multi-
Head
Self-

Attention
Layer

Fully
Connected

Layer

8 1 × 10−4

512 1024

TABLE 2 Predicting NI Demand, NI Wind Generation, and NI Wind
Availability using two types of forecasting models: multivariate and
univariate.

Prediction
model

MAPE/MSE Time

Demand Generation Availability

Multivariate 1.21/0.13 2.93/0.25 2.21/0.19 3693

Univariate 1.78/0.22 3.02/0.46 2.35/0.33 11,265
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allowing the model to simultaneously attend to different positions in
the input sequence without the need for sequential processing. The
main components of the Transformer model include:

1) Input Representation: The input sequence undergoes an initial
phase where it traverses through an embedding layer. In this
layer, each word or token within the sequence is meticulously
mapped to a vector representation within a high-dimensional
space. This representation is commonly referred to as input
embedding, expressed by formula (1) as:

Input Embedding: X � x1, x2, . . . , xn[ ] (1)
Where X � [x1, x2, . . . , xn] is the input sequence, n is the sequence
length, and xi is a word or token.

2) Positional Encoding: Given that the Transformer inherently
lacks explicit sequential information, a crucial step involves
incorporating positional encoding into the input embeddings.
This addition serves the purpose of introducing the sequential
order of the sequence. Consequently, the model becomes adept
at distinguishing between words positioned at various points
within the sequence. This relationship is represented by Eqs 3, 4:

PE pos,2i( ) � sin
pos

100002i/dmodel
( ) (2)

PE pos,2i+1( ) � cos
pos

100002i/dmodel
( ) (3)

Where pos is the position, i is the index of the dimension, and dmodel

is the dimension of embedding.

3) Encoder: The encoder is structured with multiple identical
layers, each encompassing two sub-layers:
i. Self-Attention Layer: This layer operates by computing
attention weights, ensures the model to allocate distinct
attention to each position within the sequence (He et al.,
2022), which facilitates the model to selectively focus on

different positions of information during the processing of
input sequence:

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V (4)

In (Eq. 4), Attention represents the self-attention computation
results. Q stands for the query matrix, used to calculate attention
weights.K represents the key matrix, also used to calculate attention
weights.V represents the value matrix, which is a matrix obtained by
weighting according to attention weights.

FFN x( ) � max 0, xW1 + b1( )W2 + b2 (5)
In (Eq. 5), x represents the output of the self-attention layer, andWb,
b1,W2, b2 represent the weights and biases of the feedforward neural
network. FFN represents the output of the feedforward
neural network.

4) Multi-Head Attention Mechanism: By employing multiple
attention heads, the model can learn different attention
weights and then concatenate them together. Multiple
attention heads can be represented by formulas (6) and (7):

MultiHead Q,K,V( ) � Concat head1, . . . , headh( )WO (6)
headi � Attention QWQi, KWKi, VWVi( ) (7)

In (Eq. 7), MultiHead represents the output of the multi-head
attention mechanism, and headi represents the output of the i-th
attention head.W denotes the weights for the linear transformations
in the multi-head attention mechanism.

5) Residual Connection and Layer Normalization: Following
each sub-layer is a residual connection and layer
normalization, which helps prevent the vanishing or
exploding gradients during the training process.

6) Stacked Encoder Layers: The entire encoder is constructed by
stacking multiple identical layers together.

FIGURE 3
Utilizing four different methods to conduct a 48-h forecast for NI Demand.
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i. Decoder: The decoder mirrors the encoder’s architecture
and comprises multiple identical layers. Each decoder layer
consists of three sub-layers:

ii. Self-Attention Layer: Resembling the self-attention layer in
the encoder, the decoder’s self-attention layer operates
with the distinction that each position can exclusively
attend to its own preceding positions.

iii. Feedforward Neural Network: This sub-layer mirrors the
feedforward neural network in the encoder.

iv. Final Output Layer: The output generated by the decoder
undergoes a linear transformation followed by a softmax
operation. The output expression can be represented by Eq. 8.

Output x( ) � softmax xWO + bO( ) (8)

ii. Feedforward Neural Network: Following each attention layer is
a fully connected feedforward neural network. This network is
position-wise independent (Bouktif et al., 2018):

Where Output represents the probability distribution of the
final output.

2.2 MDS approach

In the context of load forecasting, we consider the following
issues: given a set of multivariate load sequence samples, where each
time step xt is a vector of dimension M, we aim to predict the load
values for the next T time steps (xL + 1; ...; xL + T) using data from

FIGURE 4
Utilizing four different methods to conduct a 48-h forecast for NI Wind Generation.

FIGURE 5
Utilizing four different methods to conduct a 48-h forecast for NI Wind Availability.

Frontiers in Energy Research frontiersin.org05

Lu and Chen 10.3389/fenrg.2024.1355222

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1355222


a past time window L: (x1; ...; xL). This is a typical load forecasting
problem, crucial for the management of power systems and energy
planning. To address this challenge, we introduce a model called
Multivariate Data Slicing (MDS), as shown in Figure 2. The
architecture of MDS is based on a vanilla Transformer encoder,
which is a deep learning model initially used in natural language
processing but has been successfully applied in various fields. In the
context of our load forecasting, the core objective of MDS is to
enhance predictive performance for load variations by aggregating
local information from the load data.

1) Forward Process: In the forward process, we define the i-th
univariate time series of length x(i)

1: L � (x(1)
i , . . . , x(L)

i ), where

i � 1, . . . ,M. The input data x1: L � (x1, . . . , xL) is divided
intoM univariate time series x(i) ∈ R1×L, where each sequence
is a vector of dimension 1 × L. This segmentation is designed
to adhere to channel independence.

Subsequently, these segmented univariate time series x(i) are
independently fed into the backbone structure of the
Transformer. The Transformer is a deep learning model
renowned for its powerful performance in sequence modeling
tasks. Under the processing of the Transformer, the backbone
structure provides prediction results x′(i) � (x̂(Li+1), . . . , x̂(Li+T))
in R1×T for each univariate time series x(i). This signifies the
predicted values for the next T time steps, where

FIGURE 6
Utilizing four different methods to conduct a 168-h forecast for NI Demand.

FIGURE 7
Utilizing four different methods to conduct a 168-h forecast for NI Wind Generation.
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x̂(Li+1), . . . , x̂(Li+T) represent the predicted values from time step
Li + 1 to Li + T.

2) Data Slicing: The introduction of patching can significantly
enhance the comprehension of electricity load data.
Traditional load forecasting methods often rely on single
time-step information or manually extracted features.
However, these approaches face limitations as they struggle
to adequately capture the intricate relationships and local
patterns inherent in electricity load data.

By implementing Data Slicing, which involves aggregating time
steps into “Slices” at the subsequence level, the model gains the
ability to more effectively capture local features in the variations of
electricity load. Each “Slice” can represent a segment of load data
over a specific period, providing a more comprehensive reflection of
local patterns and changes within the system. This methodology
enables a more nuanced understanding of the complex dynamics
inherent in electricity load data.

The process of the “Slicing”method is as follows. For each input
univariate time series x(i), it is initially segmented into patches,
which can be overlapping or non-overlapping. The length of the
patches is denoted as P, and the stride is denoted as S, where the
stride represents the non-overlapping region between two adjacent
patches. Therefore, the patching process generates a patch sequence
x(pi) ∈ RP×N, where N is the number of patches,
N � �(L − SP)/P� + 2. Prior to Slicing, the end of the original
sequence needs to be padded with S repetitions of the last
value x(L).

By using patching, the number of input tokens can be reduced
from L to approximately L/S. This means that the memory usage
and computational complexity of attention maps both decrease
quadratically by a factor of S. Therefore, within the constraints of
training time and GPU memory, patch design allows the model to
see longer historical sequences. By reducing the number of input

tokens, this slicing method provides the model with the ability to
handle longer historical sequences, potentially yielding more
accurate results in tasks such as load forecasting.

3) Transformer Encoder: In this model, a basic Transformer
encoder is utilized to map the observed signals to latent
representations. Mapping is performed on these patches
through a trainable linear projection matrix Wp ∈ RD×P and
a learnable positional encoding matrix Wpos ∈ RD×N, used to
capture the temporal sequence of the patches. Here, D is the
dimension of the Transformer’s latent space, and N is the
number of patches. Specifically, the patch x(di) ∈ RD×N is given
by the formula: x(di) � Wpx(pi) +Wpos, where x(pi) is the
patch subjected to linear projection and positional encoding.

Next, each head h � 1, . . . , H in the multi-head attention
transforms these inputs into query matrices Q(hi) � (x(di))TWhQ,
key matrices K(hi) � (x(di))TWhK, and value matrices
V(i)

h � (x(di))TWhV, where WhQ,WhK ∈ RD×dk and WhV ∈ RD×D.
Subsequently, the scaled dot-product operation produces attention
outputs O(hi) ∈ RD×N: (O(hi))T � Attention(Q(hi), K(hi), V(i)

h ) �
Softmax(Q(hi)K(hi)/

��
dk

√ )V(i)
h . The multi-head attention block

also includes a batch normalization layer and a feedforward
network with residual connections. Following this, it generates
representations z(i) ∈ RD×N.

Finally, a flattening layer with linear heads is used to obtain
prediction results x′(i) � (x̂(Li+1), . . . , x̂(Li+T)) ∈ R1×T. These
operations describe the structure of the attention mechanism,
multi-head attention block, and feedforward network in the MDS
model, and how these components are integrated to obtain
predictions for future time steps.

4) Loss Function: We choose to use Mean Squared Error (MSE)
loss to measure the difference between predicted values and
actual values (Han et al., 2021). The loss is computed on each

FIGURE 8
Utilizing four different methods to conduct a 168-h forecast for NI Wind Availability.
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channel, and then averaged across M time series to obtain the
overall objective loss:

L � 1
M

∑M
i�1

1
T
∑T
t�1

x̂ Li+t( ) − x Li+t( )���� ����22 (9)

In this formula (9), x̂(Li+t) represents the model’s predicted value
for the i-th time series at time step Li + t, and x(Li+t) represents the
actual observed value (Bo et al., 2023). Mean Squared Error
calculates the difference between predicted and actual values at
each time step and obtains the overall loss by summing the squares
and taking the average. This overall loss L reflects the model’s
predictive performance across all time series and time steps. During
the training process, the goal of the optimization algorithm is
typically to minimize this Mean Squared Error loss, aiming to
improve the model’s accuracy in predicting future time steps
(Sampath et al., 2021).

5) Instance Normalization: This technique, recently proposed,
aims to help alleviate the distribution shift effects between
training and testing data. It straightforwardly standardizes
each time series instance x(i), giving it a zero mean and
unit standard deviation (Ahmadi et al., 2016). Essentially,
we normalize each x(i) before slicing, and then add back
the mean and standard deviation to the output predictions.

2.3 Representation learning

Self-supervised representation learning is widely utilized to
derive high-level abstract representations from unlabeled data. In
this section, we leverage the MDS method to obtain effective
representations for multivariate time series, showcasing their
successful applicability in prediction tasks. Masked autoencoders,
a well-established technique in natural language processing (NLP)
and computer vision (CV) domains, constitute one of the popular
methods for self-supervised pretraining of learned representations
(Vaswani et al., 2017).

The fundamental concept behind masked autoencoders is
straightforward: deliberately omit a random segment of the input
sequence and train the model to reconstruct the missing content
(Ericsson et al., 2022). Recent advancements have introduced
masked encoders to the time series domain, demonstrating their
efficacy in classification and regression tasks. Integrating multivariate
time series into the Transformer framework involves representing each
input token as a vector containing the time series values at a specific

time step (George et al., 2021). Masks are randomly positioned within
each time series and across different sequences.

However, this configuration presents two potential challenges.
Firstly, masks are applied at the individual time step level. The values
for the current time step’s mask can be easily deduced by
interpolating with its adjacent time values, lacking the necessity
for a holistic understanding of the entire sequence. This contradicts
the overarching objective of learning crucial abstract representations
for the entire signal. To address this issue, intricate randomization
strategies have been proposed, involving the random masking of
differently sized time series.

Secondly, designing an output layer for prediction tasks may
face some challenges (Kahng et al., 2017). Given representation
vectors zt ∈ RD corresponding to all L time steps, mapping these
vectors to outputs containing M variables, each with a prediction
range of T, requires a parameter matrix W with dimensions
(L ·D) × (M · T). If one or more of these four values are large,
this matrix may become exceptionally large. This could lead to
overfitting, especially when downstream training samples are scarce.

The proposed MDS method naturally overcomes the above
issues. We use the same Transformer encoder as in a supervised
setting, but remove the prediction head and add a linear layer of
D × P. Unlike in supervised models where overlapping patches are
allowed, we divide each input sequence into regular non-
overlapping patches. This design ensures that observed patches
do not contain information about the masked patches. Next, we
uniformly and randomly select a subset of patch indices and mask
the patches with zero values based on these selected indices. The
model is trained using Mean Absolute Percentage Error loss to
reconstruct the masked patches.

It is worth emphasizing that each time series will have its own
latent representation, learned through weight sharing across tasks.
This design allows pretraining data to include more time series than
downstream data, which is challenging for other methods to achieve.

3 Case study

To validate the aforementioned approach, we focused our study
on the Irish energy system and conducted short-term load
forecasting. The European Union target for the Irish energy
system stipulates that 16% of the country’s total energy
consumption should come from renewable sources by 2020.
Energy in Ireland is predominantly utilized for heating,
transportation, and electricity. To meet the 16% energy target,
EirGrid, the transmission system operator, aims to have 40% of
the electricity sourced from renewable resources on the island of
Ireland by 2020. The overarching goal of the DS3 (Delivering a
Secure, Sustainable Electricity System) program is to augment the
share of renewable energy in the Irish electricity system in a secure
and reliable manner, ultimately fulfilling Ireland’s
2020 electricity target.

3.1 Data description

Our dataset spans approximately 6.5 years, from 1 January 2014,
00:00, to 30 April 2020, 23:45, and originates from the Irish energy

TABLE 3 Predicting result of NI Demand, NI Wind Generation, and NI Wind
Availability using 4 types of forecasting models: GRU, CNN, Transformer
and MDS-Transformer.

Prediction
model

MAPE/% (Dem/
Gen/Avail)

MSE (Dem/
Gen/Avail)

Time

GRU 2.97/3.42/2.43 0.33/0.22/0.24 3215

CNN 2.35/3.64/2.41 0.25/0.24/0.35 3378

Transformer 2.31/3.71/2.47 0.36/0.22/0.26 4563

MDS-Transformer 1.21/2.93/2.21 0.13/0.25/0.19 3693
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system. It encompasses various aspects of electricity data, including
power generation, power demand, wind power generation, and
other indicators, covering both Ireland and Northern Ireland.
The dataset comprises unprocessed 15-min original SCADA
readings, with the unit of load data measured in megawatts
(MW) and updates occurring every 15 min. Notably, the dataset
boasts high completeness and proves to be well-suited for research
endeavors related to short-term load forecasting and distribution
optimization in power systems.

The data is sourced from the EirGrid Group, serving as the
Transmission System Operator (TSO) in Ireland. EirGrid, a state-
owned company, is tasked with managing and operating the entire
transmission network on the island of Ireland. Its high-voltage
network receives power from generators and supplies wholesale
energy to a substantial number of users. Furthermore, EirGrid plays
a crucial role in providing distribution networks, forecasting when
and where electricity is needed in both Ireland and Northern
Ireland. These predictions span various timeframes, including
hourly, daily, and annually.

3.2 Result analysis

In our evaluation, we use Mean Absolute Percentage Error
(MAPE) and Mean Square Error (MSE) and training time as key
metrics. MAPE is a widely used metric for measuring prediction
errors, particularly applied to assess the accuracy of time series data
or other forecasting models. The outcomes of MAPE are presented
as percentages, representing the average percentage error of each
forecasted value relative to the actual value. A lower MAPE value
signifies greater accuracy in themodel’s predictions. The expressions
for MAPE and MSE can be represented by Eqs 10, 11:

MAPE � 1
n
∑n

i�1
yi − yi

μ

yi

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣× 100% (10)

MSE � 1
n
∑n

i�1 yi − yi

μ
∣∣∣∣∣∣

∣∣∣∣∣∣2 (11)

By default, this method consists of three encoder layers, with a
head count (H) of 16 and a latent space dimension (D) of 128. The
feedforward network in the Transformer encoder block is composed
of two linear layers with GELU activation function: one layer
projects the hidden representation (D = 128) into a new
dimension (F = 256), and the other layer projects it back to D =
128. For very small datasets, reducing the size of parameters (H = 4,
D = 16, and F = 128) is recommended to alleviate potential
overfitting. In all experiments, a dropout with a probability of
0.2 is applied in the encoder. In addition, the hyperparameters
used during the MDS method training process are shown in Table 1:

Utilizing the MDS-Transformer model, we conducted joint
predictions as well as separate load predictions for NI Demand,
NI Wind Generation, and NI Wind Availability. This approach was
undertaken to validate the potential advantages of multivariate joint
forecasting. The corresponding data results are presented in Table 2:

From Table 2, it is evident that the error associated with the
multivariate load joint forecasting method is slightly smaller than
that of individual load forecasting. Moreover, the training time is
notably reduced by 67.2%, a significant improvement compared to

individual load forecasting. This reduction in training time can be
attributed to the fact that individual load forecasting necessitates
modeling and solving for different types of loads separately, whereas
multivariate load joint forecasting can output multivariate load data
simultaneously, thereby substantially enhancing computational
efficiency. The analysis of the inherent connections between
multivariate loads also contributes to an improvement in
prediction accuracy to a certain extent. This reaffirms the
efficiency and effectiveness of the multivariate load joint
forecasting approach. In the subsequent comparative analysis
section, all models will adopt the multivariate load joint
forecasting method.

To validate the superiority of the MDS-Transformer in the
multivariate short-term load forecasting problem, this study
conducts a comparative analysis with well-established GRU and
CNN models commonly used in the field of time series forecasting.
Simultaneously, to assess the effectiveness of the proposed
improvement, the predictive results of the traditional
Transformer model are compared with those of the MDS-
Transformer model. The obtained predictions for each model are
illustrated in Figures 3–5 for a 48-h forecast and Figures 6–8 for a
168-h forecast. Evaluation data on NI demand is presented
in Table 3.

From the results, it can be observed that, relying on the multi-
scale attention mechanism to capture spatiotemporal dependencies
at different scales, as well as the improved data slicing function, the
MDS-Transformer exhibits the highest prediction accuracy, closely
aligning with the actual data throughout the entire time period.
Although GRU and Transformer also demonstrate strong predictive
capabilities, they slightly lag behind MDS-Transformer, particularly
exhibiting slight deviations near peaks and troughs. In contrast, the
CNN shows relatively lower fitting accuracy, with significant
deviations near peaks and troughs.

The MDS method demonstrates outstanding performance in
multiple aspects. Whether in terms of MAPE or MSE, the results of
the MDS method are superior. This superiority is most pronounced
in load forecasting, where MAPE decreases by nearly 50%, and MSE
decreases by almost 60%. As the MDS method aggregates time steps
into slices and processes them at the subsequence level, it can better
understand the data correlations between different time steps. For
load forecasting, this means that the model is more capable of
capturing short-term variations and trends in load data, leading to
more accurate predictions.

In the case of wind power forecasting, MDS achieves a 14.2%
reduction in MAPE compared to the GRU method, with the most
significant improvement being a 21.0% increase compared to the
transformer model. However, this improvement is not as substantial
as in load forecasting, possibly because wind power forecasting involves
more long-term trends and seasonal variations. The MDS Transformer
is designed to emphasize understanding the local data correlations
within short-term intervals, which might explain the relatively smaller
improvement in the context of wind power forecasting.

From the statistical results, it is evident that the MDS-
Transformer model, incorporating Data Slicing and Channel-
independence, exhibits a significant improvement in predictive
performance for NI demand compared to traditional GRU and
CNNmodels. This improvement can be attributed to the incomplete
penetration of wind power, with NI wind generation and NI Wind
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Availability remaining lower than NI demand. The model
strategically focuses its attention on the larger magnitude of NI
demand, thereby enhancing overall predictive accuracy.

In comparison to the traditional Transformer model, the Mean
Absolute Percentage Error (MAPE) for NI demand, NI Wind
Generation, and NI Wind Availability decreases by 47.62%, 21.02%,
and 10.53%, respectively, indicating a notable enhancement in overall
predictive accuracy. Despite the MDS-Transformer having a more
complex network structure and longer training times for each
iteration, improvements in the attention mechanism and gate
residual links at both the self-attention and network structure levels
significantly boost training efficiency. This enables the model to reach
optimal values more quickly, reducing the overall training duration.
Compared to the traditional Transformer model, the training time is
reduced by 19.07%, striking a balance between learning efficiency and
predictive performance, within an acceptable range.

4 Conclusion

This paper addresses the short-term forecasting problem of
multivariate loads in renewable energy systems and introduces a
predictive method based on the MDS-Transformer model. The
model extracts high-dimensional data features through Data
Slicing, utilizes a multi-head self-attention mechanism to capture
key information from input features, and stabilizes the network
structure through gate-controlled residuals. The following
conclusions are drawn from the case analysis:

1) The joint forecasting approach formultivariate loads outperforms
single-variable load forecasting in the short-term prediction of
multivariate loads. This approach significantly improves
computational efficiency while ensuring predictive accuracy.

2) The self-attention mechanism effectively leverages the
predictive capabilities of the Transformer model by
analyzing the coupling relationships of multivariate loads. It
achieves higher predictive accuracy compared to traditional
time series forecasting models but comes with a relatively
slower computational speed.

3) Both the multi-head self-attention mechanism and the gate-
controlled residual method enhance the predictive capabilities
of the Transformer model to varying degrees in the short-term
forecasting of multivariate loads. Their combined effects
significantly improve the model’s predictive accuracy,
training efficiency, and forecasting stability.

This method is a short-term prediction approach based on point
forecasting. The predicted results can provide specific values for
real-time scheduling in power plants, ensuring the safe and stable

operation of the power grid, as well as peak shaving in grid
operations to enhance overall efficiency. However, if applied to
demand-side response, which involves incentivizing users to adjust
their electricity consumption behavior to balance the supply and
demand of the grid, this method may still have limitations. In such
cases, the use of probability forecasting is necessary. Probability
forecasting can provide the likelihood of the load falling within a
certain range, facilitating the formulation of strategies for demand-
side response and improving its effectiveness.
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