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This paper studies the problem of considering customer satisfaction in the no-
battery-swap mode and in the power-swap mode. First, with the goal of
maximizing customer satisfaction, the total cost of charging and discharging
and the minimum construction cost of swapping stations, the customer time
window, and the load constraints of electric vehicles are considered. A model of
electric vehicle charging and discharging route optimization and replacement
station location without battery swapping behavior, considering customer
satisfaction, is established, and then, a two-stage improved ant
colony–genetic algorithm is designed to solve the model, and finally, the
comparative analysis considers customer satisfaction. Based on the path
optimization results and location decisions considering the cost of charging
and discharging, the following conclusions are obtained: 1) electric vehicle route
optimization and swap station location planning considering customer
satisfaction can not only effectively reduce logistics distribution costs and
replacement costs but also improve customer satisfaction levels. 2) Reducing
the number of route crossings in the process of logistics distribution routes can
save electricity costs for electric vehicles and logistics distribution costs, and help
reduce the total cost of the entire logistics distribution network. 3) The gradient
setting of the electricity price for electricity exchange will reduce the cost of
electricity exchange, improve the utilization efficiency of the battery, reduce the
cost of logistics and distribution, and improve the electricity exchange revenue of
the electricity exchange station.
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1 Introduction

As the economy and society rapidly advance, the demand for energy consumption has
steadily risen, and energy shortage and environmental problems have become increasingly
prominent. In terms of urban transportation, carbon emissions account for about a quarter
of energy carbon emissions, of which urban road transport carbon emissions account for
about 80% of the carbon emissions of the transportation industry, which is an important
area for transportation carbon reduction (BAI et al., 2021). Electric vehicles that couple
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power and transportation have become important new energy
vehicles because of their near-zero carbon emissions, low cost,
and convenient energy-saving charging. According to China’s
“New Energy Vehicle Industry Development Plan (2021–2035)”
(The General Office, 2020), from 2021 onwards, China clearly
proposed that the key areas of new energy logistics vehicles
should not be less than 80%, and anticipated by 2035, pure
electric vehicles will emerge as the predominant choice among
newly sold vehicles, which provides a guarantee for the
development of electric logistics vehicles in the field of urban
distribution. To this end, electric vehicles show potential to
replace traditional fuel vehicles and become an important means
to solve transportation and travel. The Transportation sector is
characterized by high carbon emissions. Logistics distribution is
characterized by high demand, complex routes and road congestion,
resulting in high carbon emissions and high vehicle costs. Electric
vehicles have the characteristics of a relatively fixed driving range,
focusing on short and medium distances, convenient centralized
charging, and near-zero carbon emissions. In order to alleviate
environmental pressures, the public sector and logistics
distribution companies have begun to choose electric vehicles as
the main means of transportation. At the same time, the electric
vehicle as a means of transport makes the traditional fuel vehicle
path planning method no longer applicable, thereby resulting in the
electric vehicles to provide kinetic energy with batteries; in order to
complete the distribution task, the driving process is limited by
battery capacity and mileage in the long-distance distribution, the
need for power supply in the middle, and the current set of charging/
replacing facilities. There is a slow construction and unreasonable
planning, with the increase in the demand for electricity for electric
vehicles if the problem of electric energy supply of electric vehicles
cannot be solved. It will limit the development of electric vehicles in
the logistics industry. Considering the charging time and investment
cost, it is recommended that the logistics enterprises cooperate with
government departments to build and operate the replacement
station, therefore, this paper will consider the replacement station
as an electric energy supply facility and carry out the research on the
logistics distribution path and site selection of the electric vehicle
substation.

1.1 Literature review

The central challenge in logistics distribution lies in
optimizing vehicle paths; considering the distribution of goods
involves time scheduling problems, many scholars integrate the
concept of time windows into the optimization problem of
logistics distribution paths, forming a logistics distribution
path optimization problem with a time window. In order to
solve such problems, the current algorithm selection is very
diverse; commonly used algorithms include genetic algorithms,
particle swarm algorithms, ant colony algorithms, and taboo
search algorithms.

In terms of path planning of electric vehicles, Guo et al. (2022)
proposed a travel path planning method, considering the power supply
of electric vehicles with the optimization goals of travel distance, travel
time, travel energy consumption, and charging price. Ming et al. (2016)
considered the mutually exclusive constraints of path selection, battery

capacity, and charge and discharge status; integrated the optimal travel
time of users and charging cost into the cost function; and studied the
path selection problem of electric vehicles under the optimal two
different decision-making goals under the time-of-use electricity
price mechanism. DONG et al. (2018) considered factors such as
path selection, time, battery capacity, and cargo capacity, and
studied the optimization of logistics distribution paths and charging
strategies for electric vehicles with the goal of optimizing the cost of
driving time, battery loss, and fast charging cost of electric vehicles.
Zhang et al. (2022) studied the SAEV path optimization problem
considering the charging plan, unpredictable travel duration, and
service timing, and developed a branch-price algorithm to introduce
a customizable label-setting algorithm for identifying resilient and viable
routes with feasible charging strategies. Berk and Bülent (2022) aimed to
minimize the costs associated with battery degradation and total energy
consumption against the backdrop of the traveling merchant problem
with time windows, using commercial solvers to solve small-scale
instances to examine the impact of battery degradation on routing
decisions in different scenarios. Yang et al. (2023) proposed an optimal
EV scheduling method on the load side that combines incentive
scheduling with orderly scheduling so that the load curve tends to
be flat and used to optimize the EV path. Saeed et al. (2023) proposed a
vehicle routing optimization model based on the Al-Biruni earth radius
optimization algorithm, considering user preferences, availability of
charging infrastructure, and distance to the destination. Ren et al. (2020)
proposed a shared car path optimization model that considers the
operating costs of SEVs, the cost of user time, the cost of user car rentals,
and the rewards of user sharing. Wang et al. (2015) analyzed the
relationship between variables in the power battery distribution path
optimization problem, constructed a priority function to determine the
initial population, and suggested an enhanced genetic algorithm to
address the path optimization problem for delivery vehicles with time
windows, including simultaneous pick-up and delivery scenarios.
Appiah and Xiong (2019) aimed to minimize total transportation
costs by solving a unitary model through a particle swarm
optimization algorithm to determine the path for vehicles traveling
from the distribution center to serve a specific customer and return to
the distribution center.

In terms of the site selection of battery swapping station,
Deng et al. (2021) considered the two stages of electric vehicles
during distribution and back to the distribution center, and
studied the logistics distribution path planning and charge and
discharge management problems of electric vehicles, considering
customer satisfaction in the power exchange mode. In Zhang
et al. (2023), based on new energy vehicles’ daily driving habits
and charging methods, the Monte Carlo sampling algorithm is
adopted to establish the new energy car battery load model, the
scheduling for electric vehicle charging behavior, and related
facility construction that provides a direction. Zhou and Tan
(2018) proposed the problem of distribution path and site
selection of electric vehicles in the automobile assembly line,
developed a mathematical programming model aimed at
optimizing by minimizing the overall expenses within the
system, and proposed a two-stage dynamic programming
algorithm to obtain the optimal solution of the small-scale
problem. Li et al. (2022) constructed a mathematical model of
potential substation site selection under multi-path conditions,
and on this basis, the relationship between the cruising range of
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electric vehicles and the cost of station construction, as well as the
relationship between the number of substations and service flow,
was analyzed. An et al. (2023) proposed a location optimization
method that comprehensively considered many factors such as
EV charging and discharging cost, power grid load stability, and
user demand. Cheng et al. (2023) proposed an EV charging load
prediction method based on variational mode decomposition and
the Prophet-LSTM neural network to solve the problem of the
charging station location. Zhao and Liang (2023) proposed a new
charging scheduling and energy management approach for smart
grid electric vehicles based on genetic algorithms (GAs), gated
recurrent unit (GRU) neural networks, and reinforcement
learning (RL) algorithms. Wang et al. (2020) proposed a BSS
site selection framework based on the MCDM (multi-project
decision method), which takes into account the lack of
information in the site selection process of the replacement
station and uses triangular fuzzy numbers to deal with
uncertainty. Zu and Sun (2022), based on the site selection
planning of charging stations and substations, considering the
user’s behavioral capabilities, dynamically analyzed the
correlation between crucial parameters and outcomes using
the YALMIP/CPLEX method to solve the model. Qin and He
(2021) determined the service radius of the substation from the
aspects of driver driving preference, substation service objectives,
and the mileage of electric vehicles, and used the grid method and
position allocation model to analyze the distribution of
substations with the smallest number of stations and the
largest coverage.

In summary, although domestic and foreign scholars have
considered the charging/replacing problems of electric vehicles in
logistics distribution, they have not considered the relationship
between the logistics distribution path of electric vehicles and the
site selection results of their substations, and few literature studies
have considered the combination of time window, logistics path
optimization, and substation site selection. The main contribution of
this paper is to establish the path optimization problem of electric
vehicles without power exchange behavior and the site selection
decision model of electric vehicle power exchange facilities
distributed in urban distribution under the power exchange mode.
The model comprehensively considers the impact of user satisfaction,
the opportunity/penalty cost generated by the violation of the customer
satisfaction time window, and the power exchange cost corresponding
to the remaining battery power on the path planning and site selection
decision of the power exchange facility. Finally, a two-stage hybrid ant
colony algorithm is designed to solve the abovemodel in order to obtain
the urban distribution path optimization and site selection scheme
suitable for electric vehicles, which can provide reference for the actual
operation and management decisions of logistics enterprises.

2 Problem description and modeling

2.1 Problem description

The specific problem description is as follows: assuming that
an enterprise has a logistics distribution center point O in a
certain place and puts multiple electric vehicles with the same
loading capacity and the same battery capacity into the logistics

distribution service, the location of each customer point C and its
cargo demand are known, and the logistics distribution center
can meet its service needs. The distribution center serves as both
the starting and ending points of the logistics distribution path,
necessitating the vehicle to return to the distribution center upon
completion of its service; owing to the electric vehicle having a
power constraint, some of the longer sub-paths need to be
replenished with electricity, the electric vehicle through the
replacement station or back to the distribution center should
reach the battery full state, and each electric vehicle should leave
from the starting point and return to the end point through the
replacement station no more than once. Therefore, enterprises
need to reasonably arrange the logistics and distribution path of
electric vehicles, which minimizes logistics and distribution
costs. At the same time, it is crucial to factor in the expenses
associated with replacing electric vehicles and ensure customer
satisfaction, and select and build the replacement power station
on a reasonable distribution path. The goal of the problem is how
to reasonably design the electric logistics vehicle transportation
path of the distribution center under the condition of limited
distribution vehicles so as to meet the needs of customer points
and achieve the goal of minimizing the total cost of the urban
logistics distribution network and maximizing customer
satisfaction.

For these cases, we need to consider the time window of the
distribution route, the opportunity cost or penalty cost, the
maximum cargo capacity of the electric vehicle, and so on. 1)
The vehicle routing optimization problem with the time window
is based on the classic vehicle routing optimization problem, adding
that each customer point has a logistics distribution time limit; we
call the customer point time limit as the time window. When
enterprises use electric vehicles for services, electric vehicle
distribution may be delayed or result in early arrival, and when
in need to consider the distribution route time window problem, this
article considers the choice of the soft time window constraint and
all customers know the time window. Failure to deliver within the
required time window will incur opportunity costs or penalty costs.
2) Because the enterprise needs to replace the electric vehicle in time,
the distribution center also has the function of power exchange, and
the electric vehicle can be replenished in the distribution center after
returning to the distribution center. 3) The total customer demand
on each distribution route does not exceed the maximum cargo
capacity of electric vehicles, and the demand of each customer point
can only be completed by one electric vehicle. 4) In order to consider
making the electric vehicle power exchange work orderly and
preventing the electric vehicle from re-entering the power
exchange station to affect the power exchange of other electric
vehicles and causing resource occupation, the replacement price
will be set according to the remaining power level of the electric
vehicle; if the remaining electricity is high, the corresponding
purchased electricity price is correspondingly higher, and the
conversion price is converted according to the remaining level of
the remaining electricity. 5) The electric vehicle used in this article
does not consider the loss to the battery due to charge and discharge
during the power exchange process. 6) The power of an electric
vehicle is not affected by the driver’s driving style and the difficulty
of driving on the road. The schematic diagram of the electric vehicle
path optimization problem in this paper is shown in Figure 1.
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2.2 E-VRPTW model considering customer
satisfaction

2.2.1 Objective construction
Considering the economic factors of logistics distribution costs

and the influence of logistics distribution customer service time
window on customer waiting time, the paper formulates a multi-
objective optimization model which aims at maximizing the overall
satisfaction of the system and minimizing the delivery time and total
cost of the system.

(1) Minimizing the logistics distribution services cost

Considering the logistics integrated transportation service of
electric vehicles in logistics distribution services and the site
selection and construction of the replacement station, the
logistics distribution cost of this paper mainly includes the
total cost of electric vehicle power exchange cost, electric
vehicle fixed cost, replacement station construction cost, and
time window penalty cost. The cost of electric vehicle power
exchange is related to the electricity exchange price and power
exchange; the higher the electricity exchange price and the more
the electricity exchange, the higher the power exchange cost; for
this reason, it is necessary to optimize the power exchange of
electric vehicles into the power exchange station. The length of
the driving path of electric vehicles determines the cost of their
logistics distribution travel time, and choosing a suitable location
to build a replacement station can make the electric vehicle
exchange power in its suitable power exchange during the
driving distance while reducing the time cost; the longer the
route travel time corresponds to the higher the route travel time
cost, so the path should be reasonably selected during the route
driving process so that the electric vehicle can be replenished.
The specific mathematical expression is as follows:

minF1 � min Γ1 + Γ2 + Γ3 + Γ4( ). (1)

The cost of electric vehicle replacement is related to the
remaining electricity and power exchange price of electric
vehicles driving into the power exchange station during
distribution; taking into account the prevention of electric
vehicles from re-entering the power exchange station multiple
times and affecting the power exchange of other electric vehicles
resulting in resource occupation, the replacement price will be set
according to the remaining power level of electric vehicles; if the
remaining electricity is more, the corresponding purchased
electricity price is correspondingly higher. The expense linked
to power exchange is associated with the frequency of power
changes in electric vehicles during distribution, the remaining
power to the power exchange station, and the electricity exchange
price, and the calculation method is the sum of the purchase cost
of the new replacement battery and the cost of a single
battery rental.

Γ1 � ∑
i∈I

∑
s∈Sα

∑
k∈K

Ts + γsk,n − γsk( )λr t( )[ ] · xijk. (2)

The construction cost of the substation is related to the
construction cost of a single substation and the number of

substations under construction, as shown in the
following equation.

Γ2 � ∑
s∈S

LiBs. (3)

Electric vehicle distribution costs are divided into variable costs
and fixed costs. Variable costs are related to the length of the driving
path of electric vehicles; the farther the driving distance, the greater
the variable cost. Fixed cost is the total cost of the vehicle paid by the
enterprise to purchase an electric vehicle that is put into use.

Γ3 � ∑
k∈K

∑
j∈J

h · xojk + g ·∑
i∈I

∑
j∈J

∑
k∈K

dij · xijk. (4)

Considering the impact of the service time of delivery on
customer delivery service satisfaction, the cost caused by the
delivery time in violation of the merchant’s requirements in the
objective function also takes into account the total cost, and this
paper establishes a mathematical model based on the soft time
window constraint, describing it as follows: if the delivery vehicle ai
delivers the goods before and the unit opportunity cost is w1, if the
delivery vehicle delivers the goods afterward bj, resulting in a
decrease in satisfaction, and the unit penalty cost is w2. The cost
calculation is shown in Figure 2.

The total time cost is shown below:

S rik( ) �
w1 ai − rik( ), rik < ai,
0, ai ≤ rik ≤ bi
w2 rik − bi( ), rik > bi,

⎧⎪⎨⎪⎩ i ∈ I, k ∈ K, (5)

Γ4 � ∑
i∈I

∑
k∈K

S rik( ). (6)

(2) Minimizing the total distribution distance of the
logistics system.

Considering the reasonable planning of the site selection of the
layout of the substation and the distribution path of the logistics
enterprise, the logistics distribution distance can be reduced, and the
expression of the logistics distribution distance F2 is given as follows:

F2 � ∑
i∈I

∑
j∈J

∑
k∈K

dijxijk, i ≠ j. (7)

(3) Maximum customer satisfaction.

Customer satisfaction is used to evaluate the service level of
logistics distribution enterprises based on the logistics distribution
time window. The length of its delivery time will directly affect the
customer’s evaluation of its satisfaction. Its linear function
expression F′3 is

F3
′ �

0, rik ≤ ai. min

ai − rik
ai − ai. min

, ai. min < rik ≤ ai

1, rik ∈ ai, bj[ ]
rik − bj

bj,max − bj
, bj,max > rik ≥ bj

0, rik > bj,max.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)
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For ease of calculation, customer dissatisfaction is considered,
and customer dissatisfaction is represented by F3, and the F3
expression is expressed as follows:

F3 � 1 − F3
′. (9)

2.2.2 Constraints
The planning and replacement management of electric vehicle

logistics distribution routes should meet the following constraints: 1)
Logistics distribution constraints: the constraints of logistics
distribution mainly include path constraints, load constraints,

arrival/departure time constraints, and remaining power
constraints.

(1) Path constraints

Path constraints will restrict vehicle movement, considering the
number of vehicles entering and leaving a node.∑

i∈I,i≠j
xijk � ∑

i∈I,i≠j
xjik,∀i ∈ I, k � 1, 2/K, (10)

∑
k∈K

xijk � 1,∀i ∈ I,∀j ∈ J, i ≠ j, (11)

∑
i∈Sα ,j∈Sα

∑
k∈K

xijk ≥ 1,∀i ∈ Sα, j ∈ Sα, k ∈ K, (12)

S � j{ ∣∣∣∣ ∑
i∈I

xijk � 1, j ∈ J, k ∈ K
⎫⎬⎭, (13)

∑
k∈K

∑
j∈J

xojk � ∑
k∈K

∑
j∈J

xjok, (14)

xijk ∈ 0, 1{ },∀i ∈ I, j ∈ J, k ∈ K, (15)∑
i∈I,j∈J

∑
k∈K

xijk ≤M · Bs. (16)

Eq. 10 indicates that each vehicle enters a node and leaves a
node an equal number of times. Eq. 11 indicates that each
customer can receive service from at most one electric vehicle.
Eqs 12, 13 indicate that the distribution path of the electric
vehicle forms a closed loop connecting end to end. Eq. 14
indicates that each electric vehicle departs from the
distribution center and ends up in the distribution center. Eq.

FIGURE 1
Schemes following the same formatting.

FIGURE 2
Penalty function for soft time windows.

Frontiers in Energy Research frontiersin.org05

Zhang et al. 10.3389/fenrg.2024.1353268

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1353268


15 defines that the value of a decision variable can only be 0 or 1.
Eq. 16 indicates that the station can be visited many times.

(2) Load constraints

0≤ ∑
i∈I,i≠j

∑
j∈C

xijkqi ≤D,∀j ∈ J, k � 1, 2/K, (17)

γ � ∑
k∈K

∑
j∈J

xojk. (18)

Formula 17 indicates that the total customer service of each
electric vehicle cannot exceed the maximum cargo capacity of
electric vehicles. Eq. (18) represents the overall count of electric
vehicle transfers.

(3) Arrival/departure time constraints

When a customer provides delivery within an acceptable
timeframe, there is zero opportunity cost and penalty cost. If the
time window is exceeded, the penalty cost will be paid according to
the length of the violation.

ai. min ≤ rik ≤ bj,max, i ∈ I,∀k ∈ K, (19)
βaoj � 0,∀j ∈ J, (20)

βbjk � βaok +
dij

vk
+ qiαik + αsk, i ∈ C, j ∈ J, k ∈ K, s ∈ S, (21)

βbjok � βaoj +
∑
i∈I

∑
j∈J

dijxijk

vk
+ ∑

i∈I,s∈Sα

αsk + αik ∑
i∈C

qi,kyik, xijk � 1, yi,k � 1.

(22)
Eq. 19 means that the electric vehicle delivery time cannot exceed

the customer’s maximum tolerable time window, Formula 20 and
Formula 21, respectively, represent the time when the electric vehicle
leaves the logistics distribution center and arrives at the customer, and
Formula 22 represents the total time of the entire logistics distribution
network electric vehicle to complete the logistics distribution use.

(4)Power constraints

0≤pa
oj ≤Q, ∀j ∈ J, (23)

Pa
0k � Q,∀s ∈ Bs,∀k ∈ K, (24)
pa
jk � pb

jk,∀i ∈ I,∀j ∈ J, (25)
Pb
sk � Q,∀s ∈ Bs,∀k ∈ K, (26)

βai+1,k ≤ βbik − e · di,i+1,r( )xi i+1( )k +∑
s∈S

Q − e · di,i+1,r( )zi i+1( )r, (27)

pa
jk ≤pb

jk − E · dijxij + Q 1 − xijk( ). (28)

Formula 23 indicates that the remaining power of the electric
vehicle cannot exceed its power limit. Eqs 24–26 represent the
electric vehicle leaving the distribution center and the customer
node and the power level of the replacement station. Formula 27
represents the relationship between the remaining power of the
electric vehicle leaving the previous customer point and the next
customer point. Formula 28 represents the relationship between the
power of two customer nodes. In summary, the multi-objective
optimization model of electric vehicle logistics distribution path

optimization and power exchange strategy considering customer
satisfaction is represented as follows:

minF � F1, F2, F3{ },
s.t. 10( ) ~ 28( ).{ (29)

3 Detailed explanation of the
algorithm process

3.1 Multi-objective model solving

Since the three objective functions in this paper have different
orders of magnitude, the method based on fuzzy satisfaction is
used to dimensioning the objective function. The entropy weight
method is the most widely used method for solving multi-
objective problems. However, the entropy weight method
mainly empowers through the degree of dispersion of each
objective, ignoring the horizontal influence generated by the
correlation between the objectives. CRITIC is an objective
weighting method that considers the impact of index
correlation. The general process of the CRITIC method is
represented as follows:

(1) First, suppose there are m plans and n goals respectively. Take
the solutions of F1, F2 and F3 as objectives are taken as three
CRITIC weighted schemes, and the following evaluation
matrix is obtained:

X �
x11 x12 / x1m

x21 x22 / x2m

..

. ..
. ..

.

xn1 xn2 / xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (30)

where xij denotes the dimensioned value of the first j target of
the first i scheme.

(2) Then, the standard deviation and correlation coefficient were
calculated for each target, as follows:

σ i �
�������������
1
m
∑m
j�1

xij − xi( )2,√√
ρik � cov Xi, Xk( )/ σ iσk( ),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (31)

where σ i is the standard deviation of the target i; ρik indicates the
correlation coefficient between the target i and the target k; and
cov(Xi,Xk) is the covariance of lines i and k.

(3) The amount of information contained in each goal is
calculated, and the weight of each goal is obtained,
as follows:

Gi � σ i∑n
k�1

1 − ρik( ),
ui � Gi∑n

k�1
Gk

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (32)
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where Gi represents the information amount of the target and∑n
k�1

(1 − ρik) represents the quantitative indicator of the conflict

between the first goal i and other goals.
Finally, the combined objective function is expressed as follows:

F � ∑3
i�1
uiπi Fi( ). (33)

3.2 Two-stage hybrid algorithm design

Obviously, the problem solved by this model is an NP-hard
problem, so combined with the characteristics and actual situation
of this model, the positive feedback method — ant colony algorithm
— which is robust and does not rely on the initial route selection is
selected. In this paper, an improved two-stage hybrid algorithm solves
the path optimization model when there is no power exchange
behavior and the site selection model of the station in the power
exchange mode. First of all, when designing the distribution path
optimization model without power exchange behavior, in order to
better integrate the advantages of the A* algorithm and the ant colony
algorithm, the initial path suitable for the optimization of the logistics
distribution path of electric vehicles is searched by the A* algorithm in
the early stage, and the initial solution of the ant colony algorithm is
formed; the positive feedback of the ant colony algorithm is used in
the later stage, and the advantages of high solution accuracy are used;
the method of combining the A* algorithm and the ant colony
algorithm is used to generate the optimal path based on the
pheromone iteration, and the load and mileage constraints of the
electric vehicle are considered in the evaluation process and EV
delivery time window constraints. Second, based on the optimal
path of electric vehicle distribution, the genetic algorithm of the
second stage is designed to solve the site selection model of the
replacement station. While conducting the site selection process, the
price of power exchange and the construction cost of the power
exchange station are considered, and the cost constraint of the power
exchange is based on the residual electricity of the electric vehicle so as
to find the site selection scheme that meets the minimum cost of
power exchange and construction of the power exchange station.

3.3 Improved ant colony algorithm to solve
the path optimization model without power
exchange behavior

3.3.1 Initial pheromone settings
The A* (A-Star) algorithm is the most efficient direct search

method for solving the shortest path and is a common heuristic for
many other problems. Its heuristic function is

f n( ) � g n( ) + h n( ). (34)
The above equation f(n) when each node is searched, its

corresponding heuristic function, in this article, represents the
valuation function that reaches the customer point C; f(n)
consists of two parts, of which the first part g(n) represents the
actual cost of customer n to the distribution center current customer;

the second part h(n) is to estimate the cost of the current square to
the destination, that is, the distance between the previous customer
point and the next customer point when the electric vehicle is
delivered. Each time the algorithm scales up, it picks the node with
f(n) having the lowest value as the next node on the optimal path.

This article assumes that the distance between customer points is
the Euclidean distance dij. g(n) represents the cost of an electric
vehicle from customer point C to the logistics distribution center.
h(n) is the cost value between any customer and the next customer.
In this article, we select logistics distribution center O as the starting
point and add all customer points to the open list. At this time, the
minimum value in the opening list is taken, and only one node in the
logistics distribution center O is opened in the initial stage. So,
remove the O-points from the open list and add the O-points to the
off-list. Take the adjacent customer points of the O point and add
the customer points with the smaller valuation function to the open
list. At this point, these adjacent customer points are the parent
nodes of the adjacent points; delete these parent nodes in the open
list, and then, center on the parent node; look for the customer point
with the smallest neighbor valuation function, and cycle through the
above steps until all customer delivery needs are met. When
exploring the path, consider the load limit of the electric vehicle
and the power level of the electric vehicle, and return to the
distribution center if its load limit is exceeded. Set open list to
V1, and the closed list is V2. At this point, the vehicles are connected
from front to back in the set of nodes in the v table. The resulting
path is the optimized solution. Suppose the initial pheromone it
generates is τRij � λτc, τc is a pheromone for other paths. λ is
greater than 1.

The specific steps are as follows.

1) Build the initial function, and initialize the start list V1 and the
closed list V2, which calculates the valuation function for
adjacent customer points C1 of logistics distribution center
O. Substitute logistics distribution center O and its neighbors
into V1.

2) Determine whether the open list is empty, if not, continue the
iteration, and if it is empty, it ends because the optimal path
cannot be found. If it is not empty, substitute the logistics
distribution center O into V2, and the points in this list are not
considered.

3) Calculate the value of the point f(n), h(n), and g(n) in the
open list, at which point is set minF to substitute the customer
point C with the least estimated cost into V1.

4) Determine whether the distribution volume of the electric
vehicle distribution path exceeds the electric vehicle load
capacity D, and if it exceeds it, return to step①.

5) If a customer point C is already in V1, its estimated cost needs
to be recalculated and judged against the fact whether its
parent node needs to be updated, and if so, substitute that
customer point C into V2 and remove from V1.

6) GivenC � C + 1, determine whether the target path is reached;
if not, continue to step②, and if it is reached, it ends.

3.3.2 Construction path
After the A* algorithm is calculated, the initial optimal solution

is obtained. Ants transfer from customer point i to select the next
customer point j through certain probability selection rules. In the
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traditional ant colony algorithm, the state transition probability of
ant m from node i to node j is expressed as shown in Eq. 31:

Pm
ij �

τ ij
αηβij∑

s∈Jk i( )
ταisη

β
ij

, j ∈ allowedm,

0, otherwise.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (35)

In Eq. 31, allowedm represents all nodes that ant m can select
next, C represents a collection of customer points that can be
selected after ant m passes through customer point i, and α is a
pheromone heuristic factor and reflects the factors that affect the
path of pheromones on the ant’s selection path.β is the desired
heuristic factor, and the relative importance of visibility is expressed
in the path.

The heuristic factor nij is the expectation of the ant from the
customer point i to the customer point j, which is the key to the ant
choosing the next node. This paper studies the distribution strategy
with the lowest cost of logistics and distribution services, the smallest
logistics distribution distance, and the greatest customer satisfaction.
Combining the above factors as heuristic factors affects the optimal
distribution strategy. Therefore, this study will design the heuristic
factorial as follows:

ηij �
1

minF
. (36)

The cost of logistics distribution services, logistics distribution
distance, and customer satisfaction are used as the denominator of
the heuristic factor in order for the vehicle to select the next
customer demand point j by the customer point i, and the
expectation is that the total cost is the smallest, the logistics
distribution distance is the smallest, and the customer satisfaction
is the largest. The transfer probability of customer points that meet
the conditions of small total cost, short distance, and high
satisfaction is increased so that vehicles are prioritized for
customer points with small total distribution costs.

3.3.3 Pheromone volatile factor design
The pheromone volatility factor pertains to the rate at which

pheromones dissipate. Its value intricately influences both the
algorithm’s global search capacity and convergence speed. If set
too high, pheromones evaporate rapidly, causing the exclusion of
potentially superior paths. Conversely, a value set too low results in
excessive residual pheromones along the path, thereby impacting the
algorithm’s efficiency.

The size of the pheromone volatilization factor ρ-value in the ant
colony algorithm determines the persistence of the above
pheromone retention in the optimization path. Therefore, this
paper selects the size of ρ for segmentation and adjusts the size
of the pheromone volatilization factor as the number of
iterations increases.

ρ �
0.1, 0.25N≤ n≤ 0.5N,
0.3, 0.5N≤ n≤ 0.75N,
0.6, 0.75N≤ n≤N,

⎧⎪⎨⎪⎩ (37)

where n represents the current number of iterations and N
represents the total number of iterations of the algorithm. Start
setting ρ to a smaller value, guided by pheromones, to find the

optimal path. After 0.5 N, the pheromone accumulation on the path
is too high, and ρ is set to 0.3 to improve the pheromone
volatilization effect and avoid the risk of falling into local
optimization. When the number of iterations is more than
0.75 N, the pheromone concentration on the path reaches a large
value, resulting in the corresponding increase of the ρ-value.

3.3.4 Pheromone update strategy
To make the search process more instructive, after all ants have

formed their paths, the established paths are updated globally, and
only the path of the ants that find the globally optimal path is
updated with pheromones. The update rules are

Δτbestij � ∑M
m�1

Δτkij, (38)

Δτmij t( ) �
G

lbest
,

0

⎧⎪⎪⎨⎪⎪⎩ (39)

where G is the total amount of pheromones left by ants passing
through the optimal path and lbest is the path length corresponding
to the current total cost of the smallest. When information is
flooded, the residual information needs to be updated after each
ant traversal is completed. Thus, at the time t + n, the information
update rules on the optimal path (i, j) are as follows:

τ ij t + n( ) � 1 − ρ( )τij t( ) + Δτbestij . (40)

For edges (i, j) that are not optimal paths, the update rules are

τij t + n( ) � 1 − ρ( )τ ij t( ), (41)

where ρ represents a pheromone volatile factor.

3.4 Improved genetic algorithm to solve the
site selection model of the substation in the
swap mode

First, the first-stage ant colony algorithm solves the path
optimization model to obtain the optimal distribution path, and
the function randomly generates the initial population, that is,
different site combinations. Using the evaluation process to
consider the cost of the power exchange, the fixed cost and the
opportunity/penalty cost are minimized, and the sum of the costs of
accessing the individual replacement stations is compared. The
crossing operation is done by transposing the middle part of the
parent’s tangent location. It then goes through multiple crossovers,
variations, and iterations. Finally, the individual satisfies the
constraints and makes the adaptation optimal so as to solve the
site selection scheme that meets the minimum total cost of the
replacement station site. The solution process is as follows:

1) The function is used to generate an initial population with a
population of 100, the number of genes in the population
equals the total number of customers, and the length of the
individual is equal to the total number of demand points
in each path.
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2) The cross rate, number of evolutions, and number of
iterations are set, considering the actual situation of the
construction cost of the replacement power station. In
this paper, the crossover rate is set to 0.5, the rate of
variation is 0.05, and the number of iterations of the
algorithm is 200.

3) The constraint subfunction is set; this stage considers the
electric vehicle power level constraint, customer satisfaction
time window, and power change path constraint. Among
them, the power exchange power is negatively correlated
with the remaining power of the electric vehicle, and the
power exchange time is fixed.

4) The fitness function is set, the individual fitness degree in the
genetic algorithm is directly proportional to the adaptability,
and the goal of this paper is to minimize the total power
exchange cost, including the additional electricity cost and
opportunity penalty cost generated by visiting the
replacement station.

5) Parental cross-mutation, the cross-operator that acts on the
population, crosses by transposing, exchanges some genes
between paired chromosomes, and crosses the part to mutate.

6) When the number of iterations reaches the specified number of
iterations, the loop ends and outputs the final result.

According to the above algorithm introduction, the
main steps of the two-stage hybrid algorithm are shown
in Figure 3.

4 Study analysis

In order to verify the applicability of the site selection model in the
power exchangemode, this section uses themodel solution case to study
the optimal distribution path and the best site selection scheme and the
total cost of distribution in this context, and compares the site selection
decision and logistics distribution cost under the power exchange mode
in order to draw realistic conclusions. In this paper, the different results
of the objective function have been standardized and dimensionally
unified in the calculation process.

4.1 Experimental data

The study data selected in this paper are shown in Table 1, assuming
that a distribution center and 30 customers are distributed in a square
area with a side length of 80 km, the coordinate unit is km, the
customer’s demand for goods is generally 0–2 t; the location
coordinates of the logistics distribution center and 30 customers, and
the customer’s cargo demand and time window are shown in Table 1.
Assuming that there are a total of 10 electric logistics vehicles of the same
type in the distribution center, the maximum load capacity is 8 t, the
average driving speed is 40 km/Li, the electricity cost per kilometer in the
distribution process is 1 yuan, the unit time opportunity cost of the early
arrival of the vehicle is 10 yuan/hour, the unit penalty cost of late arrival
is 30 yuan/hour, and the fixed travel cost of the vehicle is 200 yuan/car.
According to the above conditions, it is required to meet the constraints

FIGURE 3
Two-stage hybrid algorithm design diagram.
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of the vehicle load and customer time window and make the total
distribution cost and customer satisfaction the greatest by reasonably
arranging the distribution route of the vehicle. Table 2

4.2 The result of the model solution

4.2.1 Considering the results of logistics
distribution route optimization for time windows

According to the experimental data given in Table 1, this paper
uses the method of combining the A* algorithm and the ant colony

algorithm to generate the optimal route based on the pheromone
iteration, and the optimal distribution path and optimal roadmap
are obtained, as shown in Table 3 and Figure 3.

When there is no power exchange behavior, the improved ant
colony algorithm in the first stage of this paper design is used to solve
the path planning model and obtain the optimal distribution route,
and the total cost of distribution generated under the path is
1942.85 yuan. From the path optimization results, it can be seen
that subjected to the constraints of the customer’s time window, the
first, second, and third paths require multiple electric vehicles for
joint distribution tomeet the customer’s time window needs, and the

TABLE 1 Study data table.

Customer number Coordinate (x, y)/km Demand/(ton) Upper and lower bounds of the time window/h

0 (35, 35) 0 (0, 0)

1 (65.6,62.1) 0.4 (1, 8.5)

2 (7.8, 60.2) 0.6 (6.1, 13.2)

3 (30.6, 60.8) 0.3 (5.4, 7.8)

4 (25.4, 38.1) 0.7 (8.6, 12.9)

5 (15.8, 30) 1 (3.2, 8.5)

6 (56.8, 51.1) 1.4 (4.1, 10.3)

7 (57.2, 30.6) 0.2 (0.9, 6.1)

8 (62.1, 2.8) 0.5 (5.1, 10.3)

9 (45.2, 35.5) 0.9 (2.4, 6.5)

10 (5.2, 40.6) 0.4 (4.8, 8.4)

11 (32.1, 42) 0.2 (9.2, 14.7)

12 (11.8, 35) 0.8 (3.4, 12.5)

13 (15, 40) 0.5 (2.6, 9.4)

14 (50, 14) 0.2 (5.6, 13)

15 (70, 12) 0.1 (11.7, 16.4)

16 (61.2, 35) 0.6 (2, 8.4)

17 (61, 45) 0.8 (2.5, 14)

18 (1.3, 13) 1.2 (6.1, 9.8)

19 (47, 24) 0.3 (3.9, 10.9)

20 (31.2, 26) 0.8 (5.4, 10.3)

21 (22, 16) 0.7 (3.6, 4.5)

22 (24, 6) 0.6 (2.6, 3.6)

23 (26, 14) 0.7 (4.7, 8.9)

24 (33, 51) 1.3 (3.8, 10.6)

25 (45, 67) 0.5 (4.6, 7.8)

26 (15, 21) 0.5 (2.6, 5.5)

27 (25, 46) 0.8 (3.5, 6.7)

28 (36, 2) 0.5 (3.5, 7.4)

29 (25, 26) 0.3 (2.4, 5.9)

Assuming that 10 vehicles participate in logistics distribution and electric vehicles use medium-sized truck models, the specific relevant parameters are shown.
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total number of delivery vehicles required for distribution is 5. The
resulting fixed cost of electric vehicles is 1000 yuan, the distance cost
of electric vehicles is 698.67 yuan, and the penalty cost and
opportunity cost of the time window are the smallest,
244.16 yuan. It can be seen from this that the distribution route
should be reduced as much as possible under the condition of
meeting the constraints of the customer’s time window, and the

number of vehicles used, that is, the fixed cost expenditure. The
optimal delivery route diagram in this article is shown in Figure 4.

4.2.2 The result of the site selection of the
substation in the power exchange mode

Based on the optimal path optimization map of logistics and
distribution obtained above, this paper will next solve the site
selection problem of the replacement station, considering the cost
of the electric vehicle power exchange and the construction cost of
the power exchange station. The difference between model solving
in the power-swap mode and no swapping behavior is when the car
has less power left, and it will enter the designated substation for
power exchange. The entire power exchange process takes a shorter
and fixed time than the charging time. The penalty cost and
opportunity cost of the time window in this mode will have an
impact, as well as the cost of replacing the electricity. Based on the
optimal path optimization map, the location coordinates of the
candidate points of the alternative station are obtained in this paper,
as shown in Table 4.

Since the vehicle enters the power exchange station for power
exchange will delay a certain amount of time, resulting in a change in
the time when the electric vehicle arrives at each customer point, the
corresponding time window penalty cost and opportunity cost will
also change. According to the optimization results of the logistics
distribution path obtained above considering the time window, the
relevant parameters of the electric vehicle and those of the substation
are combined. Considering the load capacity and power constraints
of electric vehicles, the second stage of the two-stage hybrid
algorithm–genetic algorithm solution is used to minimize the
cost of power exchange, the construction cost of the power
exchange station, and the total distribution cost. Thus, obtaining

TABLE 2 Electric vehicle-related parameters.

Serial number Electric vehicle parameters and serial number Numeric value

01 Maximum load capacity of a single battery Qk
max(kw · h−1) 40

02 Cost of a single rental battery Ts (¥/kw · h−1) 1.5

03 Power change time consumption ask (h) 0.1

04 Maximum load capacity D(t) 8

05 Cost of electricity per mileage θ/¥ 0.25

06 Electric car drive speed vk/kw · h−1 40

07 Swap station profit factor λ/¥ 1.2–1.6

TABLE 3 Optimal route for electric vehicle distribution.

Car number Route Driving directions

01 Path 1 0–1–22–26–29–21–28–7–16–14–30 (0)

02 Path 2 0–9–13–5–12–27–30 (0)

03 Path 3 0–3–25–6–17–19–8–15– 30 (0)

04 Path 4 0–20–23–18–10–2–11–30 (0)

05 Path 5 0–24–4–30 (0)

FIGURE 4
Optimal path for electric vehicles.

TABLE 4 Location coordinates of the candidate point of the substation.

Candidate point number Coordinate (x/km, y/km)

001 (33.2, 51.4)

002 (15.8, 30.4)

003 (26.2, 14.6)

004 (50.2, 14.1)

005 (45.2, 35.5)
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the total cost of power exchange for electric vehicles to reach each
substation for power exchange, the total cost of each path is shown
in Table 5 below.

From the results in Table 6, it can be seen that in the power
exchange mode, the electric vehicle has insufficient endurance of
paths 2 and 3, the customer point 11 of path 1 has an insufficient
power problem, the reachable candidate points are 1 and 5, and the
total cost of the path to reach candidate point 1 is the smallest, so
customer 12 chooses to change power at candidate point 1. In the
same way, it can be known that customer points 5, 8, 13, and 9 are
replaced at candidate points 5, 5, 1, and 1, respectively. Vehicle 1 in
paths 1, 4, and 5 selects candidate point 1, while paths 2 and 3 select
candidate point 5, mainly because the customer point in path
1 requires a later delivery time, and the power change mode of
the electric vehicle reduces the power replenishment time. As a
result, vehicles have plenty of time to travel to distant substations,
reducing their opportunity costs. Based on the above results, the best
candidate addresses for the replacement station in the power
exchange mode are candidate points 1 and 5, and the single
power exchange cost is 1139.2 yuan, of which the electricity cost
is 338.3 yuan, and the opportunity cost and penalty cost are
445.5 yuan. In the following analysis, this article will discuss the
path optimization and site selection of different time windows and
power exchange rates.

4.3 Analysis of influencing factors

Mainly based on the following four situations for analysis and
comparison, scenario 1 is the model and method mentioned in the
text, and the compromise values in the text are selected for
comparative analysis; scenario 2 does not consider customer
satisfaction, and the goal is to solve the lowest logistics and
distribution costs; scenario 3 does not consider the cost of
distribution, and the goal is to achieve the highest customer
satisfaction; and scenario 4 targets minimal replacement costs
and maximum customer satisfaction.

4.3.1 Time window influencing factors
Based on the definition of the above scenario, the logistics

distribution path of the logistics distribution center in scenarios
1, 2, 3, and 4 is shown in Figure 5, and the corresponding logistics
distribution journey cost, upper time window opportunity cost,
lower time window penalty cost, fixed cost, power replacement
cost, and customer satisfaction results are given in Table 7.

Based on Figure 5, it can be seen that the electric vehicle logistics
distribution path in scenario 1 has fewer crossovers, scenario 2 has
less, scenario 3 has more crossover paths, and scenario 4 has the
most crossovers. According to Table 4, with the increase in the
number of path crossings, in order to meet the goal of maximum
customer satisfaction, the corresponding logistics distribution costs
and power exchange costs will increase. Based on scenario 2, it can
be seen that the total cost of logistics distribution is lower when the
goal of maximum customer satisfaction is not considered. At this
time, the total cost of logistics distribution is 1995.27, which will only
be distributed under the premise of meeting the time window with
the shortest path as the goal, although the distance distribution
cost and power replacement cost are reduced, but due to the lack
of consideration of the customer’s time window factor, the
customer’s satisfaction level decreases to 0.67. For scenario 3,
the customer satisfaction level is the largest, 0.87; compared with
scenario 2, the satisfaction level increased by 20%, and the total
cost of logistics distribution under this scenario is 2012.54,
mainly because the logistics distribution center delivers the
goods within the specified time window, and the electric
vehicle driving route needs to be adjusted in the logistics
distribution process, which brings more logistics distribution
path crossover and power exchange costs. Scenario 4 considers
the goal of the minimum power exchange cost and the maximum
customer satisfaction level of the electric vehicle; it can be seen
from Table 4 that the customer satisfaction level of scenario 4 has
increased by 15% compared with scenario 2, and the power
exchange cost is 208.11, which is 97.12 yuan lower than the
replacement cost of the electric vehicle and the loss cost of the
electric vehicle.

TABLE 5 Parameters related to the substation.

Serial number Replacement station parameters and serial number Numeric value

01 Construction cost of a single substation Bs/million yuan 200

02 Cost of leasing the replacement power station/million yuan 1.2

TABLE 6 Total cost of distribution for each route in the case of a power swap (yuan).

Route Customer point 1 2 3 4 5

01 12 443.21 - - - 467.23

02 5 - - - - 479.15

03 8 435.46 - - - 412.35

04 13 433.87 435.25 - 434.3 -

05 9 424.35 478.13 - 439.16 426.5
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FIGURE 5
Logistics distribution routes in four scenarios.

TABLE 7 Logistics distribution costs and customer satisfaction.

Scenario Logistics distribution costs and customer satisfaction

Travel
cost

Opportunity cost on
the time window

Penalties for costs
under the time

window

Fixed
cost

Replacement
costs

Customer
satisfaction

Scenario 1 793.4 201.8 0 1000 305.23 0.8

Scenario 2 786.4 175.96 17.98 1000 402.45 0.67

Scenario 3 833.25 173.38 5.91 1000 305.23 0.87

Scenario 4 698.67 244.16 0 1000 208.11 0.82

Frontiers in Energy Research frontiersin.org13

Zhang et al. 10.3389/fenrg.2024.1353268

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1353268


4.3.2 Factors affecting the amount of
power exchanged

In order to prevent electric vehicles from re-entering the power
exchange station for power exchange due to more remaining
electricity, it will affect the normal power exchange order of the
power exchange station. This paper assumes that when the residual
power of the electric vehicle is less than 20%, the profit factor of the
replacement station is 1.2, and it is ascending in steps, and the profit
factor of the replacement station increases by 0.1 for every 20%
increase in the remaining electricity. This section discusses the
impact of the remaining power exchange on the site selection
decision, logistics and distribution costs, and power exchange
costs of the replacement station. The relationship between the
amount of electricity exchanged and the cost of exchanging
electricity is shown in Figure 6.

As can be seen from Figure 6, the remaining power of electric
vehicles is 0%–100%, and with the reduction of the remaining power of
electric vehicle batteries, the total cost of logistics and distribution of
electric vehicles has dropped from 2019.37 yuan to 1942.34 yuan, and
the cost of power replacement has dropped from 354 yuan to 40 yuan.
At the same time, the opportunity cost and penalty cost on the time
window are also slowly increasing, from 293.27 yuan to 300.37. From
the perspective of the degree of change in the cost of power exchange,
the main reason is that with the reduction of the remaining power of
electric vehicles, the profit factor of the replacement station is reduced,
sowhen the remaining electricity is closer to 0, the unit replacement cost
is smaller. From the perspective of the opportunity cost and penalty cost
of the time window, the more the remaining power of the electric
vehicle, the more it can ensure that the electric vehicle meets the
distribution needs of the remaining customers, and there will be no
need to replace the electricity in themiddle, which will make the electric
vehicle better meet the needs of customers, and the opportunity cost
and penalty cost of the time window will be reduced.

Therefore, in order to meet the goal of the minimum total cost and
the greatest customer satisfaction of logistics distribution, the gradient
electricity price can be set according to the remaining electricity of the
electric vehicle to reduce the unit replacement cost. On one hand, it can
motivate electric vehicles to choose a power exchange station for power

exchange, improve the income of the power exchange station, reduce
the number of times the electric vehicle re-enters the replacement
station, and effectively improve the battery utilization rate. On the other
hand, due to the fixed power change time, electric vehicles can decide
whether to change electricity according to their own remaining
electricity and the time window needs of customer orders, effectively
improving the efficiency of electric vehicle distribution.

5 Conclusion

Based on the impact of time window requirements on customer
satisfaction, combined with the implementation of the gradient
management of power exchange prices, this paper establishes a
logistics distribution path optimization and site selection model for
electric vehicles based on the maximum customer satisfaction and
the lowest total cost. Among them, the total cost includes logistics
and distribution costs, power station construction costs, power
exchange costs, and fixed costs of electric vehicles. Aiming at the
path optimization and site selection problem of electric vehicles, this
paper designs a two-stage hybrid algorithm combining the ant
colony algorithm and genetic algorithm to solve the problem,
takes a distribution center as an example to select the study data
to solve the model, performs numerical analysis, and analyzes
whether the time window is set and the impact of the amount of
power exchange on the total cost. The results of this paper show
the following:

(1) The optimization of electric vehicle paths and the site
selection planning of the replacement station considering
customer satisfaction can not only effectively reduce the
cost of logistics distribution and the cost of power
exchange but also improve the level of customer
satisfaction. When the cost of travel decreases from
793.4 to 698.67, customer satisfaction also increases
from 0.8 to 0.82.

(2) Reduction in the number of path crossings during logistics
and distribution routes saves 3.28% of the cost of electric
vehicle electricity and logistics and distribution costs, and
helps reduce the total cost of the entire logistics
distribution network.

(3) The gradient setting of the electricity exchange price will
reduce the cost of power exchange, improve the utilization
efficiency of the battery while reducing the cost of logistics
and distribution, and improve the power exchange income of
the power exchange station.
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Nomenclature

Collections

I All nodes in the system

J Customer points and changeovers in the system

O Logistics distribution center

C Customer collection

Non-decision variables and parameters

dij Distance from point i to point j

qi Amount of goods demanded for customer i

g Cost of driving a unit distance for an electric vehicle

Li Cost of establishing a substation at point i

vk Travel speed for electric vehicles

r(t) Power purchase price of the power exchange station

γsk Remaining power for the electric vehicle when it arrives at
substation S

Ts Cost of a single rental battery

αik Time at which the K vehicle performs the task at point i

ai.min , bj,max Earliest tolerable time and the latest toleration time accepted by
the customer, respectively

αsk Power change time for the vehicle k in the station changeovers

βaik Power change time for the vehicle k in the station changeovers

βbik Actual arrival time of the car k

pajk Remaining power for the car k to reach point j

Decision
variables

xijk Whether the car K goes from point i to point J

yik Whether car K serves customer i

S Candidate stations for the replacement station

Sα Virtual meeting point for the substation visited

Sv Virtual meeting point for unvisited changeovers

K Electric vehicles

D Load capacity for electric vehicles

θ Cost of electricity per mileage

h Fixed costs for each electric vehicle purchased

γ Total number of dispatches of electric vehicles

w1 Opportunity cost per unit time for early arrivals

w2 Penalties for late arrival per unit of time

γskn Power of the electric vehicle after the power exchange station

λ Swap station profit factor

[ai , bi] Expect service time windows

ai , bi Earliest and latest time to reach the demand point, respectively

rik Time when the car k arrives at point i

Q Battery capacity

e Amount of power consumed per unit of journey

pajk Remaining power for the car k leaving point j

Bs Whether to build a substation at point S
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