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With the construction and development of the new energy system, the integrated
energy system (IES) has garnered significant attention as a crucial energy carrier in
recent years. Therefore, to address the scheduling challenges of IES influenced by
uncertainty in source load and mitigate the conservatism of scheduling schemes
while enhancing clustering accuracy, a method for day-ahead top-note
scheduling of IES is proposed. First, by improving dynamic time warping
(DTW) for hierarchical clustering of wind, solar, and load data in IES, typical
scenarios of IES are derived. Second, using the interval method to model wind,
solar, and load data in IES along with their coupled devices and considering the
conservatism issue of interval optimization, the established IES interval model
undergoes affine processing. Finally, with the goal of minimizing the operating
costs of IES, a day-ahead interval affine scheduling model is established, which is
solved using the CPLEX Solver and INTLAB toolbox, and scheduling schemes for
all typical scenarios are provided. Through comparative analysis of calculation
examples, it is found that the method proposed in this paper can enhance
clustering accuracy and reduce the conservatism of system scheduling schemes.
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1 Introduction

The global energy shortage and environmental issues are pressing challenges for the
world, necessitating an accelerated shift toward green and low-carbon energy
transformation and the rapid development of new industries (Antonazzi et al., 2023).
The integration of renewable energy on a large scale has led to the need for an integrated
energy system (IES) that combines various energy sources, such as wind, solar, and chemical
energy, within a region in an effective way to promote the utilization and development of
new energy systems (Martínez Ceseña et al., 2020). However, the uncertainty of new energy
output at the source end and energy consumption at the load end increases the volatility of
IES, impacting the accuracy of its day-ahead scheduling scheme (Jena et al., 2022).
Therefore, studying the IES day-ahead scheduling method becomes crucial in the face
of growing uncertainty.

Currently, two methods are prevalent for addressing uncertainties in the IES: i) the
probabilistic form and ii) the non-probabilistic form. The former accurately describes
uncertainty, while the latter, comprising robust and interval methods, has a simpler
modeling structure. Kalim et al. (2021) predicted the behavior of wind and light renewable
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energy using probability and cumulative density functions, and they
solved the smart microgrid model based on the multi-objective wind-
driven optimization (MOWDO) algorithm and multi-objective genetic
algorithm by Pareto criterion and fuzzy mechanism using the
demand–response scenario and tilt block tariff as the scenarios to
optimize the operating cost, pollution emission, and system availability
at the same time. Meanwhile, Sajjad et al. (2022) further developed a
responsive consumer model based on the demand response of Kalim
et al. (2021) and a multi-objective dispatch model based on MOWDO
to optimize the operating cost, curtailable load reduction cost, pollution
emission, transferable load, and wind power generation. Hengyu et al.
(2023) proposed a thermoelectric coupled probabilitymulti-energy flow
calculation method establishing the probabilistic and correlation
models. Ran et al. (2024) constructed an optimization model
considering load probability uncertainty based on easily accessible
conditional risk values. Representing uncertainties through
probability functions demands extensive historical data, making it
challenging to obtain accurate distributions. To enhance accuracy,
Liu et al. (2023) used kernel density estimation to obtain probability
density distributions of wind speed, solar radiation, and multidemand,
and typical scenarios are generated using Latin hypercube sampling and
self-organizing mapping. Duan et al. (2023) generated typical daily
output scenarios of the scenery using the Frank-copula theory with joint
probability distributions for source load uncertainty. Xu et al. (2023)
used Monte Carlo simulation and K-means clustering methods to
generate typical scenarios and attempted to minimize the operating
costs using an adaptive differential evolutionary algorithm based on the
success history.

Despite improvements in accuracy, generating typical scenarios
affects the robustness of IES scheduling. Hafeez et al. (2020) actively
participated in the market through demand response programs to cope
with load uncertainty and proposed wind-driven bacterial foraging
algorithms to solve energy management strategies based on price-based
demand response programs. Ghulam et al. (2020) established an
integrated framework based on artificial neural networks (ANNs)
and the gray wolf modified enhanced differential evolution
(GmEDE) algorithm to improve the efficient energy management of
residential buildings by predicting price-based demand response signals
and energy consumption through ANNs and efficiently managing
residential buildings under the predicted values through GmEDE.
Ahmad et al. (2023) developed a real-time energy optimization
algorithm based on the framework of Lyapunov optimization. Li
et al. (2023) considered the integrated demand response and inertia
of various energy sources to construct a robust optimization model,
achieving optimality under worst-case scenarios. Ma et al. (2022)
developed a model of an integrated electricity–gas–heat system at
the user level, which is solved using a decentralized, robust
algorithm to protect the security and privacy of the various
participants in the system. Interval variables encompassing more
information and handling unknown distribution parameters offer an
alternative (Xiong et al., 2023). Gong et al. (2020) proposed a dynamic
interval multi-objective co-evolutionary optimization framework based
on interval similarity to solve dynamic interval multi-objective
optimization problems and adopted a response strategy to quickly
track the changing Pareto frontiers of the optimization problem. Zhang
et al. (2023) dealt with the uncertainty issues of wind energy using
interval numbers to model wind energy, and an interval-based
optimization scheduling model was established to minimize

operating costs. However, relying solely on upper and lower bounds
neglects correlations, which results in conservative outcomes. To
address conservatism, Zheng et al. (2022) introduced a noise
element variable through an affine algorithm, formulating an
interval affine optimization scheduling model for multi-microgrids.
Nevertheless, this study only evaluates the approach based on
forecasting data and lacks solutions for all possible scenarios.

Table 1 compares the aforementioned uncertainty modeling
methods and analyzes their strengths and weaknesses.

Unlike k-means clustering, hierarchical clustering does not require a
prior specification of clusters but relies on data point similarity.
Traditional similarity measures like the Euclidean distance method,
though computationally simple, face challenges in recognizing data
shape deformations and requiring equal-length time-series data
(Ezugwu et al., 2022). The dynamic time warping (DTW) algorithm,
known for addressing shape deformations and unequal time-series data
(Holder et al., 2023), has been introduced in power system analysis
(Gunawan and Huang, 2021; Shuai et al., 2023). However, due to the
high-dimensional nonlinear characteristics of the IES source and load
data, direct clustering calculations can be complex (Liu and Chen, 2019).

Building upon existing research, this paper emphasizes the
advantages of DTW in addressing conservative scheduling issues
in the IES. However, few studies focus on IES scheduling schemes
under all possible scenarios and provide references for scheduling
personnel. To address this, the paper preprocesses IES source and
load data, converting high-dimensional nonlinear data into low-
dimensional linear interval data. An enhanced DTW is then
employed for hierarchical clustering, followed by the
establishment of a day-ahead interval affine scheduling model
based on economic factors and correlations. The resulting
scheduling scheme provides intervals for all typical scenarios,
offering valuable references for dispatchers and elucidating the
fluctuation range and operational interval of the IES. The
primary contributions include the following:

(1) Establishing an IES day-ahead scheduling model considering
economic factors and the correlation of uncertain variables.

(2) Improving the original DTW using the interval distance
formula and applying it to measure the similarity of linear
interval data obtained through dimensionality reduction.

(3) Presenting a scheduling scheme for all typical scenarios,
providing a reference for dispatchers, and clarifying the
fluctuation range and operational interval of the IES.

2 Integrated energy system structure
and model

2.1 Integrated energy system model

The park-integrated electrical heating systems (PIEHSs)
discussed in this article are illustrated in Figure 1, comprising
two main components: the power subsystem and the thermal
subsystem. The PIEHS source side incorporates the superior
power grid, gas grid, wind turbine (WT), and photovoltaic (PV).
The system coupling side equipment includes combined heat and
power (CHP) and an electric boiler (EB). The PIEHS load side
includes electrical and thermal loads. The system’s energy storage
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process encompasses electric energy storage (EES) and thermal
energy storage (TES).

2.2 Modeling of uncertain variables

Various factors, including weather changes and consumer
psychology, lead to fluctuations in wind and solar power output
and load demand. Although existing research suggests that these
fluctuations follow probability distributions, obtaining accurate
probability density functions during actual operation is challenging
(Yang et al., 2023). However, obtaining the value range of uncertain

quantities from historical data is relatively straightforward and helps
avoid the interference of prediction errors. Therefore, this article
models wind and solar power output and load demand using interval
numbers based on historical data (Bai et al., 2016).

Ppv
t[ ] � P pv , �P

pv[ ], (1)
Pwt
t[ ] � Pwt, �P

wt[ ], (2)
Pload
t[ ] � P lood, �P

load[ ], (3)

where [Ppv
t ] and P pv are the output ranges of photovoltaic and

wind turbines at time t, respectively; �Ppv and [Pwt
t ] are the upper and

TABLE 1 Comparison of different uncertainty modeling methods.

Reference Optimization
objective

Uncertain
object

Planning
method

Solution
method

Advantage Disadvantage

Probabilistic
method

Kalim et al.
(2021)

Multi-objective Renewable
energy

Day-ahead
scheduling

Pareto criterion
and fuzzy
mechanism

Being able to
accurately describe

uncertainty

The accurate distribution
of uncertain variables is

difficult to obtain

Sajjad et al.
(2022)

Renewable
energy and load

Heuristic
algorithm and
decision-making

mechanism

Hengyu et al.
(2023)

Renewable
energy and load

Total probability
principle

Ran et al. (2024) Single-objective Load Solver

Liu et al. (2023) Multi-objective Renewable
energy and load

Obtain an accurate
distribution of

uncertain variables

Loss of robustness

Duan et al.
(2023)

Single-objective Renewable
energy

Alternating
direction method
of multipliers

Xu et al. (2023) Renewable
energy and load

Heuristic
algorithm

Non-
probabilistic
method

Hafeez et al.
(2020)

Multi-objective Load Able to meet the
demands of different
consumer groups

Price adjustments can
easily trigger competition

in the market
Ghulam et al.

(2020)

Ahmad et al.
(2023)

Single-objective Renewable
energy and load

Real-time
scheduling

Lyapunov
optimization

More flexible to
adapt to different
task requirements

The hardware and
software environment of
the system is demanding

Ahmad et al.
(2023)

Day-ahead
scheduling

Solver The capability to
consider the most
adverse scenarios

The results are
conservative

Ma et al. (2022) Decentralized,
robust algorithm

Gong et al.
(2020)

Multi-objective Heuristic
algorithm

The modeling is
straightforward yet

capable of
considering all

scenarios

The modeling accuracy is
relatively low

Zhang et al.
(2023)

Single-objective Renewable
energy

Solver

Zheng et al.
(2022)

Multi-objective Renewable
energy and load

The modeling is
simple, reducing
conservatism

The computational
complexity is higher
when handling high-
dimensional problems

The
methodology

proposed in this
article

Single-objective Renewable
energy and load

Solver Can cover all
scenarios and reduce
the conservatism of

results

Vulnerable to high-
dimensional information
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lower limits of the photovoltaic output, respectively; Pwt and �Pwt are
the upper and lower limits of the wind turbine output, respectively;
[Pload

t ] is the load demand range at time t; and P lood and �Pload are the
limits of the load demand range.

2.3 PIEHS equipment model

2.3.1 CHP unit model
The CHP unit, a key component in the electric heating system, is

assumed to operate in a “heat-to-power” mode in this article. The
CHP unit model is as follows (Yansong et al., 2023):

Pt
CHP � ηEG

t
CHP

Ht
CHP � ηSηHG

t
CHP

{ , (4)

where Pt
CHP and Ht

CHP are the electrical and thermal power
output of the CHP unit at time t, respectively; Gt

CHP is the power of
natural gas consumed by the CHP unit at time t; ηE and ηS are the
electrical and thermal efficiencies of the CHP unit, respectively. ηH is
the CHP unit heat recovery efficiency.

The constraints are as follows:

−ΔPdown
CHP t( )≤P t( ) − P t − 1( )≤ΔPup

CHP t( )
−ΔQdown

CHP t( )≤Q t( ) − Q t − 1( )≤ΔQup
CHP t( ){ . (5)

PCHP,min ≤pCHP,t ≤PCHP,max. (6)

In the above formula, ΔPdown
CHP (t) and ΔPup

CHP(t) are the
maximum downhill and uphill rates of the electric output of the
CHP unit at time t, respectively; ΔQdown

CHP (t) and ΔQup
CHP(t) are the

maximum downhill and uphill rates of the thermal output of the
CHP unit at time t, respectively; pCHP,t is the thermal output of the
CHP unit at time t; and PCHP,min and PCHP,max are the minimum
and maximum thermal output values of the CHP unit, respectively.

2.3.2 EB model
The EB, acting as a coupling device between electric heating

systems, follows the model given below:

Pα,i � 1 − δi( )Pα−1,i + ηcha,iPcha,α,i − Pdis,α,i

ηdis,i
( )Δα i ∈ E, T, (7)

whereQEB,t is the efficiency of the electricity-to-heat conversion,
ηEB is the absorbed electric power at time t, and PEB,t is the emitted
thermal power at time t.

The constraints are as follows:

−Rdown
EB,t ≤QEB,t − QEB,t−1 ≤R

up
EB,t, (8)

QEB,min ≤QEB,t ≤QEB,max, (9)
where Rdown

EB,t and Rup
EB,t are the maximum values of the downhill

and uphill speed of the EB, respectively, andQEB,min andQEB,max are
the minimum and maximum values of the thermal power output of
the EB, respectively.

2.3.3 Energy storage model
Energy storage in PIEHS involves ESS and TES, and its model is

outlined as follows:

Pα,i � 1 − δi( )Pα−1,i + ηcha,iPcha,α,i − Pdis,α,i

ηdis,i
( )Δα i ∈ E, T, (10)

where Pα,i is the stored energy of the energy storage device i
within time t; δi is the dissipation rate of the energy storage device i;
ηcha,i is the charging efficiency of the energy storage device i; Pcha,α,i

is the input of the energy storage device i within time t; ηdis,i is the
discharge efficiency of the energy storage device i; Pdis,α,i is the
output of the energy storage device i within time t; Δα is the time
interval between two actions; and i ∈ E, T is an electrical energy
storage device or a thermal energy storage device.

The constraints are as follows:

Ni,min ≤Ni,t ≤Ni,max

0≤Pcha,i,t ≤Pcha,i,maxBt
cha,i

0≤Pdis,i,t ≤Pdia,i,maxBt
dis,i

Bt
cha,i + Bt

dis,i � 1
Ni,t � Ni,0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ i ∈ E, T, (11)

where Ni,min is the minimum capacity of the energy storage
device i;Ni,t is the state of the energy storage device i at time t;Ni,max

is the maximum capacity of the energy storage device i; Pcha,i,t is the
charging power of the energy storage device i at time t; Pcha,i,max is
the maximum charging power of the energy storage device i; Pdis,i,t is
the discharging power of the energy storage device i at time t;
Pdia,i,max is the maximum discharging power of the energy storage
device i; Bt

cha,i and Bt
dis,i, respectively, represent the charging and

discharging states of the energy storage device i at time t, which are
0–1 variables; and Ni,0 is the initial capacity of the energy
storage device i.

3 Hierarchical clustering based on
improved dynamic time warping

In the daily scheduling of the IES, most scheduling schemes are
typically based on the forecast data of wind, light, and loads.
However, such schemes are specific to particular scenarios and
do not account for all situations. To address this, the article
clusters historical data to obtain typical scenarios and provides
interval scheduling schemes for each scenario. During day-ahead
dispatching, the forecast values of wind and rain load are matched
with the corresponding typical scenario, offering a dispatching
scheme for the dispatcher’s reference. Unlike k-means clustering,
hierarchical clustering does not require setting the number of
clusters in advance, resulting in more accurate clustering results.

FIGURE 1
PIEHS structure diagram.
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The article employs the condensed hierarchical clustering method
for historical data on wind, solar power, and load, merging the
closest samples and repeating the clustering process until the end
threshold condition is met.

3.1 Improved dynamic time warping

Whenmeasuring the similarity of historical data, issues like data
loss may arise due to malfunctions in data collection equipment,
leading to unequal lengths between historical datasets. DTW enables
“one-to-many” matching in uncertain variable historical data,
addressing data loss issues and equalizing time-series data
lengths. DTW is shown in Figure 2:

3.1.1 Data preprocessing
Due to the high-dimensional and nonlinear characteristics of

historical data on wind, solar, and load, direct clustering
operations can pose challenges such as algorithmic time and
space complexity (Liu and Chen, 2019). Therefore, historical
data need to undergo preprocessing. Approximate piecewise
linearization and normalization (Santiago et al., 2020) are
employed for processing, reducing the dimensionality of high-
dimensional data and linearizing historical data. Using a 15-min
time period, the maximum and minimum values within each
period form the upper and lower limits of the interval. The
upper and lower limits of the subsequent periods are
sequentially connected, as illustrated in Figure 3. This

transforms historical data on wind, solar, and load into interval
time-series data, as follows:

Pcate
t ′[ ] � tX′ + Δt′, PU1′, PL1′[ ]( ), tX′ + 2Δt′,({
PU2′, PL2′[ ]), . . . , tX′ + nΔt′, PUn′, PLn′[ ]( )}, (12)

PUi′ � PUi − min PU1, PU2, . . . , PUn{ }
max PL1, PL2, . . . , PLn{ } − min PU1, PU2, . . . , PUn{ }, (13)

PLi
′ � PLi − min PU1, PU2, . . . , PUn{ }

max PL1, PL2, . . . , PLn{ } − min PU1, PU2, . . . , PUnn{ }, (14)

Δt′ � 1
n − 1

tX′ � −Δt′

⎧⎪⎪⎨⎪⎪⎩ , (15)

where Δt′ is the normalized time interval; n is the number of
time intervals; tX′ is the normalized time point; [Pcate

t ′] is the
normalized wind, solar, and load interval data,
cate ∈ wt、pv、load; and PUi′ and PLi

′ are the normalized upper
and lower limits of the time interval data, respectively.

3.1.2 Similarity measure
Eq. 12 demonstrates the transformation of wind, light, and load

data into interval time-series data after preprocessing. Calculating
the distance between interval data is challenging, leading to the
introduction of triangular filling, as shown in Figure 4. By
comparing preprocessed data along the time axis, when
tb − ta > td − tc, point A connects to point D, forming a triangle

FIGURE 2
Schematic of DTW

FIGURE 3
Preprocessing of historical data of wind, solar, and load.

FIGURE 4
Interval data triangular filling.
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with points B and C. The triangle’s center of gravity and
circumscribed circle radius convert the interval time-series data
into a set of triplet data. Initially, the DTW method used the
Euclidean distance to calculate the similarity between uncertain
variables. However, the Euclidean distance fails to capture all
information within uncertain variable interval data. Tran and
Duckstein (2002) introduced a new formula for calculating
distance based on the midpoint and radius of intervals, which
can be considered a generalization of the Euclidean distance:

D2 A, B( ) � a1 + a2
2

( ) − b1 + b2
2

( )[ ]2

+ 1
3

a1 − a2
2

( )2

+ b2 − b1
2

( )2[ ], (16)

where A and B are interval numbers in the ranges (a1, a2) and
(b1, b2), respectively;

a1+a2
2 and b1+b2

2 are the midpoints of A and B,
respectively; and a1−a2

2 and b2−b1
2 are the radiis of A and B,

respectively.
According to Equation 16, after filling the triangular interval

data for (TGi, VGi, ri) and (SGi, UGi, Ri), the formula for measuring
the distance between them is as follows:

dDTW �
���������������������������������
TGi − SGi( )2 + VGi − UGi( )2 + 1

3
ri + Ri( )2

√
. (17)

In the above formula, (TGi, VGi) and (SGi − UGi) are the
coordinates of the center of gravity of the ith triangle of the
same uncertain quantity in [Pcate

t ′]; ri and Ri are the outer radii
of the ith triangle of the two sets of interval data.

As an example, assuming that the filled points of triangle ACD
in Figure 4 are denoted as point X and the filled points of triangle
ABD in Figure 4 are denoted as point Y, the sequence of points X is
(1, 2, 3) and the sequence of points Y is (3, 6, 9). The distance
between X and Y is as follows:

dDTW XY( ) �
�������������������������
1 − 3( )2 + 2 − 6( )2 + 1

3
3 + 9( )2

√
� 8.2462.

The distance between X and Y can be obtained by substituting
the centroid coordinates (1, 2) and (3, 6) along with the radii 3 and
9 into Eq. 17. The distance between X and Y is calculated to
be 8.2462.

A distance matrix of orderm × n is obtained using Equation 17.
The distance matrix is as follows:

Dm×n �
D11 . . . D1n

..

.
1 ..

.

Dm1 / Dmn

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠, (18)

whereDmn represents the distance between themth data and nth
data in any two sets of data under the same uncertainty in [Pcate

t ′].
Next, the optimal path—the minimum-distance route from D11

toD12 within the distance matrixD21—must be identified. The path
selection must satisfy the following conditions:

(1) Boundary conditions: the selected path must commence from
D11 and terminate at Dmn.

(2) Monotonicity condition: the selected path must proceed
monotonically over time.

(3) Continuity condition: the selected path must be contiguous,
without cross-point matching.

Starting fromD11, there are three possible directions: to the right
(D12), below (D21), and to the lower right (D22). The smallest value
among these three is chosen and continued in this manner until
Dmn. The elements in the path selection are denoted as
MDI(I ∈ [1, m + n − 1]). The similarity measure between two
sets of data under the same uncertainty can be represented
as follows:

DDTW � min ∑m+n−1

I�1
MDI. (19)

Eq. 19 indicates that the distance between two sets of data
under the same uncertainty is the minimum
accumulated distance.

3.1.3 Evaluation indicators
To verify the clustering effect, the sum of squared errors (SSEs)

(Shang et al., 2021), Davies–Bouldin index (DBI), and Dunn
validity index (DVI) (Kan et al., 2019) are used as
evaluation metrics.

The SSE expression is as follows:

SSE � ∑n
i�1

∑
x∈jCi

x − Ci| |2( ), (20)

where Ci represents the clustering center; jCi is the clustering
result corresponding to Ci; and x is the point in the clustering result.

The DBI expression is as follows:

DBI � 1
C
∑C
i�1

max
j≠i

�xCi + �xCj

Ci − Cj

���� ����2⎛⎝ ⎞⎠, (21)

where �xCi and �xCj are the average intra-class distance between
any two classes; C is the final number of clusters in the clustering;
and ‖Ci − Cj‖2 is the distance between two cluster centers.

The DVI expression is as follows:

DVI �
min
xi≠xj

xijCi − xjjCi
���� ����( )

max
xi≠xj

xijCi − xjjCi
���� ����( ), (22)

where xijCi and xjjCi are any two data points within jCi and
‖xijCi − xjjCi‖ is the distance between xijCi and xjjCi.

A smaller DBI metric indicates a smaller within-class distance
and a larger inter-class distance. Conversely, a larger DVI metric
indicates a larger inter-class distance and a smaller within-
class distance.

3.2 Typical scene generation

First, the normalized wind, solar, and load data are organized
into a composite data sample set on a daily basis. After forming the
distance matrix using Eq. 18, the optimal path is selected using
DTW, and the distance between samples is calculated according to
Eq. 19. Then, the data sample set is clustered using the agglomerative
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hierarchical clustering method. Agglomerative hierarchical
clustering employs a bottom-up strategy, treating each object as a
separate cluster and gradually merging the clusters, with the
convergence criterion being that all data ultimately converge into
a single class or reach a certain stopping threshold. The stopping
threshold condition is determined as follows:

According to the definition of an isolation point in the literature
(Laszlo, 2010), an isolated sequence G(xi) is defined as the DTW
distanceDDTW(xi) between a data sample xi and a sample nearest to
sample xi that is greater than a certainmarginY(i) , i.e.,DDTW(xi) >
Y(i). Therefore, as Y(i) decreases, the number of G(xi) will

increase, and the increased number of G(xi) will be recorded as
ΔG(xi). ΔG(xi) will increase and then decrease as Y(i) decreases.
Therefore, when ΔG(xi) reaches its maximum value, Y(i) is chosen
as the stop threshold condition. The detailed flowchart is illustrated
in Figure 5:

First, the initial threshold, denoted as DDTW,i(xi), is chosen as
the maximum value of DDTW(xi) in the entire data sample. Next,
the reduction in DDTW,i(xi) during cycling, denoted as ΔDDTW(o),
is a fractional multiple of the initial threshold,
DDTW,i(xi) � maxDDTW(xi) − ΔDDTW(o).The isolated sequence
detection algorithm stops when the amount of ΔG(xi) peaks,
indicating a sharp increase in the number of isolated sequences
produced at that threshold. Since it is necessary to compare ΔG(xi),
ΔG(xi) is detected as the maximum at step i when DDTW,i(xi) has
been reduced to the same amount for the i+2nd time. The final
convergence condition is, therefore, as follows: DDTW(stop) �
DDTW,i(xi) + 3ΔDDTW(o).

The final conclusion is drawn from typical scenarios. The
detailed flowchart is illustrated in Figure 6.

To determine which class the predicted data belongs to, the
predicted data are first pre-processed and formed into a
composite data sample set according to Eqs 12–15, then the
distances between the predicted data and each clustering center
are calculated according to Equation 16, and finally, the
predicted data are assigned to the class with the
closest distance.

FIGURE 5
Generated typical scenarios.

FIGURE 6
Clustering stopping threshold conditions.
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4 Affine-based IES interval
scheduling model

4.1 Objective function

This article considers the minimum total cost of IES, comprising
the sum of the operating cost of the IES equipment and the external
power purchase cost, as the objective function. The objective
function is as follows:

minF � f1 + f2, (23)

where f is the operating cost of IES and f2 is the power supply
cost of IES’s superior power grid.

4.1.1 IES equipment operating cost
The operating costs of the IES equipment include WT and PV

operating costs, CHP fuel costs, EB operating costs, and the
operating costs of energy storage devices.

The operating costs of the equipment are as follows:

f1 � FWT + FPV + FCHP + FEB + FES, (24)

where FWT, FPV, FCHP, FEB, and FES are, respectively, the WT
operation cost, PV operation cost, operating cost of the CHP unit,
EB operation cost, and energy storage operation cost.

The operating cost of WT is as follows:

FWT � ∑T
t�1
λWTP

wt
t , (25)

where λWT is the unit WT operating cost and Pwt
t is the WT

output power within the time t.
The operating cost of PV is as follows:

FPV � ∑T
t�1
λPVP

pv
t , (26)

where λPV is the unit PV operating cost and Ppv
t is the PV output

power within time t.
The operating cost of the CHP unit is as follows:

FCHP � ∑T
t�1
λGQG,t, (27)

where λG is the unit cost of gas purchase and QG,t is the amount
of gas purchased within time t.

The operating cost of EB is as follows:

FEB � ∑T
t�1
λEBPEB,t, (28)

where λEB is the unit EB operating cost and PEB,t is the electric
power absorbed within time t.

The operation costs of energy storage are as follows:

FES � FEES + FHES, (29)

FEES � ∑T
t�1
λEESPEES,t, (30)

FHES � ∑T
t�1
λHESPHES,t, (31)

where FEES is the cost of electrical energy storage; λEES is the cost
of thermal energy storage; λHES is the operating cost per unit EES;
PEES,t is the operating cost per unit HES; t is the power absorbed and
discharged during time t, with absorption being positive and
discharge being negative; and PHES,t is the heat absorbed and
discharged during time t, with absorption being positive and
discharge being negative.

4.1.2 Power supply cost of the superior power grid
The power supply cost of the superior power grid is as follows:

FE � ∑T
t�1

λEg,tPEg,t − λEs,tPEs,t( ), (32)

where λEg,t is the price of purchasing power from the superior
power grid within time t; λEs,t is the price of selling electricity to the
superior power grid within time t; PEg,t is the purchasing power
within time t; and PEs,t is the selling power within time t.

4.2 Constraint condition

The network balance constraint is as follows:

PWT,t + PPV,t + PE,t + PCHP,E,t � PLOAD,t + PEES,t + PEB,t, (33)
QEB,t + PCHP,h,t � QLOAD,t + PHES,t, (34)

where PCHP,E,t is the electric power generated by CHP at time t;
PLOAD,t is the electric load demand in the IES at time t; PEB,t is the
electric power absorbed by the EB at time t; QEB,t is the thermal
power output by the EB at time t; PCHP,E,t is the thermal power
generated by CHP at time t; QLOAD,t is the thermal load demand in
the IES at time t; PHES,t is the heat storage capacity of thermal energy
storage equipment at time t; and PEES,t is the electric energy storage
capacity of electric energy storage equipment at time t.

The constraints on equipment operation are expressed in Eqs 5,
6, 8, 9, and 11. The power purchase constraints of the superior grid
are outlined as follows:

0≤Pt
buy ≤Pbuy

maxBt
buy

0≤Pt
sell ≤Psell

maxBt
sell

Bt
buy + Bt

sell ≤ 1

⎧⎪⎨⎪⎩ , (35)

where Bt
buy and Bt

sell are, respectively, the purchase and sale
status of PIEHS time and external power supply, both of which are
0–1 variables; Pt

buy andP
t
sell are the power purchased and sold at time

t, respectively; and Pbuy
max and Psell

max are the maximum value of
electricity purchased and sold, respectively.

4.3 Model analysis

Since interval linear programming is more suitable to deal with
situations where the membership or distribution function of
uncertain information is unknown, an economically optimal day-
ahead scheduling model of the regional integrated energy system
based on interval linear programming is established (Duan et al.,
2023). When modeling the uncertainty of source and load using
interval numbers, the output of each device in PIEHS will also be
modeled as an interval, resulting in an interval scheduling model.
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The notation "[ ]" indicates the interval form of the corresponding
variable, and the variables in the constraints are also converted to
corresponding interval variables. The objective function and
constraints are shown in Eqs 36–46, and the individual devices
are modeled in Eqs 47–49.

min F[ ] � f1[ ] + f2[ ], (36)
f1[ ] � FWT[ ] + FPV[ ] + FCHP[ ] + FEB[ ] + FES[ ]

FWT
⎤⎦ � ∑T

t�1
λWT

⎡⎣Ppv
t

⎡⎣ ⎤⎦
FPV

⎤⎦ � ∑T
t�1
λPV⎡⎣Pwt

t
⎡⎣ ⎤⎦
FCHP

⎤⎦ � ∑T
t�1
λG⎡⎣QG,t

⎡⎣ ⎤⎦
FEB

⎤⎦ � ∑T
t�1
λEB⎡⎣PEB,t

⎡⎣ ⎤⎦
FES

⎤⎦ � ∑T
t�1
λEES⎡⎣PEES,t

⎤⎦ +∑T
t�1
λHES

⎡⎣PHES,t
⎡⎣ ⎤⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (37)

f2[ ] � ∑T
t�1

λEg,t PEg,t[ ] − λEs,t PEs,t[ ]( ), (38)

PWT,t[ ] + PPV,t[ ] + PE,t[ ] + PCHP,E,t[ ] + Pdis
ESS,t[ ]

� PLOAD,t[ ] + Pch
ESS,t[ ] + PEB,t[ ], (39)

QEB,t[ ] + PCHP,h,t[ ] + Pdis
HES,t[ ] � QLOAD,t[ ] + Pch

HES,t[ ]. (40)
Ni,min ≤ Ni,t[ ]≤Ni,max

0≤ Pcha,i,t[ ]≤Pcha,i,maxBt
cha,i

0≤ Pdis,i,t[ ]≤Pdia,i,maxBt
dis,i

Bt
cha,i + Bt

dis,i � 1
Ni,t � Ni,0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ i ∈ E, T, (41)

QEB,min ≤ QEB,t[ ]≤QEB,max, (42)
−Rdown

EB,t ≤ QEB,t[ ] − QEB,t−1[ ]≤Rup
EB,t, (43)

−ΔPdown
CHP t( )≤ P t( )[ ] − P t − 1( )[ ]≤ΔPup

CHP t( )
−ΔQdown

CHP t( )≤ Q t( )[ ] − Q t − 1( )[ ]≤ΔQup
CHP t( ){ , (44)

PCHP,min ≤ pCHP,t[ ]≤PCHP,max, (45)
0≤ Pt

buy[ ]≤Pbuy
maxBt

buy

0≤ Pt
sell[ ]≤Psell

maxBt
sell

Bt
buy + Bt

sell ≤ 1

⎧⎪⎪⎨⎪⎪⎩ , (46)

Pt
CHP[ ] � ηE Gt

CHP[ ]
Ht

CHP[ ] � ηSηH Gt
CHP[ ]{ . (47)

QEB,t[ ] � ηEB PEB,t[ ], (48)

Pα,i[ ] � Pα−1,i[ ] + ηcha,i Pcha,α,i[ ] − Pdis,α,i[ ]
ηdis,i

( )Δα i ∈ E, T. (49)

Given that this paper focuses on the PIEHS day-ahead
optimization scheduling problem, where the only uncertain
variables are the load and new energy output, parameters such as
cost coefficients and energy conversion efficiency remain constant.
Observing that the constraints in this model are linear and the
objective function is monotonically convex, the interval
optimization scheduling problem is transformed into a
deterministic scheduling problem under both optimal and worst-
case scenarios.

In the calculation of interval numbers, only the upper and lower
limit values are substituted into the computation, often resulting in

conservative outcomes. Affine operations, an improved form of
interval arithmetic, transform uncertain variables into linear
combinations among multiple noise components, reducing
conservatism by eliminating redundancy when the same noise
component appears (Zheng et al., 2022). The specific details are
as follows:

x̂ � x0 + x1ε1 + x2ε2 + . . . + xnεn � x0 +∑n
i�1
xiεi, (50)

where x̂ is the affine form of the uncertain variable; x0 is the
affine center value, which is the midpoint of the interval; εi is the
noise element variable with a value in [−1, 1], which are mutually
independent; noise elements can be seen as the correlation factors
between uncertain variables; and xi is the noise element coefficient,
which reflects the degree of influence of noise elements on
uncertain variables.

Although the result of affine computation is simple, its
readability is poor. Therefore, it is necessary to convert the affine
result to an interval form. The conversion relationship between the
two is as follows:

An interval [X] � [X, �X] is defined, where X and �X are the
lower and upper limits of the interval, with the center value M �
(X + �X)/2 being the midpoint of the interval and the noise element
coefficient r � ( �X −X )/2 being the radius of the interval. Therefore,
the affine result is as follows:

x̂ � X + �X( )
2

+ �X −X( )/2{ }ε. (51)

The affine technique is used to convert the uncertainties of wind,
solar, and load into affine forms with the following specific
expressions:

P̂
pv

t � P pv
t
+ �P

pv
t

2
+
�P
pv
t − P

pv

t

2
εpv, (52)

P̂
wt

t �
�P
wt
t + P

wt

t

2
+
�P
wt
t − P

wt

t

2
εwt, (53)

f̂t

i �
fi
t + fi

t

2
+
fi
t − fi

t

2
εi, (54)

where P̂
pv
t , P̂

wt
t , and f̂t

i
are the affine values of photovoltaic,

wind turbine, and load, respectively; εpv is the noise element
of the photovoltaic output; εwt is the noise element of the
wind turbine output; εi is the noise element of the load
demand; and εx(x∈pv,wt,i) is a interval number with a value of
[−1, 1].

Similarly, for a given affine number x̂, it can also be converted
into an interval form, with the midpoint of the interval being the
center value x0 of x̂ and the conversion radius being the sum of the
noise element coefficients, that is, r � ∑n

i�1
|xi|. Therefore, the

transformed interval is as follows:

X � x0 − r, x0 + r[ ]. (55)

By applying affine transformation techniques, the interval
scheduling problems of PIEHS is transformed into deterministic
scheduling problems based on central values and uncertainty
scheduling problems based on noise element coefficients.
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The article deals with Eqs 36–49 using affine techniques. Eqs
36–38 are transformed into the following equations:

min F̂ � F̂WT + F̂PV + F̂CHP + F̂EB + F̂ES + F̂E

F̂WT � ∑T
t�1
λWTP̂

pv

t

F̂PV � ∑T
t�1
λPVP̂

wt

t

F̂CHP � ∑T
t�1
λGQ̂G,t

F̂EB � ∑T
t�1
λEBP̂EB,t

F̂ES � ∑T
t�1
λEESP̂EES,t +∑T

t�1
λHESP̂HES,t

F̂E � ∑T
t�1

λEg,tP̂Eg,t − λEs,tP̂Es,t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (56)

where the symbol " ^ " indicates the affine form of the
corresponding variable and the variables in the constraints are
converted to the corresponding affine variables.

The definition of affine can split Eq. (56) into two parts,
the central value cost and variation cost; the central value
cost refers to the system operation cost of the new energy
output and load under the affine central value, and the
variation cost indicates the system correction scheduling
cost when the new energy output and load differ from the
central value and are subject to stochastic variation, as shown
in Eq. (57):

FIGURE 7
IES day-ahead scheduling based on improved DTW

TABLE 2 Time-sharing electricity pricing mechanism.

Time (h) Price (¥/kWh)

Peak period 12:00–14:00 Purchasing electricity: 0.95

19:00–22:00 Selling electricity: 0.60

Low period 23:00–7:00 Purchasing electricity: 0.35

Selling electricity: 0.25

Peaking period 08:00–11:00 Purchasing electricity: 0.56

15:00–18:00 Selling electricity: 0.40
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min F̂ � FWT,0 + FPV,0 + FCHP,0 + FEB,0 + FES,0 + FE,0+∑
i

FWT,i + FPV,i + FCHP,i + FEB,i + FES,i + FE,i

∣∣∣∣ ∣∣∣∣ ,

(57)

where FWT,0, FPV,0, FCHP,0, FEB,0, FES,0, and FE,0 are the
center value costs of WT, PV, CHP units, EB, ES, and
purchased and sold electricity, respectively, and FWT,i, FPV,i,
FCHP,i, FEB,i, FES,i, and FE,i are the fluctuating costs of WT,

FIGURE 8
Hierarchical clustering center results.
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PV, CHP units, EB, ES, and purchased and sold electricity,
respectively.

In order to maintain the linearity of the objective function, the
absolute value of Eq. (56) is removed as follows:

xt,i

∣∣∣∣ ∣∣∣∣ − x+
i,t + x−

i,t � 0
x+
i,t ≥ 0

x−
i,t ≥ 0

⎧⎪⎨⎪⎩ , (58)

where |xt,i| is a variable containing absolute values and x+
i,t and

x−
i,t are auxiliary variables used to equate |xt,i|.
Since the objective of model optimization is to minimize cost,

x+
i,t and x−

i,t will not be non-zero at the same time in the final
optimized solution, ensuring that |xt,i| � x+

i,t − x−
i,t.

From Eqs 39–49, it can be seen that the above constraints
include equality, inequality, and intertemporal constraints, and
the three types of constraints can be defined in affine form as follows:

The equality constraints are mainly of two types: energy
conversion relations [47]–[48] and power balances [39]–[40],
whose affine forms are shown as follows:

λX,AX̂a
t � λX,BX̂b

t +/ + λX,CX̂c
t
, ([59])

where X̂a
t
, X̂b, and X̂c

t
are the affine variables that are included

in the constraints of the equation; λX,A, λX,B, and λX,C are the energy
conversion efficiencies for energy conversion devices, and they also
indicate the relationship between the positive and negative signs of
each variable in power balances.

Since the systems have the same noise element, Eq. (58) can be
transformed as follows:

λX,AXt
a,0 � λX,BXt

b,0 +/ + λX,CXt
c,0

λX,AXa,
t
i � λX,BXt

b,i +/ + λX,CXt
c,i

{ , (60)

where Xt
a,0, X

t
b,0, and Xt

c,0 are the midpoints of the affine
variables and Xa,

t
i , X

t
b,i, and Xt

c,i are the affine noise coefficients.
The processing Eq. (60) converts the equality constraint into the

standard form: the left side of the constraint minus the right side
equals zero, as shown in Eq. (61):

λX,AXt
a,0 − λX,BXt

b,0 −/ − λX,CXt
c,0 � 0

λX,AXa,
t
i − λX,BXt

b,i −/ − λX,CXt
c,i � 0{ . (61)

The standardized equality constraint can be treated as a linear
term in the objective function or constraints.

The inequality constraints mainly include the upper and lower
constraints on the output of the system equipment and the
constraints on the purchase and sale of electricity from the
external grid, whose affine forms are shown as follows:

I min ≤ Î
t
≤ I max. (62)

In order to ensure that the inequality constraints used work,
i.e., to ensure the completeness of the constraints, the upper and
lower bounds are imposed:

I min ≤ It0 −∑
i

Iti
∣∣∣∣ ∣∣∣∣

It0 +∑
i

Iti
∣∣∣∣ ∣∣∣∣≤ I max

⎧⎪⎪⎨⎪⎪⎩ , (63)

where Î
t
is the affine variable that is involved in the inequality

constraints; Imax and Imin are the maximum and minimum values
allowed for the affine variables, respectively; and It0 and Iti are the
center values and noise element coefficients of the affine variables,
respectively.

The intertemporal constraints fall into two main categories:
energy storage constraints and energy conversion ramp
constraints. The affine form of the energy storage constraint is
shown as follows:

P̂α,i � P̂α−1,i + ηcha,iP̂cha,α,i − P̂dis,α,i

ηdis,i
( )Δα i ∈ E, T. (64)

The constraints in the affine form are converted to the center
value and noise element coefficient form:

Pα,i,0 � P0

Pα,i,0 � Pα−1,i,0 + ηcha,iPcha,α,i,0 − Pdis,α,i,0

ηdis,i
( )Δα

Pα,i,i′ � Pα−1,i,i′ + ηcha,iPcha,α,i,i′ − Pdis,α,i,i′
ηdis,i

( )Δα

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (65)

where Pα,i,0 and Pα−1,i,0 and Pα,i,i′ and Pα−1,i,i′ are the center
values and noise element coefficients of P̂α,i and P̂α−1,i,
respectively; Pcha,α,i,0 and Pcha,α,i,i′ and Pdis,α,i,0 and Pdis,α,i,i′ are
the center values and noise element coefficients of P̂cha,α,i and
P̂dis,α,i, respectively; and P0 is the capacity of the device before the
start of the planning cycle.

The same standardization process is performed for Eqs 64 and
65, as described in Eq. 61.

The affine form for the climb constraint for the energy
conversion device is given as follows:

−Rdown
i,t ≤ P̂i,t − P̂i,t−1 ≤Rup

i,t , (66)

where P̂i,t and P̂i,t−1 are the projected values of the energy
conversion device i at time t and t-1, respectively.

Again, for completeness, constraints on the upper and lower
bounds of equation [65] are required:

−Rdown ≤ Pi,t,0 −∑
i

Pi,t,i′
∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠ − Pi,t−1,0 +∑

i

Pi,t−1,i′
∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠

Pi,t,0 +∑
i

Pi,t,i′
∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠ Pi,t−1,0 ∑

i

Pi,t−1,i′
∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠≤Rup

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
, (67)

TABLE 3 Evaluation indicators under two schemes.

Scheme SSE indicator DBI indicator DVI indicator

Scheme 1 68,562.878 1.1502 1.2263

Scheme 2 63,957.179 1.0624 1.4216

TABLE 4 Computation time under two schemes.

Scheme Computation time (s)

Scheme 1 10.2

Scheme 2 7.3
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where Pi,t,0 and Pi,t,i′ and Pi,t−1,0 and Pi,t−1,i′ are the center values
and noise element coefficients of P̂i,t and P̂i,t−1, respectively.

In order to maintain the linearization of the
constraints, Equations 63 and 67 are de-absolute valued
according to Eq. 58.

The optimization scheduling problem for the PIEHS addressed
in this paper is a mixed integer linear programming problem, and it
was solved using the INTLAB toolbox in MATLAB along with the
CPLEX Solver.

The specific process of IES day-ahead scheduling based on
improved DTW is illustrated in Figure 7.

5 Case study

To validate the rationality and accuracy of the method proposed in
this paper, a specific regional PIEHSwas selected as the research subject.
The structure of this PIEHS is shown in Figure 1, where no related

FIGURE 9
Interval dispatching in the PIEHS power system.
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thermal product production activities are conducted during the night.
One set each of wind and solar units, CHP units, and EB units is
operational, with a 24-h operational cycle and a 15-min scheduling
interval. In this paper, the selection of noise sources is described by
Feixiong et al. (2023), the natural gas price is taken as 2.7, and the time-
of-use electricity pricing mechanism is presented in Table 2. The
parameters and settings of each piece of equipment are detailed by
Zhang et al. (2023); Wei and Bai (2009); Rafique et al. (2018). The
superiority and accuracy of the method proposed in this paper are
verified through a comparison of scenarios. The computational
hardware platform for the text is a PC with a 2.30 GHz Intel Core
i5-6300HQ CPU and 8.00 GB of RAM.

5.1 Clustering result comparison

To evaluate the superiority of the clustering results, the SSE, DBI,
and DVI were used as evaluation metrics. Two scenarios were used to
compare and analyze the proposed method: Scheme 1 using DTW
hierarchical clustering and Scheme 2 using hierarchical clustering of
improved DTW. The hierarchical clustering center results under the
two schemes are shown in Figure 8.

As shown in Figure 8, after hierarchical clustering, there is no
difference in the number of generated results between Schemes

1 and 2, both generating nine scenarios. Therefore, the two schemes
were assessed using the SSE index, DBI index, and DVI index. The
results for each index can be found in Table 3, while the computation
time for both schemes is presented in Table 4.

From Table 3, it can be seen that the SSE index of Scheme 1 is
larger than that of Scheme 2, indicating that the distance from the
data in Scheme 1 to the cluster center is greater than that in
Scheme 2. The DBI index of Scheme 1 is also larger than that of
Scheme 2, indicating that the distance within the data cluster in
Scheme 2 is smaller and closer to the cluster center. The DVI
index of Scheme 2 is larger than that of Scheme 1, indicating that
the distance between data clusters in Scheme 2 is larger and the
distance within clusters is smaller. These three metrics show that
the quality of clustering under Scheme 2 is better. As can be seen
from Table 4, it is because of the better quality of clustering in
Scheme 2 that the time used for iteration of Scheme 1 is greater
than that of Scheme 2. Both the clustering metrics and the time
taken show that the selection of clustering centers in Scheme 2 is
better than that in Scheme 1, improving the accuracy of
clustering.

In essence, the algorithm proposed in this article can guarantee
convergence to a near-global optimum solution. This is because the
algorithm is a greedy algorithm that minimizes the distance between
data samples by continuously adjusting the time alignment between
them. At each iteration, the algorithm selects the two closest data
samples to merge until all data samples are merged. Such a greedy
strategy essentially ensures that each step operates on the data pair
with the smallest distance, allowing the algorithm to achieve a near-
optimal solution.

5.2 Interval affine scheduling results

This article aims to provide interval affine scheduling
schemes for all scenarios, focusing on scenario 1 (top left
corner) as the scheduling object. As PIEHS is active only
during 08:00–22:00 for related thermal product and
production activities, a power system analysis is conducted to
analyze the scheduling results. A comparative analysis of the two
schemes is presented as follows:

Scheme 3 represents PIEHS interval scheduling, and
Scheme 4 represents PIEHS interval affine scheduling. The
power system interval dispatching of PIEHS is illustrated
in Figure 9.

In PIEHS interval dispatching, the optimal operation condition is
characterized by the minimum load demand and the highest new energy

TABLE 5 PIEHS interval scheduling cost.

Cost/¥ Worst case Optimal case

Cost of gas purchase 3025.75 2286.89

Power purchase cost 3409.91 1687.11

Total cost of system operation 6630.96 4091.85

TABLE 6 PIEHS power system interval dispatch equipment output time.

Device name Output time (h)

WT 00:00–24:00

PV 08:00–18:00

CHP 08:00–22:00

EES Optimal situation

24:00 and 06:00–07:00: energy storage

19:00–21:00: discharge

Worst-case situation

12:00–14:00 and 19:00–22:00: energy storage

16:00–18:00, 24:00, and 05:00–7:00: discharge

TABLE 7 PIEHS interval affine scheduling cost.

Cost/¥ Worst case Optimal case

Cost of gas purchase 2,765.49 2,468.67

Power purchase cost 3,124.68 2,040.99

Total cost of system operation 5,987.97 4,639.07

TABLE 8 PIEHS power system interval affine scheduling equipment output
time.

Device name Output time (h)

WT 00:00–24:00

PV 08:00–18:00

CHP 08:00–21:00

EES 15:00–17:00: energy storage

19:00–21:00: discharge
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output, while the worst operation condition is characterized by the
maximum load demand and the lowest new energy output.
Transforming the uncertain scheduling problem into two deterministic

problems, Table 5 lists the scheduling costs under interval operating
conditions, ranging from 4,091.85 to 6,630.96. The output of various types
of equipment in the power system is detailed in Table 6.

FIGURE 10
Interval affine scheduling for the PIEHS power system.
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As shown in Figure 9, the wind speed in this region is relatively
stable, resulting in consistent wind power output throughout the day.
The primary period of wind power output is from 08:00 to 18:00. The
CHP unit operates in a “heat-based power” mode, with its output
influenced by thermal load, operating only between 08:00 and 22:00.
The EB unit does not contribute to the output. Under the optimal
operation condition, only wind power is available between 23:00 and 07:
00, failing to meet the electrical load demand. Therefore, electricity
needs to be purchased from the higher-level power grid. The periods of
24:00 and 06:00–07:00 fall during the low electricity price period,
allowing for the storage of excess energy. During 12:00–15:00, the
source-end output meets the load requirement, eliminating the need to
purchase electricity from the higher-level grid. In this period, it is also
possible to sell excess electricity to the higher-level grid, resulting in a
profit. The hours 19:00–21:00 represent the peak electricity price period,
during which the CHP unit’s output reaches its maximum, with excess
energy being discharged to compensate for the difference between the
source and load, reducing the cost of purchasing electricity. Under the
worst operation condition, the energy storage device discharges energy
to the system during the peak periods of 12:00–14:00 and 19:00–22:00.
Additionally, during the periods of 16:00–18:00, 24:00, and 05:00–07:00,
excess energy is stored. In this scenario, the new energy output is low,
the load demand is high, and there is no excess energy available for sale
to the higher-level grid.

In contrast to interval scheduling, which transforms uncertain
problems into two deterministic problems, this study constructs a
PIEHS scheduling model based on affine transformations. Through
affine arithmetic, the correlation between uncertain variables is
represented by noise elements. The scheduling cost range calculated
by interval affine is between 4,639.07 and 5,987.97, as shown in Table 7.
After considering the correlation between uncertain variables,
the scheduling range of Scheme 4 is smaller and less conservative
than the scheduling cost range of Scheme 3.

The output of various types of equipment in the power system
under interval affine scheduling is shown in Table 8.

Based on Figure 10, it can be observed that the PIEHS interval
scheduling problem based on the affine algorithm is transformed
into a deterministic scheduling problem centered around the
interval and a fluctuation problem based on the interval radius.
There is no need for dispatchers to choose between optimal or
suboptimal scheduling solutions. At this point, the predictive data
are transformed into cluster center data, and the fluctuation range of
uncertain variables is also better provided for dispatchers’ reference.

In Scheme 4, the EB is not operated due to the influence of
operational costs and thermal loads. During the time periods of
11:00 and 14:00–18:00, the system is susceptible to fluctuations in
electrical load. During the time period of 23:00–07:00, the electricity
price is low, and the electrical load requirement is met by purchasing
electricity from external sources. During this time, the fluctuation of
the power system is mainly resolved by purchasing electricity from
the higher-level power grid. The energy storage device is charged
during the time periods of 15:00–17:00 and discharged during the
time periods of 12:00–14:00. The energy storage device charges
when the electricity price is low and discharges when the electricity
price is high, reducing the operational cost of the system. During the
time period of 08:00–21:00, the power system is susceptible to
changes in thermal load and variations in the output of new
energy sources. Since the CHP unit operates in the “heat-based
power” mode, its output is limited by the coupling relationship
between electricity and heat. The impact of uncertainty on the power
system can be mitigated by discharging from the energy storage
device and purchasing electricity from external sources. Among
these, the CHP unit has the lowest output and the highest electricity
price during the time period of 12:00–14:00; therefore, the discharge
from the energy storage device is selected during this time. The
comparison between Schemes 3 and 4 is shown in Tables 9 and 10.

Compared to interval scheduling, interval affine scheduling can
take into account the correlation between various uncertainties,
allowing for the rational utilization of CHP units, energy storage
devices, and the higher-level power grid to reduce fluctuations. This
achieves a better level of conservatism than Scheme 3. The results
obtained also provide a more accurate reference for dispatchers.

6 Conclusion

The PIEHS interval affine scheduling proposed in this paper,
based on the improved dynamic time warping algorithm, addresses
current issues in PIEHS day-ahead scheduling. The main
conclusions are as follows:

1) The hierarchical clustering method using the enhanced
dynamic time warping algorithm avoids issues of length
inconsistency caused by missing data in an interval time
series. By analyzing the clustering results using the SSE
metric, the SSE index for the improved hierarchical

TABLE 9 Cost comparison under optimal conditions.

Cost of gas purchase/¥ Cost of power purchase/¥ Total cost of system operation/¥

Scheme 3 2,286.89 1,687.11 4,091.85

Scheme 4 2,468.67 2,040.99 4,639.07

TABLE 10 Cost comparison under worst conditions.

Cost of gas purchase/¥ Cost of power purchase/¥ Total cost of system operation/¥

Scheme 3 3,025.75 3,409.91 6,630.96

Scheme 4 2,765.49 3,124.68 5,987.97
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clustering is 63,957.179, a reduction of 4,605.699 compared to
the pre-improvement value of 68,562.878. This indicates that
the method proposed in this paper can perform accurate
clustering for interval time-series data.

2) The scheduling cost range based on the interval algorithm is
4,091.85–6,630.96, while that based on the affine algorithm
is 4,639.07–5,987.97. From this, it can be observed that the
day-ahead interval scheduling model based on the affine
algorithm can improve the conservatism of the interval
scheduling results and consider the correlation of various
uncertain variables. Moreover, based on the affine radius,
the fluctuation range of each uncertain variable can be
clearly determined, resulting in results that are more
useful for reference by scheduling personnel.

Subsequent research efforts can delve deeper from the
perspectives of considering load response characteristics and
multi-energy coupling.
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Nomenclature

IES Integrated energy system

PIEHS Park-integrated electrical-heating system

PV Photovoltaic

EES Electric energy storage

DBI Davies–Bouldin index

SSE The sum of squared errors

x The point in the clustering result

�pPVP PV The upper and lower limits of photovoltaic output

[Pload
t ] The load demand range at time t

Pt
CHP The electrical power output of the CHP unit at time t

Gt
CHP The power of natural gas consumed by the CHP unit

at time t

ηH The CHP unit heat recovery efficiency

ηEB The efficiency of electricity-to-heat conversion

Rdown
EB,t , R

up
EB,t The maximum values of the downhill and uphill

speed of the EB

Pα,i The stored energy of energy storage device i within
time t

ηcha,i The charging efficiency of energy storage device i

ηdis,i The discharge efficiency of energy storage device i

Δα The time interval between two actions

Ni,min , Ni,max The minimum and maximum capacity of energy
storage device i

Pcha,i,t The charging power of energy storage device i at
time t

Pdis,i,t The discharging power of energy storage device i at
time t

Bt
cha,i, B

t
dis,i The charging and discharging states of energy storage

device i at time t

Δt′ The normalized time interval

tX ′ The normalized time point

PUi
′PLi

′ The normalized upper and lower limits of the time
interval data

riRi The outer radii of the ith triangle of the two sets of
interval data

Ci The clustering center

�xCi �xCj The average intra-class distance between any two
classes

xijCi , xjjCi Any two data points within jCi

G(xi) An isolated sequence

DDTW(xi) The DTW distance

ΔG(xi) The increased number of G(xi)

ΔDDTW(o) The reduction of DDTW,i(xi)

f 2 The power supply cost of the IES’s superior power
grid

λWT , λPV , λG , and λEB The unit WT operating cost, the unit PV operating
cost, the unit cost of gas purchase, and the unit EB
operating cost

Pwt
t The PV output power within time t

PEB,t The electric power absorbed within time t

FHES The cost of thermal energy storage

λHES The operating cost per unit HES

λEs,t The price of selling electricity to the superior power
grid within time t

PEs,t The selling power within time t

PLOAD,t The electric load demand in the IES at time t

QEB,t The thermal power output by the EB at time t

QLOAD,t The thermal load demand in the IES at time t

PEES,t The electric energy storage capacity of electric energy
storage equipment at time t

x0 The affine center value

P̂
PV
t , P̂

wt
t and f̂

i
t

The affine values of photovoltaic, wind turbine, and
load, respectively

εwt The noise element of the wind turbine output

FWT,0, FPV ,0, FCHP,0, FEB,0,
FES,0 and FE,0

The center value costs of WT, PV, CHP units, EB, ES,
and purchased and sold electricity

x+i,t , x−i,t Auxiliary variables used to equate |xt,i|

DTW Dynamic time warping

WT Wind turbine

CHP Combined heat and power

TES Thermal energy storage

DVI Dunn validity index

[PPV
t ] The output ranges of photovoltaic at time t

[Pwt
t ] The output ranges of wind turbines at time t

�pwtP wt The upper and lower limits of wind turbine output

Pload , Pload The limits of the load demand range

Ht
CHP The thermal power output of the CHP unit at time t

ηE、 ηS The electrical and thermal efficiencies of the CHP
unit

QEB,t The emitted thermal power at time t

PEB,t The absorbed electric power at time t

QEB,max , QEB,min The minimum and maximum values of the thermal
power output of the EB

δi The dissipation rate of energy storage device i

ηcha,α,i The input of energy storage device i within time t

Pdis,α,i The output of energy storage device i within time t

i ∈ E,T An electrical energy storage device or a thermal
energy storage device

Ni,t The state of energy storage device i at time t
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Pcha,i,max The maximum charging power of energy storage
device i

Pdia,i,max The maximum discharging power of energy storage
device i

Ni,0 The initial capacity of energy storage device i

n The number of time intervals

[Pcate′
t ] The normalized wind, solar, and load interval

data, cate ∈ wt, pv, load

(TGi ,VGi)、 (SGi ,UGi) The coordinates of the center of gravity of the ith
triangle of the same uncertain quantity in [Pcate′

t ]

Dmn The distance between the mth data and nth data in
any two sets of data under the same uncertainty
in [Pcate′

t ]

Jci The clustering result corresponding to Ci

C The final number of clusters in the clustering

‖Ci − Cj‖2 The distance between two cluster centers

xi A data sample

Y(i) A certain margin

DDTW ,i(xi) The initial threshold

f 1 The operating cost of IES

Fwt , Fpv , FCHP , FEB, and FES TheWT operation cost, PV operation cost, operating
cost of CHP unit, EB operation cost, and energy
storage operation cost

PPV
t The WT output power within the time t

QG,t The amount of gas purchased within time t

FEES The cost of electrical energy storage

λEES The operating cost per unit EES

λEg ,t The price of purchasing power from the superior
power grid within time t

PEg,t The purchasing power within time t

PCHP,E,t The electric power generated by the CHP at time t

PEB,t The electric power absorbed by the EB at time t

PCHP,h,t The thermal power generated by the CHP at time t

PHES,t The heat storage capacity of thermal energy storage
equipment at time t

x̂ The affine form of the uncertain variable

εi The noise element variable with a value in [−1, 1]

εpv The noise element of photovoltaic output

εi The noise element of load demand

FWT,i, FPV ,i, FCHP,i, FEB,i,
FES,i and FE,i

The fluctuating costs of WT, PV, CHP units, EB, ES,
and purchased and sold electricity

|xt,i| A variable containing absolute values
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