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Introduction: Deep learning has demonstrated exceptional prowess in
estimating battery capacity. However, its effectiveness is often compromised
by performance degradation under a consequence of varying operational
conditions and diverse charging/discharging protocols.

Methods: To tackle this issue, we introduce the Knowledge Query Domain
Mixing-up Network (KQDMN), a domain adaptation-based solution adept at
leveraging both domain-specific and invariant knowledge. This innovation
enriches the informational content of domain features by segregating the
functions of feature extraction and domain alignment, enhancing the efficacy
of KQDMN in utilizing diverse knowledge types. Moreover, to identify time-
deteriorating features in battery time series data, we employ convolutional
operations. These operations are pivotal in extracting multi-scale features from
the battery's characteristic curves. Inspired by the Transformer model, we have
developed a set of knowledge queries that integrate these multi-scale features
seamlessly, thereby enabling extensive global feature extraction. To ensure the
retention of domain-specific information, we have instituted two independent
feature extraction pathways. Pursuing domain-invariant knowledge, this study
introduces cross-attention as a mechanism to connect two domain spaces,
effectively diminishing the disparity between source and target distributions.

Results and Discussion: This approach is crucial for accurately estimating
capacity in batteries with diverse performance characteristics. The practicality
and robustness of the proposed method are validated using the MIT battery
aging dataset, yielding highly satisfactory outcomes. The Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2)
for our capacity estimation process are 0.19%, 0.23%, and 0.997, respectively,
highlighting the precision and reliability of our approach.
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1 Introduction

In recent years, global attention has increasingly focused on
environmental pollution and the looming energy crises. Traditional
fossil fuels are confronting depletion and pollution issues, posing
significant threats to both human health and the environment.
In response to these pressing challenges, lithium batteries have
emerged as a favored solution, owing to their inherent advantages
such as high energy density, extended cycle life, and environmental
friendliness. However, due to the influence of factors like
charge/discharge cycles and usage environments, electrochemical
reactions and physical alterations result in irreversible changes,
gradually deteriorating the electrical performance of these batteries.
This underscores the critical importance of capacity estimation in
battery management. It serves as a pivotal aspect, providing vital
insights into the battery’s health and remaining useful life. Accurate
capacity estimation, in turn, fosters enhanced battery utilization,
prolongs battery lifespan, and elevates system reliability. As battery
technology advances rapidly and its applications continue to
expand, numerous researchers have been energetically investigating
and researching methods for predicting battery capacity. These
efforts have yielded significant progress and results of note. These
methods can be categorized into twomain groups: model-based and
data-driven approaches.

Model-based methods are utilized to delve into the intricate
connection between internal electrochemical mechanisms and
external conditions, offering the advantages of real-time and closed-
loop feedback. These methods involve constructing a discrete
expression model based on material properties, electrochemical
reactions, and impedance changes to depict the capacity aging
process. Consequently, these models facilitate the recursive
estimation of the battery’s state. The commonly used models can
be roughly classified into three types: electrochemical models (EM)
(Corno et al., 2014; Lyu et al., 2017), equivalent circuit models
(ECM) (Guha and Patra, 2018; Hu et al., 2012), and electrochemical
impedance models (EIM) (Alavi et al., 2015; Bartlett et al., 2015)
presented a reduced-order electrochemical model to predict lithium
concentration and current split in the electrode, which is then used
in dual-nonlinear observers to estimate cell SOC and capacity.
Using the fundamental electrochemical model, Samadi et al.
(2012) presented a particle filter algorithm for state estimation
and condition monitoring of Li-ion batteries. The algorithm can
effectively obtain the spatial distribution of field variables in a
battery. Utilizing an open circuit voltage (OCV) correction strategy,
Liu et al. (2023) presented a specialized method for calculating the
capacity of electric vehicles (EVs). This method establishes two
degradation models for battery capacity, incorporating mileage and
service life as variables. Bi et al. (2016) proposed a new method
for state-of-health (SOH) dynamic estimation of power battery
packs in battery electric vehicles (BEVs) using a genetic resampling
particle filter (GPF). A second-order equivalent circuit model of
the Resistance-Capacitance (RC) circuit was developed to identify
unknown parameters, and a state-space model of GPF was used to
solve the non-Gaussian problem. With adaptively obtained initial
conditions, the complex-nonlinear-least-squares algorithm was
used to fit pseudo-random-sequence impedance measurements
to the ECM, and the ECM parameters could reflect battery capacity
reduction (Sihvo et al., 2020; Zhang et al., 2022) developed a series

electrochemical impedance model. Which has high computational
efficiency with simplifications on the lithium-ion transport path
and the electrolyte diffusion. While model-based methods have
made substantial advancements in recent years, they hinge on a
profound comprehension of the battery’s electrochemical processes
and aging mechanisms. This reliance amplifies the challenges and
intricacies of modeling, primarily due to the complex interplay
of physical and chemical processes, noise factors, and the diverse
environmental conditions affecting batteries. Additionally, this
reliance may constrain the applicability of these models within
certain contexts.

Data-driven methods involve the analysis of historical data,
including parameters like current, voltage, capacitance, and
impedance, to identify features associated with battery degradation
state. These methods subsequently construct predictive models
for assessing battery health and degradation. Unlike model-based
approaches, data-driven methods do not necessitate the creation
of explicit mathematical models to describe the progression of
battery degradation. Zhu et al. (2022) extracted statistical features
from the voltage profile after full charging and used XGBoost,
ElasticNet, and support vector regression models to estimate the
battery capacity. The best-performing model achieved a RMSE
of 0.011. Wang et al. (2022) analyzed the aging characteristics of
batteries from several perspectives and extracted health indicators
(HI) from battery charging and discharging curves. Based on
a novel integrated Gaussian process regression (GPR) model,
satisfactory estimation results were achieved, reaching 0.0241 RMSE
on the NASA public data set. Because of their powerful ability
to process historical operation data and time series information,
recurrent neural networks are widely used for battery state
prediction. Qu et al. (2019) combined long short-term memory
(LSTM) networks and attention mechanisms and adopted fully
integrated empirical mode decomposition with adaptive noise to
denoise the raw data, which improved SOH estimation accuracy.
Based on an improved dual closed-loop observation modeling
strategy, Wang et al. (2023b) proposed an improved anti-noise
adaptive long short-term memory (ANA-LSTM) neural network
with high-robustness feature extraction and optimal parameter
characterization, aiming to achieve accurate RUL prediction.
Wang et al. (2023c) proposed an improved robust multi-time
scale singular filtering-Gaussian process regression-long short-
term memory (SF-GPR-LSTM) modeling method to estimate
the remaining capacity of lithium-ion batteries. Particularly, this
approach establishes a theoretical foundation for estimating the
remaining capacity of batteries throughout their entire life cycle
in extremely low temperatures. Ungurean et al. (2020) proposed
a gated recursive unit (GRU)-based neural network structure for
online prediction of battery SOH.With automatic feature extraction
and a low risk of overfitting, convolutional neural networks (CNN)
show great potential for battery capacity. To further improve the
accuracy of SOH estimation, Yanwen Dai (2022) selected health
feature parameters from lithium-ion battery charging curves using
Spearman correlation coefficients and adopted CNN to extract local
features of health features and LSTM to mine time series features,
respectively. Chemali et al. (2022) developed a convolutional neural
network (CNN)-based framework for SOH estimation, which takes
time domain voltage, current, and temperature measurements as
inputs. In order to simulate a real-world system, the data was
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augmented with some noise and error. Thus, estimation accuracy
was improved. Li et al. (2022) combined CNN and LSTM to
design a hybrid neural network to capture the hierarchical features
and the temporal dependencies. Due to the powerful ability to
extract valuable and important information, attention mechanisms
have been widely used in battery SOH estimation. Zhao et al.
(2023) presented a hybrid attention neural network, extracted the
health features from differential temperature curves, and achieved
superior prediction performance. Ji et al. (2023) proposed knee-
point probability to detect knee points and improve state-of-health
(SOH) predictive accuracy, and an attentionmechanismwas utilized
for extracting features. To reveal the correlation among features,
Wei and Wu (2023) leveraged the graph convolutional networks
(GNN) with different attentionmechanisms to predict battery SOH.
Yao et al. (2023) utilized the Pearson’s correlation coefficients to
extract highly correlated HIs, built the graph sample aggregate to
propagate messages and uncover the deep information among HIs.
Taking the advantages of both CNNs and Transformers, Gu et al.
(2023) realized the battery SOH estimation with high accuracy and
stability. Pham et al. (2022) took advantage of self-attention and
fixed-point positional encoding to capture the sequence nature of
battery data, and experimental results showed significant accuracy.

Data-driven methods have achieved remarkable success in
battery capacity estimation. However, such achievement relies
heavily on a huge amount of labeled training data, which is
difficult to obtain in many real-world applications. In addition,
these approaches are based on the assumption that the training
and test datasets share the independently identically distribution,
which ensures that the model developed based on the training
sets can be directly applied to the test sets. However, in many
practical scenarios, the two domains inevitably drift away from
each other due to various working conditions and different
charge/discharge protocols.Therefore, the domain shift issue results
in the performance degradation of the model trained on the
source domain.

In recent years, transfer learning and domain adaptation have
been utilized to transfer the domain invariant knowledge learned
from the source domain and minimize the domain gap. During the
past decade, many researchers have extensively investigated domain
adaptation methods. The typical methods can be divided into
two categories: adversarial training (Ganin et al., 2016; Wei et al.,
2021; Zhang et al., 2019) and distribution discrepancy metrics
(Borgwardt et al., 2006; Sun and Saenko, 2016; Peng et al., 2019).
Inspired by the generative adversarial network (GAN), the former
category usually leverages a domain discriminator and enforces
a feature extractor to learn domain invariant representation
to fool the discriminator in an adversarial manner. The latter
category explicitly reduces the domain discrepancy based on some
distribution distance metrics. Deng et al. (2024) developed a deep
convolutional neural network for estimating battery state of health.
The method employs distribution distance metrics to mitigate the
distribution discrepancy between the source domain and target
domain. Distribution distance metrics encompass the Maximum
MeanDiscrepancy (MMD) along with other second or higher-order
statistics such as correlation alignment (CORAL).

This paper introduces a domain adaptation-based method
aimed at achieving accurate capacity estimation to address the
domain shift challenge in battery capacity prediction. Importantly,

recognizing the limitations of true label supervision in the target
domain, our approach promotes the sharing of domain knowledge
while suppressing domain-specific features. However, this emphasis
on alignment has the potential to constrain feature expressiveness
within each domain, resulting in a bias towards the source domain
and compromising the effectiveness of knowledge transfer. To
mitigate this, we implement two separate pathways for individual
feature extraction, allowing us to better preserve domain-specific
characteristics. Furthermore, in order to enhance knowledge
transferability and minimize domain discrepancies, we utilize
the cross-attention mechanism to achieve bidirectional domain
alignment. This mechanism acts as a bridge between different
domains and implicitly facilitates domain mixing. In summary, the
key contributions of this work are outlined as follows:

• We introduce a novel domain adaptation-based method
for estimating battery capacity that effectively distinguishes
between feature extraction and domain alignment. This
approach allows for the strategic leveraging of both domain-
specific and invariant knowledge, enhancing the precision of
our estimations.
• To comprehensively preserve domain-specific information, we
have developed two independent feature extraction pathways.
Employing Convolutional Neural Networks (CNNs), we
adeptly extract features indicative of temporal degradation.
Moreover, through the use of self-attention mechanisms,
we are able to distill global and diverse insights from these
extracted features.
• In the quest to acquire domain-invariant knowledge,
we implement cross-attention as an innovative bridging
mechanism. This approach significantly reduces the disparity
between source and target distributions, thus enabling us to
predict battery capacity effectively in a wide range of scenarios.

The paper is organized as follows. In Section 2, the overall
framework and the preliminaries of ourmethodology are presented.
Section 3 will discuss the experimental details. The experimental
results are given in Section 4.The discussions are given in Section 5.
Finally, Section 6 gives the conclusion.

2 Methodology

For the capacity estimation, all the features are embedded in
the sequence of charging or discharging curves. The relationship
between battery V/I/T curves and battery health status is very
difficult to establish in the full battery lifetime. The inter-cycle
features are the sequences of voltage, current and temperature
(V/I/T) curves in the battery charging/discharging processes
measured by BMS within different cycles, which typically include
V = {V1,V2,…,VN}, I = {I1, I2,…, IN}, T = {T1,T2,…,TN}, in the ith
cycle. Although the BMS streaming are recorded at the same
sampling rate, the total time duration could vary for different
batteries and in different cycles. Given that the charged and
discharged capacity increases monotonously, the battery V/I/T
curves are normalized as the functions of capacity ratio. To account
for differences in data volume and distribution arising from various
operational conditions encountered in practical battery applications,
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FIGURE 1
The overall network architecture of knowledge query domain mixing-up network.

we categorize the battery data into the source data xs and target
data xt. xs consist of inter-cycle features from batteries operating
under standard conditions, including current I, voltage V and
temperature T. On the other hand, xt consists of inter-cycle features
from batteries operating under unique conditions, characterized by
limited data availability and significant distribution variations in
current I, voltage V and temperature T.

2.1 Overall architecture

The comprehensive network architecture is depicted in Figure 1.
As observed, this architecture comprises three key components: the
Scale-aware Knowledge Query Encoder, the Bi-directional Cross
Attention Domain Mixer, and the Regression Head. The Scale-
aware Knowledge Query Encoder receives raw data as input and
is employed to generate domain-specific state-related embeddings.
Since each domain provides battery timing data from different
feature spaces and different aging patterns, this paper sets up private
feature encoders for the source and target domains, which are
denoted as Gsrc and Gtgt, respectively. The source and target data
(xs,xt) are input into the encoders to yield the domain-specific
features (ϕs,ϕt), respectively. The operation of domain-specific
features can be expressed as Eq. 1.

ϕs = Gsrc (xs)

ϕt = Gtgt (xt) (1)

where Gsrc and Gtgt denote the feature encoders for the source and
target domains, xs and xt denote the source and target data, ϕs and
ϕt denote the domain-specific features.

Afterward, they are fed into the Bi-direction Cross Attention
Domain Mixer to alleviate the domain gap and extract the domain

invariant feature. The operation of domain invariant feature can be
expressed as Eq. 2.

(zss,zts,ztt,zst) =H (ϕs,ϕt) (2)

where H(•) represent the functions of the Bi-direction Cross
Attention Domain Mixer, (zss,zts,ztt,zst) denote the domain
invariant feature.

In the end, the domain invariant features (zss,ztt) are passed
through the Regression Head to produce the estimation results
(ŷs, ŷt), which is implemented as a 2-layer fully connected neural
network. The operation of estimation results can be expressed
as Eq. 3.

ŷs=Rsrc (zss)

ŷt=Rtgt (ztt) (3)

where R(•) represent the functions of the Regression Head, (ŷs, ŷt)
denote the estimation results.

2.2 Domain-wise scale-aware knowledge
query encoder

The domain-wise Scale-aware Knowledge Query Encoder is
devoted to learning domain-specific feature space and modeling
domain discriminative representation separately. Therefore, we use
two private streams to learn domain-wise embedding functions Gsrc
and Gtgt. Inspired by the powerful representation abilities of CNNs,
such as parameter sharing, local information aggression, and spatial
reduction, 1D CNN is adopted as the backbone to extract high-
order features. As shown in Figure 2, the encoder consists of L
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FIGURE 2
The structure diagram of Scale-aware knowledge query encoder.

FIGURE 3
The structure diagram of CNN bottleneck layers and pooling layers.
(A) CNN bottleneck layer. (B) CNN pooling layer.

FIGURE 4
The structure diagram of convolutional block attention module.

stacked CNN bottleneck layers, L pooling layers, and one scale-
aware knowledge query layer.

Given the source and target domain data xs,xt ∈ ℝM×N, we adopt
the L stackedCNNbottleneck layers to successively and alternatively
extract features. As shown in Figure 3A, the CNN bottleneck layer
comprises a one-dimensional convolution, Convolutional Block
Attention Module (CBAM) block, and a point-wise convolution
block. As shown in Figure 4, the CBAM comprises a channel
attention module and a spatial attention module.

One-dimensional convolution is a method that conducts a
slidingwindow convolution operation on signals, sequences, or time
series data. This approach is highly effective in extracting features
from the data, thereby enhancing the ability of machine learning

algorithms to comprehend and analyze the information. Specifically,
suppose the size of the input feature map X is Cin × L, the size of the
convolution kernel W is Cout ×Cin ×H, and the size of the output
feature map Y is Cout × L′. The 1D convolution is calculated as Eq. 4.

Yk,i =
Cin

∑
c=1

H−1

∑
j=0

Wk,c,j ⋅Xc,i+j (4)

wherem denotes the length of the convolution kernel, k denotes the
channel position in the output feature map Y, c denotes the channel
position in the input feature map X, Xc,i denotes the value of the cth
channel in the input feature map X at position i and Yk,i denotes
the pixel value of the kth channel in the output feature map Y at
position i.

The Convolutional Block Attention Module (CBAM) is an
attention mechanism utilized in computer vision. It is incorporated
into convolutional neural networks to enhance their representation
capabilities and bolster the robustness and generalization
performance of features. The CBAM module comprises two key
sub-modules: the Channel Attention Module and the Spatial
Attention Module. The Channel Attention Module primarily serves
to extract relationships between channels. It accomplishes this by
globally pooling the feature maps from each channel to obtain a
global feature vector. This vector is then fed into a fully connected
network to learn the inter-channel relationships. Subsequently, the
acquired weights are applied to the feature maps of each channel,
effectively weighing the contributions of each channel on average.
On the other hand, the Spatial Attention Module is focused on
extracting spatial relationships. It employs various filters in the
spatial dimension to learn features at different scales. Following
this, a global feature vector is generated through the global pooling
of these features, enabling the modeling of spatial relationships.
Ultimately, the acquired weights are applied to features at individual
spatial locations, effectively weighting the average of features at
each location.

Point-wise convolution is also known as 1× 1 convolution,
whose convolution kernel has a size of 1. It is employed for feature
fusion to aggregate different levels of feature maps and adjust the
number of channels for the input feature map. The size of the
convolution kernel W is Cout ×Cin. The operation of the point-wise
convolution can be expressed as Eq. 5.

Yk,i =
Cin

∑
c=1

Wk,c ⋅Xc,i. (5)

To effectively address the issues of gradient vanishing and
exploding, expedite convergence, and simultaneously enhance
generalization capabilities, Batch Normalization (BatchNorm1d) is
applied in 1D convolutional neural networks. The primary role of
BatchNorm1d is to normalize each feature channel within small
input data batches. This normalization process aims to bring the
mean of the feature channel close to 0 and the variance close to 1,
thereby accelerating the model’s convergence. To further augment
the network’s nonlinear mapping capacity, the Rectified Linear Unit
(ReLU) is employed as the activation function for all convolution
layers. This choice of activation function is known to promote faster
convergence compared to alternative functions.

To align the feature map size of the CNN encoder with that
of the scale-aware knowledge query block, this paper uses the
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FIGURE 5
The structure diagram of transformer.

CNN pooling layer to transform the dimensionality of the output
features from the CNN bottleneck layer. As shown in Figure 3B,
AdaptiveAvgPool1d and point-wise convolution are combined to
adapt to the length of the input tensor and reduce the number
of channels. These two-dimensional vectors are then flattened into
one-dimensional vectors along the channel. Following those steps,
feature tokens {T1

f ,…,T
L
f } ∈ ℝ

L×s are extracted, where L is total
number of time scales.

As one of the most important tools in the field of natural
language processing, the transformer has excellent performance and
generalization capabilities. The transformer is composed of Multi-
Head Self Attention (MSA), Layer Normalization(LN), and Feed
Forward Network (FFN). Suppose an input sequence X is given,
which contains n vectors x1,x2,…,xn, where the dimension of each
vector is d. As shown in Figure 5, the output of the transformer is
computed as Eq. 6.

Y′ =MSA (LN (X)) + LN (X) ,

Y = FFN(LN(Y′)) + LN(Y′) . (6)

where MSA, LN and FFN represent the functions of the Multi-
Head Self Attention, the Layer Normalization and the Feed Forward
Network, respectively.

Multi-head attention is able to generate a more accurate
sequence representation by interacting within the sequence and
capturing the relationships between different positions. For each
vector xi, we need to calculate its similarity to the other vectors with

scaled dot-product. The weighted sum of the value can be expressed
as Eq. 7.

Q = XWQ, K = XWK, V = XWV,

MSA (X) = softmax(QKT

√dk
)V (7)

where Q, K, and V denote the query, key, and value vector matrices
of the input sequence,WQ ∈ ℝdk×d,WK ∈ ℝdk×d, andWV ∈ ℝdv×d are
learnable parameters, and typically dv is equal to dk.

Another noteworthy feature of the Transformer architecture is
its ability to flexibly incorporate learnable classification tokens for
various purposes. To encourage the features for alignment to gather
global and diverse information in feature tokens {T1

f ,…,T
L
f }, we

set a group of learnable tokens {T1
k,…,T

N
k } ∈ ℝ

N×s as knowledge
queries. These knowledge queries are concatenated with multi scale
features as {T1

k,…,T
N
k ,T

1
f ,…,T

L
f } ∈ ℝ

(N+L)×s. These feature tokens
will forward propagate into the transformer, and N features that
correspond to the knowledge queries are utilized as domain-wise
state knowledge, which is denoted as ϕ(•) = {K

1
(•),…,K

N
(•)} where (•)

represents the source domain or the target domain.

2.3 Bi-direction cross attention domain
mixer

While the previously mentioned self-attention module
effectively harnesses domain-specific knowledge, it does not
explore domain-invariant features. It is widely acknowledged
that cross-attention enables information to flow between different
sequences or tensors and can model relationships between diverse
inputs. Consequently, it significantly enhances the accuracy of
information transfer. As such, cross-attention is well-suited for
mitigating domain discrepancies and acquiring domain-invariant
representations.

Cross-attention and self-attention are both attention
mechanisms, but they are applied in slightly different scenarios and
involve distinct computational methods. Self-attention primarily
handles internal dependencies within a single input sequence or
tensor. In contrast, cross-attention is predominantly employed to
manage interactions between multiple input sequences or tensors.
The computation of Multi-head Cross Attention (MCA) involves
modeling the interaction between two input sequences or tensors as
an attention distribution, which can be formulated as Eq. 8.

Q = SWQ, K = FWK, V = FWV,

MCA (S,F) = softmax(QKT

√dk
)V (8)

where S and F can be state knowledge from either the source domain
or the target domain.

Here, this paper does not just keep ϕsrc unchanged and keep
ϕtgt close to ϕsrc, but achieves domain alignment in a bidirectional
way to transfer knowledge from the source domain. In this paper,
multi-headed cross-attention is used as a bridge to connect different
domains to achieve a mixture of different domain feature spaces. It
can be seen from Figure 6 that four weight-sharing transformers are

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1353651
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Li et al. 10.3389/fenrg.2024.1353651

FIGURE 6
The structure diagram of Bi-direction cross attention domain mixer.

utilized to realize bi-direction domain alignment. State knowledge
ϕsrc andϕsrc are fed into transformerswithMulti-Head Self Attention
to extract feature representation zss and zss, independently. In
contrast, transformers with Multi-head Cross Attention are utilized
to bring each domain feature representation closer to the other.
Those can be formulated as Eq. 9.

̂zl−1ss =MSA(LN(zl−1ss )) + LN(zl−1ss ) ,

zlss = FFN(LN( ̂zl−1ss )) + LN( ̂zl−1ss ) ,

̂zl−1ts =MCA(zl−1ss ,z
l−1
tt ) + z

l−1
ts ,

zlts = FFN(LN( ̂z
l−1
ts )) + LN( ̂z

l−1
ts ) ,

̂zl−1st =MCA(zl−1tt ,z
l−1
ss ) + z

l−1
st ,

zlst = FFN(LN( ̂z
l−1
st )) + LN( ̂z

l−1
st ) ,

̂zl−1tt =MSA(LN(zl−1tt )) + LN(z
l−1
tt ) ,

zltt = FFN(LN( ̂z
l−1
tt )) + LN( ̂z

l−1
tt ) (9)

where l represents the layer index of transformer block. And z0ss
and z0ts are initialized to state knowledge ϕsrc, while z0tt and z0st are
initialized to state knowledge ϕtgt.

It is worth noting that only zss and ztt are employed and fed into
Regression Heads for final regression, respectively. To fully explore
the supervised information in each domain, we employ a mean
squared error (MSE) loss function to minimize the regression error
of all labeled samples, which is calculated as Eq. 10.

Ls =
1
ns

ns
∑E (ys, ŷs) ,

Lt =
1
nt

nt
∑E (yt, ŷt) (10)

FIGURE 7
Charging strategies for the MIT battery aging dataset.

where Ls and Lt denote the loss of the source and target Regression
Head, ys and yt denote the true values, ŷs and ŷt denote the output
of Regression Heads. E(•,•) denotes the predicted values, which is
calculated as Eq. 11.

E (y, ŷ) = 1
n

n

∑
i=1
(yi − ŷi)

2 (11)

where y denotes the true values, ŷ denotes the predicted values.
During the training stage, the combined features {zss,zts} and
{ztt,zst} are utilized to reduce the domain discrepancy. Without

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1353651
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Li et al. 10.3389/fenrg.2024.1353651

introducing the domain discriminator, distribution discrepancy
metrics are employed to minimize the domain discrepancy between
each pair of source and target domains. MMD is a widely
used representative distribution discrepancy metric in domain
adaptation, given a source features Fs, and a target features Ft, the
MMD loss is defined as Eq. 12.

Lsup = Ls +Lt (12)

where Lsup denotes the MMD loss.
But it only calculates first-order moments of inter-domain

distance. Therefore, the correlation alignment (CORAL) loss is
adopted, which measures the difference between the second-order
statistics (covariance matrices) of the source and target domains.
More formally, given a source features Fs, and a target features Ft,
the CORAL loss is defined as Eq. 13.

Ldom = |
1
ns
X sX sT − 1

nt
X tX tT|

2
(13)

whereLdom denotes the CORAL loss,X s andX t denote the features
of the source and target domains respectively.

3 Experimental

3.1 Dataset description

The MIT Battery Aging Dataset is utilized to validate our
proposed method, developed at MIT for battery aging prediction
studies. The dataset consists of 124 commercial lithium-iron
phosphate/graphite A123 APR18650M1A batteries with a nominal
capacity of 1.1 amp-hours. As shown in Figure 7, all batteries were
charged and discharged at constant current using a multi-step fast
charging strategy “C1(S1)-C2” in a 30°C temperature chamber. The
cells were first charged with current C1 until the state of charge
(SOC) reached S1, thenwith current C2 until SOC reached 80%, and
finally, the cells were charged from 80% to 100% SOCusing a 1C rate
(CC-CV) to a cut-off voltage of 3.6 V.These cells were discharged to
2.0 V at a constant current rate of 4C. Each battery data set captures
full life cycle data from when the battery is new to when it fails, a
time span ranging from a few days to severalmonths. Each battery in
the data set is measured at 10-s intervals, recording parameters such
as battery voltage, current, and temperature, as well as information
about the battery’s capacity. Battery life is defined as the number of
cycles in which the capacity of a battery is reduced to 80% of its
nominal capacity. One hundred twenty-four battery samples have
a life span ranging from 150 cycles to 2300 cycles.

In order to verify the effectiveness and superiority of the
proposed domain adaptive method in predicting the capacity of
Li-ion batteries under different data distribution and insufficient
data scenarios, the seven batteries A1-A7 with the charging strategy
‶5.6C19%-4.6C″ are used as the source datasets and two batteries
B1-B2 with the charging strategy ‶5.9C15%-4.6C″ are selected as
the target datasets. Figure 8 shows the capacity decay curves for
these batteries.

The voltage, current, and temperature profiles of a battery serve
as indicators of its aging level. Generally, as a battery undergoes
extended usage, its aging degree progressively increases, leading to

FIGURE 8
Capacity curves for cells in the source and target datasets.

diminishedperformance, including voltage reduction and a decrease
in current output capacity. Consequently, by scrutinizing the voltage,
current, and temperature profiles, it becomes possible to assess the
battery’s aging level. Since the length of these distinct characteristic
profiles varies with the aging degree, this paper employs a linear
interpolation technique to resample and standardize these profiles
to a fixed length. All the feature curves are stitched together to form
an array x ∈ ℝM×N, whereM is the number of feature curves, and N
is the fixed length of each feature curve.

3.2 Data preprocessing

Various features typically exhibit different magnitudes, and
issues stemming from these magnitude disparities often arise
when using raw data for analysis and modeling. To enhance
the stability of the model training process, this paper employs
MinMax normalization. MinMax normalization serves to mitigate
the magnitude of discrepancies among diverse features, thereby
enhancing the efficiency, stability, and accuracy of the algorithm.The
calculation formula for MinMax ormalization is as Eq. 14.

x′ =
x −min (x)

max (x) −min (x)
(14)

where x is the original data and x′ is the normalized data.
Substantial noise and irregularities within the data can

result in overfitting, thereby impairing the model’s generalization
capabilities. In this study, outliers are substituted with the average
of neighboring data points, and we employ Savitzky-Golay filtering
for data smoothing. Savitzky-Golay filtering is a technique based
on polynomial fitting aimed at noise reduction. It achieves this by
fitting a sequence of data points and optimizing for various window
sizes to minimize noise while retaining the inherent smoothing
characteristics of the data. Since the length of different feature
curves varies with age degree, these curves are resampled using
linear interpolation and reshaped to the fixed length. All the feature
curves are concatenated together to form an array x ∈ ℝM×N, where
M is the number of feature curves, andM is the fixed length of each
feature curve.
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3.3 Model training

The proposed model is implemented using the PyTorch
framework. We set the convolutional kernel sizes to 3 for both
the CNN bottleneck layer and the CNN pooling layer, and we
employ 128 convolutional kernels. The dimensionality of the
model matches that of the scale-aware knowledge query block
and the bidirectional cross-attention domain blender for multi-
head self-attention and multi-head cross-attention. In this context,
each feature token is transformed into a fixed dimensionality of
128. For multi-head self-attention and multi-head cross-attention,
we use eight heads. The Regression Head comprises two fully
connected layers, each with 128 and 64 neural nodes. During
training, the model is trained for 200 epochs using the AdamW
optimizer with a weight decay of 1e-3 and a base learning rate
of 8e-3. We maintain a batch size of 8 for all experiments.
To prevent overfitting, we apply a dropout operation with
a ratio of 0.1.

Following the standard protocol for domain adaptation, we
use all labeled source data and labeled target data of one battery
from the target dataset for training, and the remaining batteries
from the target dataset are used for performance validation. To
mathematically validate the proposed method, RMSE,MAE, and R2

are utilized to evaluate performance. The detailed formulations for
these performance metrics are given as Eqs 15–17.

MAE = 1
n

n

∑
i=1
|yi − ŷi| (15)

RMSE = √ 1
n

n

∑
i=1
(yi − ŷi)

2 (16)

R2 = 1−
∑ni=1(yi − ŷi)

2

∑ni=1(ŷi − y)
2 (17)

where n is the number of samples, yi and ŷi are the actual and
predicted values, and y denotes the mean value.

4 Results

In practical applications, there is often a discrepancy in
the distributions of the training set and the test set due to
differences in the internal chemistry of batteries and various
operating conditions. We employ battery datasets with varied
distributions to evaluate the performance of the domain
adaptation-based approach proposed in this paper. The aim
is to investigate whether the model can accurately estimate
the capacity of target batteries even in scenarios with limited
target data.

To tailor the models with various strategies, this paper
introduces KQDMN-s, KQDMN-t, KQDMN-mmd, and KQDMN-
coral. KQDMN-s and KQDMN-t employ single-domain supervised
learning strategies using source and target datasets for training,
respectively. Utilizing domain adaptive techniques, KQDMN-
mmd and KQDMN-coral minimize feature differences between
each source and target domain by applying the domain
difference metrics MMD and CORAL, respectively. This aims
to enhance predictive performance and generalization of the

TABLE 1 Statistical results of capacity estimation for target datasets B1
and B2 under different strategies.

Test cells Strategies MAE(%) RMSE(%) R2

B1

KQDMN-s 1.56 1.87 0.825

KQDMN-t 1.57 1.94 0.812

KQDMN-mmd 0.64 0.76 0.971

KQDMN-coral 0.54 0.39 0.985

B2

KQDMN-s 2.26 2.72 0.630

KQDMN-t 1.80 1.95 0.801

KQDMN-mmd 0.54 0.60 0.982

KQDMN-coral 0.19 0.23 0.997

models on the target dataset. It is important to note that,
for a fair comparison, this paper replaces the Multi-Channel
Attention (MCA) components of the bidirectional cross-attention
domain mixers in KQDMN-s and KQDMN-t with multi-headed
self-attention.

Figures 9, 10 illustrate the prediction outcomes for lithium
battery capacity using various strategies. These figures reveal a
substantial difference in data distribution between the training and
test sets, resulting in poor model performance on the test set.
Consequently, KQDMN-s, which relies solely on a single-domain
supervised learning strategy, exhibited the least favorable prediction
performance. Similarly, KQDMN-t also struggled on the test set
due to limited training data, leading to inadequate capturing of the
true data distribution and resulting in under-fitting. In contrast,
domain adaptive methods, such as KQDMN-mmd and KQDMN-
coral, based on distribution distance metrics, displayed a notable
improvement in performance on the test set. This improvement
stems from their ability to leverage knowledge from the source
domain data to adapt to the distribution of the target domain data.
This adaptation mitigates the decline in generalization performance
caused by disparities in data distribution. To be specific, in
comparison toKQDMN-s andKQDMN-t, KQDMN-mmdachieved
a reduction of 0.919 and 0.920 in the MAE for prediction results
on test set B1 and a reduction of 1.721 and 2.261 in MAE for
prediction results on test set B2, respectively. The prediction results
of KQDMN-coral on test set B1 showed similar improvements.
These findings indicate that the domain adaptive method proposed
in this paper offers significant advantages for battery capacity
prediction in scenarios with limited data and varying data
distributions.

Table 1 shows the comparison of the prediction performance
of the different training strategies on the test datasets B1 and B2.
As shown in the table, both KQDMN-mmd and KQDMN-coral
achieve large performance improvements relative to KQDMN-s
and KQDMN-t.

Table 2 presents a comparison of prediction performance
across various references. As indicated in the table, KQDMN-
coral exhibits significant improvements in performance in
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FIGURE 9
Estimation results for B1 with different strategies. (A) KQDMN-s. (B) KQDMN-t. (C) KQDMN-mmd. (D) KQDMN-coral.

TABLE 2 Statistical results for capacity estimation across different
references.

Strategies MAE(%) RMSE(%)

KQDMN-coral 0.19 0.23

Deng et al. (2024) 3.22 3.90

He and Wu (2023) 1.49 1.18

Han et al. (2022) - 2.03

Wang et al. (2023a) 1.34 -

comparison to the four machine learning capacity estimation
methods used in the references (Deng et al., 2024; He andWu 2023;
Han et al., 2022; Wang et al., 2023a). This demonstrates that the
domain adaptive approach proposed in this paper can effectively
improve the accuracy and generalization performance of battery
capacity prediction. The excellent performance on the test set
provides strong support for the method’s feasibility in practical
applications.

TABLE 3 Comparison results with private and shared encoders on test
set B1.

Strategies MAE(%) RMSE(%) R2

shared encoder 1.45 1.15 0.895

private encoder 0.54 0.39 0.985

5 Features alignment and discussions

We investigate the ablation effects of the private domain-
wise encoders on extracting domain-specific information, and
compare two variants on test set B1: a) extracting information
with a shared encoder, b) extracting information with two
private encoders. The comparison results are given in Table 3.
Compared with the variant a, the variant b brings 0.91 RMSE,
0.76 MAE and 0.09 R2 improvement. This result demonstrates
the essential of the private domain-wise encoders on extracting
domain-specific information. Due to the lager domain gap, the
private encoders can provide more capacity of information in
each domain.
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FIGURE 10
Estimation results for B2 with different strategies. (A) KQDMN-s. (B) KQDMN-t. (C) KQDMN-mmd. (D) KQDMN-coral.

Features Alignment is important for cross-scenario capacity
estimation via knowledge query domain mixing-up network. To
investigate the impact of the proposed method on the source
and target data features and the properties of aligned features,
this paper compares the features extracted by a bidirectional
cross-attentive Domain mixer under different training strategies
using the t-Distributed Stochastic Neighbor Embedding (t-SNE)
technique. t-SNE is a popular non-linear dimensionality reduction
algorithm that can map high-dimensional data into a low-
dimensional space for visualization and clustering (Maaten and
Hinton, 2008). The basic idea of the algorithm is to construct a low-
dimensional representation by measuring the similarity between
high-dimensional data points and then attempting to minimize the
KL scatter between that representation and the original data to
preserve similarity. It is able to transform high-dimensional data
points into points in two or three dimensions such that similar data
points are close to each other in the low-dimensional space, while
dissimilar data points are far from each other.

Figure 11 shows the visualization results of the features extracted
by the bidirectional cross-attention domain blender in KQDMN-s,
KQDMN-t, KQDMN-mmd, and KQDMN-coral, respectively, with
the red and blue points representing data from the source and
target domains, respectively. As can be seen from the figure, the
source and target data feature spaces are more different due to

the different charging strategies used, and the source and target
features learned by KQDMN-s and KQDMN-t are more dispersed
and distributed in different regions. In contrast, due to the domain
adaptation technique, the differences between the KQDMN-mmd
and KQDMN-coral source data features and target data features
are smaller, and the source data features and target data features
are more closely distributed with features overlapping together. In
addition, the distribution of features learned by KQDMN-coral was
tighter compared to KQDMN-mmd. This is because MMD only
reduces the first-order distance between domains, whereas CORAL
loss can better align domains with second-order quantities. This
is also reflected in Table 1, where the CORAL loss gives some
performance gain due to the second-order distance measure.

6 Conclusion

In this paper, we have introduced the KnowledgeQueryDomain
Mixing-up Network (KQDMN), a novel domain adaptation-
based approach specifically designed for predicting lithium battery
capacity. The approach addresses two key challenges in the field:
the adaptability of predictive models to diverse domain features
and the inherent issues of data scarcity and domain shifts that are
commonly encountered in practical applications. The KQDMN is a
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FIGURE 11
Estimation results for B2 with different strategies. (A) KQDMN-s. (B) KQDMN-t. (C) KQDMN-mmd. (D) KQDMN-coral.

significant advancement in the realm of battery capacity estimation.
By separating feature extraction from domain alignment, we have
enhanced the model’s ability to adapt to various domain features.
This separation is crucial in dealing with the complexities and
nuances of battery data, which often vary significantly across
different application domains. One of the core components of the
approach is the development of a set of knowledge queries inspired
by the Transformer model. These queries are specifically designed
to capture both temporal and global features of battery data. By
integrating features obtained through convolutional operations, the
KQDMN can effectively process and analyze data that encompasses
a wide range of battery usage scenarios and conditions. To address
the issue of domain bias, a common obstacle in battery capacity
prediction, we have employed a cross-attention mechanism. This
mechanism serves as a bridge between different domains, aiming
to minimize the disparity between source and target domains. The
bidirectional nature of this approach is crucial for facilitating the
learning of domain-invariant feature representations, a key aspect
in achieving accurate and reliable predictions.

The performance of the proposed model is demonstrated
through its Mean Absolute Error (MAE) of 0.19%, Root Mean
Square Error (RMSE) of 0.23%, and a Coefficient of Determination
(R2) of 0.997. These metrics highlight the precision and reliability
of the KQDMN in estimating battery capacity. The experimental

results further reinforce the effectiveness of the method in a variety
of practical scenarios, especially those characterized by limited data
and significant variations in data distribution.

In conclusion, the Knowledge Query Domain Mixing-up
Network represents a significant leap forward in the field of battery
capacity prediction. Its innovative approach to feature extraction
and domain adaptation, combined with the implementation
of advanced machine learning techniques like convolutional
operations and cross-attention mechanisms, makes it a powerful
tool for accurately predicting lithium battery capacity. This method
has shown high accuracy and robustness, particularly in challenging
scenarios with limited data availability.We believe that the proposed
approach can be a valuable asset in advancing the technology for
lithium battery management and in contributing to more efficient
and sustainable energy systems.
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