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The residential area refers to the power supply area from distribution
transformers to the end users that contains multiple types of flexible
resources, such as photovoltaics, energy storage, and power users. Focusing
on the challenge of insufficient demand response incentives to multiple types of
users in residential distribution areas, a tiered incentive price-based demand-side
aggregated response method is proposed in this paper. Users in residential
distribution areas are classified with an improved k-means clustering method
for obtaining typical types of users. Thereafter, initial scores of users are
calculated, and their grades are assigned based on their scores.
Corresponding tiered incentive prices are designed for different grades. On
this basis, a leader–follower game is proposed to obtain the demand
response base price, and tiered incentives are provided to users of different
grades to increase their enthusiasm for participating in demand response. In the
case study, an actual urban residential distribution area is studied. The results
show that the proposed user clustering method has an accuracy of 99.8% in
classifying users in a residential distribution area. In addition, the proposed
method has better performance in terms of improving the benefit of the load
aggregator and users in the residential distribution area compared with methods
such as potential game, hidden Markov, and Monte Carlo. Specifically, from the
results, the benefit of load aggregators is increased by 101.96%, 76.07%, and
112.37%, and the income of the users is increased by 54.51%, 36.94%, and 64.91%.
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1 Introduction

Through guiding and motivating power users to proactively optimize their energy
consumption behaviors and trading strategies in markets, while exploring the response
potential of demand-side flexible resources in depth, demand response (DR) can help
mitigate the gap between load peak and load valley, smooth the load curve, support power
grid operation and regulation, and maintain the dynamic balance of supply and demand.
DR has become an important promotion to the revitalization of massive demand-side
flexible resources and development of emerging power systems (Chen et al., 2022). With the
widespread connection of distributed resources in residential distribution areas (RDAs) and
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continuous improvement of power distribution automation levels,
DR programs gradually extend from commercial buildings and
industrial parks to cover controllable energy resources, such as
rooftop photovoltaics and energy storage systems (Urban et al.,
2019; Pan et al., 2020). However, because resources of users in RDAs
are usually widely dispersed, the response potential of a single user is
limited, the current market entry threshold is relatively high, direct
control is not fully realized, and a large number of DR resources have
not been fully exploited. Therefore, using the idea of aggregation to
integrate resources in RDAs and fully exploiting the scale effect to
promote DR has become the key to promote source–load interaction
(Klaucke et al., 2020; Preeti et al., 2022; Tan and Zeng, 2022).

The RDA users mainly include power users, rooftop
photovoltaic users, and users with energy storage. The number of
these users is large. However, their individual capacities are small,
and they hardly participate in the DR independently. The RDA load
aggregator participates on behalf of users in the DR programs.
Through guiding contracted users to proactively change their energy
consumption behaviors (Wang BB. et al., 2022; Fan et al., 2022), the
RDA load aggregator achieves flexible regulation of resources in the
RDA, such as rooftop photovoltaics, energy storage systems, and
controllable loads (Hassanniakheibari et al., 2020; Zhang et al.,
2021), while maximizing the benefit. However, due to limited
participation willingness of RDA users caused by lack of
incentives (Duan et al., 2021), the effectiveness of DR programs
is not as expected. Therefore, effective incentive mechanisms for
multiple types of RDA users are urgently needed.

In recent years, incentive-based DR programs have been
extensively studied. Guo et al. (2020) elaborates on the
construction of an incentive-based DR model between a single
load aggregator and multiple RDA users. RDA users receive
incentives through the load aggregator’s DR compensation.
However, in Guo et al. (2020), RDA users are regarded as static
price takers and their dynamic price bidding features cannot
be reflected.

Qi et al. (2022); Striani et al. (2021) considered the dynamic
response characteristics of RDA users and designed a method for
load aggregators to guide RDA users to participate in the DR. It
solves the problem of the dynamic bidding adaptability of RDA
users through dynamic parameters, but this method lacks the
analysis of users’ willingness of participating in the DR. Wei
et al. (2021); Xu et al. (2021); Sun et al. (2022) analyzed the
correlation between user response willingness and RDA
response potential. Then, a comprehensive DR optimization
incentive strategy is designed, using a multi-period subsidy
strategy to increase user enthusiasm for participating in the
DR. However, this method focuses on the exploration of a single
DR incentive measure, and the willingness of different types of
RDA users to participate in DR varies significantly. Therefore,
exploring the DR incentive mechanism for multiple types of
users is of significance for promoting the DR participation
of the RDA.

Designing reasonable incentives is the key to fully exploring the
system’s flexibility, maintaining the dynamic balance of supply and
demand, and effectively motivating users to participate in DR. To
this end, from the perspective of the RDA load aggregator, users in
an RDA are classified and graded to different levels. On this basis, a
tiered incentive price-based demand-side aggregated response

method is proposed. In addition, the impacts of different
incentives on multiple types of users are revealed.

The contributions of this paper are threefold:

(1) An RDA user classification method based on an improved
k-means clustering algorithm that improves the accuracy of
RDA user classification by dynamically adjusting the number
of clusters to adapt data volume is proposed.

(2) An RDA demand response pricing model based on a
leader–follower game between load aggregators and multi-
type RDA users is proposed, through which the optimal
benefit for all participants can be achieved.

(3) Incentive mechanisms for multiple types of RDA users are
designed to increase their enthusiasm in participating in DR.

2 The structure of the RDA
demand response

2.1 Physical structure

The structure of the RDA low-voltage distribution network takes
edge computing as the core, forming a source–grid–load–storage
collaborative and interactive system. By relying on intelligent
integrated terminals, plug and play, situational awareness,
intelligent interaction, and collaborative control (Sheng et al.,
2021; Avordeh et al., 2022; Gharibshah and Zhu, 2022) of
resources in an RDA, such as rooftop photovoltaics, electric
vehicle charging piles, and household energy storage systems, can
be realized. The structure is shown in Figure 1.

The intelligent integrated terminal is an edge computing
terminal developed by the State Grid Company of China in
2019 and an open platform that integrates data aggregation, edge
computing, and intelligent applications. It now serves as the main
carrier for the RDA to participate in DR (Yang et al., 2022). Data
aggregation is realized through applying AC sampling, high-speed
power line carriers, micro-power wireless, and other advanced
methods. Data are collected from various sources, such as loads
and energy storage systems, in an RDA. In addition, edge computing
and applications are deployed with the software development

FIGURE 1
Structure of the RDA low-voltage distribution network.
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platform, realizing multiple types of users in the RDA being able to
participate in DR.

The new generation of smart meters is an energy router
developed by the State Grid Company in 2020 that integrates
data collection, communication, and control functions
(Rashidizadeh-kermani et al., 2020). The smart meter can accept
DR control tasks sent by intelligent integrated terminals and issue
energy control instructions to various resources, loads, and energy
storage systems in an RDA.

Smart sockets, as a household appliance energy control device,
can collect energy consumption data of household appliances, such
as air conditioners, rice cookers, and washing machines, and
perform intelligent control to those household appliances, such
as tripping and power consumption adjustment, based on DR
instructions issued by the smart meter (Zheng et al., 2022).

2.2 Theoretical analysis framework

2.2.1 Mechanism of the tiered RDA
demand response

The tiered RDA DR is a user-level incentive program. After the
RDA load aggregator receives the DR request from the main grid, it
adjusts the power according to the capacity of the users’ interruptible
and adjustable loads, the generation of rooftop photovoltaics, and
the stored energy of the energy storage system. The compensation
price is adjusted according to the grades of the users for increasing
their enthusiasm in DR participation.

2.2.2 The framework of the RDA demand response
The framework of the tiered incentive price-based demand-side

aggregated response method in the RDA is shown in Figure 2.

(1) User classification and grading

First, clustering analysis is conducted based on the
characteristics of RDA users and classifies user grades based on
their initial credits.

(2) Measuring RDA adjustable power

The characteristics of the RDA adjustable loads are analyzed,
and the adjustable power from resources, including rooftop
photovoltaics, home energy storage systems, interruptible loads,
and adjustable loads, is calculated. On this basis, the overload
status of the distribution transformer is monitored. When
overload happens, the RDA emergency program is activated and
the load is regulated to reduce the power through the transformer.

(3) RDA user demand response model

The RDA aggregator conducts load aggregation and user benefit
analysis based on the DR instructions sent by the main grid and
determines the baseline DR strategy. Then, the RDA aggregator
determines if the RDA participates in the DR. If yes, the RDA
aggregator formulates a tiered DR strategy based on the number and
grades of users that participate in the DR in the RDA and organizes
users to follow instructions according to grades. After demand
response, compensations to users are settled and the grades of
users participating in DR are adjusted for increasing their
enthusiasm for future participation.

3 Tiered RDA demand response model

3.1 RDA user classification and grading

3.1.1 RDA user classification
The RDA demand response program is designed to motivate

RDA users to actively participate in DR, alleviate distribution line
congestion, and guarantee RDA peak load supply. Different
household users have different response willingness. For example,
high-income household users may show lower DR willingness.
Based on the characteristics shown by the daily load profiles of
RDA users, Liu et al. (2020); Liu H. et al. (2022) classified them into
afternoon and evening peak load, evening single peak, afternoon
peak load, and evening sub-peak load and identified the degree of
willingness of RDA users. In this section, RDA users are classified to
explore the degrees of their willingness in participating in DR.

Since 2016, the State Grid Company has been carrying out the
construction of the “Friendly Interaction between Supply and
Demand” project. By upgrading the low-voltage power line high-
speed carrier (HPLC) module, the energy consumption data of RDA
users on a time scale of 15 min can be collected. This lays the
foundation of data for RDA users interacting with the main grid
(Wan and Song, 2021).

In order to improve the accuracy of RDA user classification,
clustering features are selected following the typical
recommendation from the Electric Power Industry Association,
as shown in Table 1.

The k-means clustering method is an unsupervised iterative
clustering method. This method can divide the data into k clusters.
First, k users are randomly selected as initial cluster centers. Then,

FIGURE 2
RDA demand response framework.
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each remaining user is assigned to a cluster based on the distances to
the cluster centers, and thereafter the cluster centers are updated.
This process is repeated until convergence (Zhao et al., 2020). The
k-means clustering method has a high efficiency and a relatively high
accuracy, which makes it widely used. However, the k, namely the
number of clusters, needs to be determined in advance, which is
difficult. To this end, in this section, the traditional K-means
clustering algorithm is improved so that it can dynamically
adjust the number of clusters, being adaptable to the number of
users in clusters. In other words, when the number of users in a
cluster is less than a certain threshold, the cluster will be merged into
others. When the number of users in a certain cluster is too large, the
cluster will be split into two.

The steps of the improved k-means clustering algorithms are
as follows:

Step 1. Randomly select k RDA users as the initial
clustering centers.

Step 2. Calculate the Euclidean distance Dj(k) of each RDA user to
the cluster center, as in Eq. 1, where Xj represents the values of
clustering features, and assign each RDA user to the nearest cluster.

dj k( ) � min Xj − Zj k( )���� ����{ }. (1)

Step 3. Based on the number of clusters after Step 2, if in any
cluster, the number of users is less than the threshold Δy, the cluster
is removed, and all users in it are assigned to the other clusters
according to their Euclidean distances.

Step 4. With the RDA users’ feature values, update the cluster
centers Zj(k) as in Eq. 2. In Eq. 2, Fj is the number of users in the jth
cluster, and cRDA represents the feature values.

Zj k( ) � 1
Fj

∑k
j�1
cRDAj xj. (2)

Step 5. Determine whether a cluster needs to be split with Eq. 3,
where △a represents the cluster splitting threshold. If Eq. 3 is
satisfied, perform cluster splitting. In Eq. 3, △a is the
splitting threshold.

k<Δa. (3)

Step 6. Determine whether clusters need to be merged with Eq. 4,
where △b represents the cluster merging threshold. If Eq. 4 is
satisfied, perform cluster merging. In Eq. 4, △b is the
merging threshold.

k>Δb. (4)

Step 7. Calculate the squared error to check whether the
convergence condition is met. The squared error of the jth
cluster can be calculated as in Eq. 5.

σ �
������������������
1
Fj

∑k
j�1

cRDA
j − Zj k( )( )2√√

. (5)

When the square error is less than the preset threshold over
iterations, the algorithm is terminated, and RDA user classification
is obtained.

3.1.2 Initial scoring and grading of RDA users
In this paper, different DR incentive prices are adopted for users

with different scores. As an example, Wang L. et al. (2022) scores
positive points for users consuming electricity at load valley periods
and negative points at load peak periods. We adopt a 100-point
system for scoring users. The incentive area is 60–100 points, within
which the RDA load aggregator is rewarded on the basis of the
benchmark DR price, and the penalty area is 0–59 points, within
which the RDA load aggregator is punished on the basis of the
benchmark DR price.

TABLE 1 Clustering features of RDA users.

Feature Comment

User load profile Load profile (96 data points)

User imported power curve Imported power (96 data points of a day)

User power generation curve Power generation from rooftop photovoltaics (96 data points of a day)

User energy accommodation curve Energy accommodation (96 data points of a day)

User exported power curve Exported power from rooftop photovoltaics (96 data points of a day)

User energy storage charging power curve Energy storage charging power (96 data points of a day)

User energy storage exported power curve Energy storage exported power (96 data points of a day)

User energy storage discharging power curve Energy storage discharging power (96 data points of a day)

User daily electricity consumption curve Daily electricity consumption

User daily purchased electricity curve Daily purchased electricity

User daily exported electricity curve Daily exported electricity from rooftop photovoltaics and energy storage
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With the user’s initial score according to the features of RDA
users and typical weights from the industry association as shown in
Table 1, a user’s standard score can be calculated as in Eq. 6.

dSTD �
∑nRDA
i�1

dFEA
i × wi( )
nRDA

. (6)

In Eq. 6, nRDA is the number of RDA users; dFEA i represents the
feature values of RDA users; and wj represents the weights
corresponding to the features.

The initial score of a user can be calculated as in Eq. 7, where dR i
is the industry typical value of the features of different types of RDA
users and 60 is the passing score in the 100-point system.

dINIT �
∑nRDA
i�1

dR
i × wi( )

dSTD
× 60. (7)

The RDA aggregator designs the grades, corresponding score
ranges, and floating price scales referring to the standards from the
Electric Power Industry Association. Clustering results based on
features in Table 1 determine the types of users, and each type has
the categories as shown in Table 2.

As given in Table 2, users with different scores will be assigned to
different grades and have different floating prices which are
designed for providing diverse incentives.

3.2 Adjustable capacity estimation of RDA
controllable resources

3.2.1 Adjustable capacity estimation of RDA loads
RDA controllable resources include, but are not limited to,

residential loads, rooftop photovoltaics, and energy storage
systems. Residential loads can be divided into two categories:
non-controllable and controllable. The former includes lighting
loads and televisions which will not participate in DR.
Controllable loads can be further divided as interruptible and
adjustable. Interruptible loads can be interrupted during
operation, and adjustable loads can adjust the power

consumption in a certain range. Typical controllable loads are
shown in Table 3.

The interruptible power of RDA users, PINT(t), can be calculated
as in Eq. 8.

PINT t( ) � ∑mINT

i�1
pUINT
i t( ). (8)

In Eq. 8, mINT is the number of interruptible loads participating
in DR in the RDA and pUNIT i(t) is the interruptible power of
different PRD interruptible loads in time interval t. The range of the
interruptible power from RDA users is 0 to PINT(t).

The adjustable power of RDA users, PREG(t), can be calculated as
in Eq. 9.

PREG t( ) � ∑mREG

i�1
pUREG
i t( ) × λi × tREGi( ). (9)

In Eq. 9, mREG is the number of adjustable loads that participate
in DR; pUREG i(t) is the rated power of adjustable loads of RDA
users; λi represents the power reduction ratios of adjustable loads of
different RDA users; and tREG i represents the adjustable load
power ratios of different RDA users. During time interval t, the
adjustable power range of RDA users is 0 to PREG(t).

3.2.2 Estimating the power adjustable range of the
distribution transformer

When the total RDA load is greater than the rated capacity of the
distribution transformer, distribution transformer overload
happens. A traditional dry-type transformer can only operate for
60 min, being overloaded by 20% (Liu ZH. et al., 2022). In severe
cases, the distribution transformer will be burned out, resulting in a
power outage. Therefore, load regulation should be conducted at the
first time, when the distribution transformer is overloaded. In this
paper, the overload time of the transformer is set to 1% of the typical
value, namely, 0.6 min, to prevent from burning out.

When the distribution transformer is overloaded, the RDA load
aggregator implements the RDA emergency load control strategy to
reduce the RDA load within the normal operating range of the
distribution transformer. This leads to no compensation to RDA

TABLE 2 Tiered demand response incentives to RDA users.

Grade Score range Floating price scale

A1 90 to 100 Increase △a1 from the base price

A2 80 to 89 Increase △a2 from the base price

A3 70 to 79 Increase △a3 from the base price

A4 61 to 69 Increase △a4 from the base price

A5 60 The base price

A6 50 to 59 Decrease △a6 from the base price

A7 40 to 49 Decrease △a7 from the base price

A8 30 to 39 Decrease △a8 from the base price

A9 20 to 29 Decrease △a9 from the base price

A10 0 to 19 Decrease △a10 from the base price

TABLE 3 Typical controllable loads of RDA users.

Type Device

Interruptible load Dehumidifier

Dishwasher

Sweeping robot

Disinfection cabinet

Adjustable load Air conditioner

Electric vehicle charging pile

Refrigerator

Rice cooker

Washing machine

Dryer
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users. During the overload period of the distribution transformer,
the reduced load POL(t) can be represented as in Eq. 10.

POL t( ) � PINT t( ) + PREG t( ) + PPV t( ) + PES t( ). (10)

In Eq. 10, PPV(t) is the power generation that can be provided by
the rooftop photovoltaics and PES(t) is the power from energy
storage discharging.

3.3 RDA user demand response model

3.3.1 RDA load aggregator revenue model
The essence of RDA demand response is that after the RDA load

aggregator receives the instructions from the main grid, it estimates
the capacity of available DR and determines whether participating in
DR can be profitable. If yes, it will organize users in the RDA to
participate in DR. The compensation prices will be adjusted
according to the user grades to increase the enthusiasm of RDA
users to participate in DR.

In this paper, the load aggregators are of two levels: the
transformer distribution area level and regional level. The
transformer distribution area level load aggregators are
responsible for integrating RDA resources within the scope of a
single distribution transformer, and the regional load aggregators
are responsible for further integrating the load aggregators of
transformer distribution areas. Controllable loads are aggregated
by aggregators to participate in DR, and RDA users of different types
are incentivized as in Table 2. RDA users’ photovoltaic and energy
storage systems can sell electricity to load aggregators for profit.

The comprehensive income function of a regional level load
aggregator, fAREA, can be formulated as in Eq. 11, where mRDA is the
number of residential distribution areas of distribution area level
load aggregator and fRDA i represents the incomes of transformer
distribution area level load aggregators.

fAREA � max ∑mRDA

i�1
fRDA
i

⎧⎨⎩ ⎫⎬⎭. (11)

The income function of a distribution area level load aggregator
can be formulated as in Eq. 12.

fE � max fGET − fBUYU − fBUYPE{ }, (12)

fBUYU � ∑mINT+mREG

i�1
pUSER
i t( ) × vUSERi , (13)

fBUYPE � ∑mPE

i�1
pPE
i t( ) × vPEi . (14)

In Eq. 12 to Eq. 14, fGET is the profit of the load aggregator
obtained from the main grid operator for participating in DR; fBUYU

is the compensation to users in the RDA for participating in the DR;
fBUYPE is the compensation from the load aggregator to the RDA
users for using the rooftop photovoltaics and energy storage in
participating in DR; pUSER i(t) is the power of different RDA users
during the DR period; vUSER represent the prices for different RDA
users to participate in DR; mPE is the number of rooftop
photovoltaics and energy storage systems in the RDA; pPE i(t)
represents the power from the rooftop photovoltaics and the energy

storage system in the DR period; and vPE i represents the price for
the rooftop photovoltaic and the energy storage system for exporting
power to the main grid.

The constraint of the adjustable load can be formulated as in Eq.
15, where pRPL i(t) is the rated power of the RDA transformer.

pRPL
i t( )≥pUSER

i t( ) − pPE
i t( ). (15)

3.3.2 RDA demand response pricing
RDA DR pricing is to set the benchmark price for RDA users in

DR. When the RDA load aggregator benefits from participating in
DR, it obtains the price from the equilibrium of the game
considering the DR price from the main grid, energy export
prices to rooftop photovoltaic generation, and energy export
prices to energy storage discharging. The equilibrium will be
used to derive the DR base price.

The leader–follower game is a static game model with complete
information. The leader takes the lead in making decisions, and the
followers make decisions based on the leader’s decisions. The above
process is repeated until a Nash equilibrium is reached (Huang et al.,
2023) to maximize the benefits of participants. The leader–follower
game is a classic game model with the advantages of high efficiency,
flexibility, and reliability and has been widely used in the field of
power systems. Based on the user classification results, this section
uses the leader–follower game to implement the demand response
pricing game between the RDA load aggregator and RDA users of
different types. In the game, the RDA load aggregator is considered
the leader, and different types of RDA users who participate in DR
through load adjustment, rooftop photovoltaic power generation,
and energy storage system discharging are considered followers.
After several iterations, the game is terminated when reaching the
Nash equilibrium, achieving optimal benefits for the leader and
the followers.

The objective of the RDA demand response pricing game, zSG,
can be formulated as in Eq. 16.

zSG �
lRA ∪ lUSER ∪ lPV ∪ lES{ },

rRA vINIT, vRAP( ){ },
rUSER pUSER

i t( )( ){ } rPV pPV
i t( )( ){ } rES pES

i t( )( ){ }
QRA{ }, QUSER{ }, QPV{ }, QES{ }

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭, (16)

lUSER � lUSER1 , lUSER2 , . . . , lUSERm{ }
lPV � lPV1 , lPV2 , . . . , lPVm{ }
lES � lES1 , lES2 , . . . , lESm{ }⎧⎪⎨⎪⎩ . (17)

In Eq. 16 to Eq. 17, lRA, lUSER, lPV, and lES represent the RDA load
aggregator, RDA users participating in DR load reduction, rooftop
photovoltaic power generation, and energy storage discharging,
respectively. Different types of RDA users have different
capacities on load reduction, rooftop photovoltaic power
generation, and energy storage discharging. {lUSER 1, lUSER 2,
. . ., lUSER m} represent the m categories of RDA users who
participate in DR load reduction; {lPV 1, lPV 2, . . ., lPV m}
represent the m categories of RDA users who participate in
rooftop photovoltaic power generation; and {lES 1, lES 2, . . ., lES
m} represent the m categories of RDA users participating in energy
storage discharging. rRA, rUSER, rPV, and rES are the price bidding
strategies of the above four game participants, respectively. vINIT and
vRAP are the DR basic price and reward/penalty incentive price for
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the RDA load aggregator, respectively. In addition, pUSER i(t)
represents the power consumption of RDA users participating in
DR load reduction; pPV i(t) is the power consumption of RDA users
participating in rooftop photovoltaic power generation; pEV i(t) is
the power consumption of RDA users participating in energy
storage discharging. QRA, QUSER, QPV, and QES are the utility
functions of the RDA load aggregator, RDA users participating
in DR load reduction, RDA users participating in rooftop
photovoltaic power generation, and RDA users participating in
energy storage discharging, respectively.

In the leader–follower game, the RDA load aggregator, RDA
user rooftop photovoltaics, and RDA user energy storage systems
take maximizing the utility as the objective. RDA users participate in
the game, taking minimizing the utility as the objective. The iterative
process is repeated until the Nash equilibrium is reached and game
participants stop updating their strategies. The basic price vBASIC

from the Nash equilibrium can be written as in Eq. 18.

vBASIC � argmaxQRA vINIT, vRAP, pLUSER
i t( ),

pLPV
i t( ), pLES

i t( )( ). (18)

In Eq. 18, pLUSER i(t) is the power consumption of RDA users
in the Nash equilibrium solution; pLPV i(t) is the rooftop
photovoltaic power generation in the Nash equilibrium solution;
and pLES i(t) is the energy storage discharging power in the Nash
equilibrium solution.

The power consumption of RDA users in the Nash equilibrium
solution should satisfy Eq. 19.

pLUSER
i t( ) � argminQUSER vINIT, vRAP, pUSER

i t( )( ). (19)

The rooftop photovoltaic power generation pLPV should satisfy
Eq. 20.

pLPV
i t( ) � argmaxQPV vINIT, vRAP, pPV

i t( )( ). (20)

The energy storage discharging power pLES i should satisfy
Eq. 21.

pLES
i t( ) � argmaxQES vINIT, vRAP, pES

i t( )( ). (21)

With the Nash equilibrium, the RDA load aggregator, RDA
users, RDA rooftop photovoltaics, and RDA energy storage systems
cannot gain more profit by unilaterally changing their strategy. The
solving process of the game can be referred to Huang et al. (2020),
and due to the space limitation, it is not repeated in this paper.

3.3.3 Constraints
(1) Power constraint

pDR
i t( ) � pUSER

i t( ) + pPV
i t( ) + pEV

i t( )
pDR
i t( )≤pRPL

i t( ){ . (22)

In Eq. 22, pDR i(t) is the integrated power from the RDA load
aggregator.

The power from rooftop photovoltaics and energy storage
discharging should satisfy Eq. 23.

pPV
i t( ) + pEV

i t( )≤pRPL
i t( ). (23)

(2) Price constraint

The highest compensation price paid by the RDA load
aggregator to RDA users, vMAX, should satisfy Eq. 24.

vMAX ≤ vGRID. (24)

In Eq. 24, vGRID is the price sent by themain grid to the RDA load
aggregator.

3.3.4 DR process and scoring
In order to avoid the fact that an RDA user’s willingness to

participate in DR decreases after it already has a high score, the RDA
demand response model proposed in this paper deducts scores after
users enjoyed the DR incentives for realizing sustainable incentives
to RDA users. The score adjustment rules, as shown in Table 4, are
based on the typical settings of the power industry.

In the settlement, the RDA load aggregator updates the scores of
RDA users according to Table 4 and adjusts the corresponding tiers.
The adjusted scores,Ve, for RDA users can be calculated as in Eq. 25.

ve � vb + wa ×Δs1( ) − wb ×Δs2( )
− wc ×Δs3( ) − wd ×Δs4( ) − we ×Δs5( ) . (25)

In Eq. 25, Vb represents the initial scores of RDA users; wa is the
provided demand response; wb is the load growth default during DR
time;wc is the score deduction after having increased prices;wd is the
number of abnormal disconnections of rooftop photovoltaics and
energy storage systems; we represents the power quality deviation of
rooftop photovoltaic power generation and energy storage
discharging. In addition, △s1, △s2, △s3, △s4, and △s5 are the
score adjustments, as shown in Table 4.

4 Case study

With the real data from a residential distribution area in a city of
China in June 2022, the proposed tiered incentive price-based
demand-side aggregated response method is verified in this
section. One residential distribution area corresponds to one
distribution transformer. There are 18 distribution transformers
in this residential area with a total capacity of 22.5 MVA. There are
6,120 residential users, including 516 users for rooftop
photovoltaics, with a total capacity of 3.2 MW, and 672 users for
energy storage systems. The total discharging power can reach
2.2 MW, and the total energy storage capacity is 3.6 MWh. The
average solar irradiance is considered 4800 MJ/m-2. Tiered demand
response incentives to RDA users and RDA user score adjustment
rules are shown in Tables 5, 6. The cluster splitting threshold Δa and
the merging threshold Δb are both set as 2. The proposed model is
compared with mainstream methods such as potential game (Hong
et al., 2020), hiddenMarkov (Kadadha and Otrok, 2021), andMonte
Carlo (Zhang et al., 2020). The numerical simulation in this paper is
implemented on a server with Intel Xeon Silver 4214R CPU and
Windows Server 2019.

4.1 RDA user classification result

This section classifies users based on the features shown in
Table 1. The typical daily load profiles of users and the daily
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electricity consumption curves are shown in Figure 3. The
classification results are shown in Table 5.

As shown in Figure 3; Table 7, RDA users can be classified into
seven categories.

(1) Stay-at-home type

As shown in Figure 3A, these users have peak power
consumption from 7:30 to 9:00, 11:00 to 12:30, and 19:00 to
21:30. The power consumption in other periods is low. As shown
in Figure 3B , the daily electricity consumption of this type of
users fluctuates slightly. As they always stay at home, they are

more sensitive to DR incentives and are willing to participate
in DR.

(2) Commuter type

As shown in Figure 3A, these users have peak power
consumption between 19:00 and 22:30, and the power
consumption in other periods is low. As shown in Figure A1B,
the user consumes less electricity on weekdays than on weekends.
These users are relatively sensitive to DR incentives and are willing
to participate in DR.

(3) Work-from-home type

As shown in Figure 3A, these users have peak power
consumption during 9:00–12:00, 14:00–18:00, and 20:30–23:00,
and their daily electricity consumption fluctuates slightly. They
are highly sensitive to DR incentives and are willing to
participate in DR.

(4) Idle on weekends type

For this type of users, the statistical period is weekdays. As
shown in Figure 3A, the peak electricity consumption hours are 7:
00–8:00 and 18:00–22:00. As shown in Figure A1B, the electricity
consumption of this type of users on weekdays is several times of
that on weekends. The economic conditions of these users are good,
and the DR participation willingness is not high.

(5) Idle on weekdays type

For this type of users, the statistical period is weekends. As
shown in Figure 3A, the users go out to work, and the power load is
small. As shown in Figure 3B, this type of user consumes less
electricity on weekdays and consumes several times more on
weekends. They usually have good economic conditions and low
DR participation willingness.

(6) Migratory bird type

Migratory bird type means user absence during the part of the
studied period. As shown in Figure 3A, during the study period, the
power load of this type of users is small. As shown in Figure 3B, the
electricity consumption of this type of users from the 18th to 31st is
several times of that from the 1st to 17th. Usually, their economic

TABLE 4 RDA user score adjustment rules.

Term Score adjustment

DR power per △c1 × △c2 (time duration) +△s1

Load growth default during DR time (per △c3 kW× time duration) −△s2

Score deduction after having increased prices (per △c4kWh) −△s3

Rooftop photovoltaics and energy storage abnormal disconnection (△c5 times) −△s4

Power quality deviation exceeds the threshold △c6 −△s5

TABLE 5 Tiered demand response incentives to RDA users in the studied
case.

Grade Score range Floating price scale

A1 90 to 100 Increase 20% from the base price

A2 80 to 89 Increase 10% from the base price

A3 70 to 79 Increase 5% from the base price

A4 61 to 69 Increase 3% from the base price

A5 60 The base price

A6 50 to 59 Decrease 3% from the base price

A7 40 to 49 Decrease 5% from the base price

A8 30 to 39 Decrease 10% from the base price

A9 20 to 29 Decrease 15% from the base price

A10 0 to 19 Decrease 20% from the base price

TABLE 6 RDA user score adjustment rules of the studied case.

Term Score
adjustment

DR power per 1 kW × 15 min +0.05

Load growth default during DR time (per 1 kw × 15 min) −0.1

Score deduction after having increased prices (per
10 kWh)

−0.2

Rooftop photovoltaics and energy storage abnormal
disconnection (every time)

−5

Power quality deviation exceeds 5% threshold (every time) −1
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conditions are good and their willingness to participate in DR is
not high.

(7) Vacant type

As shown in Figures 3A, B, these users have no data. Therefore,
they are not considered.

4.2 Classification accuracy of RDA users

In order to ensure the fairness of user classification, experts are
invited to classify users based on the typical classification
specifications of the Community Housing Industry Association.
The results are used as the benchmark to evaluate the

classification accuracy. In addition, the proposed method is
compared with the fuzzy c-means (FCM) method. Classification
accuracy is defined as the degree of overlap with the benchmark
result. A total of 500, 1,000, 2000, 3,000, 4,000, and 5,000 users are
respectively used to verify the accuracy of the improved k-means
clustering method proposed in this paper. The comparison of the
results is shown in Figure 4.

As can be seen from Figure 4, the accuracy of the improved
k-means clustering method is 99.8%, while the accuracy of the FCM
clustering method is 98.4%. This is because FCM determines the
category that an RDA user belongs to through the membership
function. When users of different types are unbalanced, i.e., the
number of users in a certain cluster is much greater than the number
of users in other clusters, the probability of new users being
misclassified into a larger cluster will increase, resulting in
larger errors.

4.3 RDA user grading results

Except for the 42 vacant users, the remaining 6,078 users are
graded. The grading results are shown in Table 8.

In order to make the user scoring system operate effectively,
the RDA load aggregator would balance the floating price scales
to DR users and will use the fine from users in A6–A10 grades to
reward users in A1–A4 grades. From Table 8, there are
3,029 users in A1–A4 grades whose DR benchmark price has

FIGURE 3
(A, B) Typical load profiles and daily electricity consumption
curves of RDA users.

TABLE 7 RDA user classification result.

Type Comment The number of users DR sensitivity

b1 Stay-at-home 596 Relatively high

b2 Commuter 2,275 Relatively high

b3 Work from home 862 high

b4 Idle on weekends 1,558 low

b5 Idle on weekdays 413 Relatively low

b6 Migratory bird 374 Very low

b7 Vacant 42 NA

FIGURE 4
Accuracy of the classification result.
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been increased and 3,032 users in A6–A10 grades whose DR
benchmark price has been decreased. The number of users
whose DR benchmark price has been increased is close to
that of users whose DR benchmark price has been decreased,
ensuring that the scoring system operates effectively. In
addition, there are 17 users of A5 grade, whose DR
benchmark price remains unchanged.

4.4 RDA demand response game-
based pricing

The real-time DR price to the RDA load aggregator is 12 yuan/
kWh, and the DR benchmark price is set as 9 yuan/kWh (Tu et al.,
2020). On the basis of RDA classification, namely b1–b7 types, RDA
users participate in DR load reduction, load reduction, rooftop
photovoltaic generation, and energy storage discharging. The
RDA aggregator updates the DR compensation price until the
Nash equilibrium is reached. The process of the pricing game is
shown in Figure 5.

As shown in Figure 5, the RDA load aggregator’s initial DR
price bidding is 9.5 yuan, and users in categories b1–b7 follow the
load aggregator’s bidding for load reduction, rooftop
photovoltaic generation, and energy storage discharging. The
price range is between 10.9 yuan and 11.2 yuan. The load
aggregator increases the price based on the price bids of
b1–b7 users. This process repeats until the Nash equilibrium
is reached after 80 iterations. The price corresponding to the
equilibrium is 10.42 yuan/kWh.

With the Nash equilibrium, the final prices to RDA users in
categories b1–b7 are adjusted based on the floating price scales
according to their grades. Based on the DR base price
of 10.42 yuan, the DR prices of different users are shown
in Table 9.

4.5 Analysis of the RDA load profile

For simplicity, only the load profile of a transformer distribution
area load aggregator is analyzed in this section. Comparisons are
carried out with data of 21 June 2021. The method proposed in this
paper is compared with the potential game method, the hidden
Markov method, and the Monte Carlo method. The RDA load
profiles are shown in Figure 6.

As shown in Figure 6, the transformer is overloaded during
9:30 to 10:00. The RDA load aggregator implements the
emergency load control strategy to reduce the RDA load
within the normal operating range of the distribution
transformer. The RDA load aggregator participates in DR
from 18:00 to 20:30. As shown in Figure 6, the load with the
Monte Carlo method is higher, indicating that the DR effect is
the worst. By comparison, the load with the proposed method is
the lowest, which shows that it provides the best incentive to
users in participating in DR.

4.6 Comparative analysis of RDA load
aggregator incomes

The income of the RDA load aggregator in this demonstration
residential area on 21 June 2021 is studied and compared with the
results for the other three methods. The DR price to the RDA load
aggregator from the main power is 12 yuan/kWh. The DR price
from the load aggregator to users is 10.42 yuan/kWh. The
aggregator’s income is equal to the price difference. The
comparison results are shown in Table 10.

As shown by the RDA load profile in Figure 6; Table 10, the
load analyzed by the Monte Carlo method is obviously higher and
the amount of electricity in DR is the least, 7,857 kWh. The load
aggregator’s income is 9,700 yuan, which is the lowest among the
four methods. The load profiles from the potential game and the
hidden Markov method are higher than that from the Monte
Carlo method. The amounts of electricity in DR are 8,236 kWh
and 9,462 kWh. The RDA load aggregator’s incomes are
10,200 yuan and 11,700 yuan. The proposed method achieves
the lowest load and maximizes the amount of electricity in DR
power as 13,027 kWh. The load aggregator’s income is

TABLE 8 Grading results of RDA users.

Grade Score range The number of users

A1 90 to 100 67

A2 80 to 89 782

A3 70 to 79 1,193

A4 61 to 69 987

A5 60 17

A6 50 to 59 1,275

A7 40 to 49 681

A8 30 to 39 516

A9 20 to 29 479

A10 0 to 19 81

FIGURE 5
RDA demand response pricing game.
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20,600 yuan, which is the highest among the four methods.
Compared with the potential game, the hidden Markov, and
the Monte Carlo methods, the income is, respectively, increased
by 101.96%, 76.07%, and 112.37%.

4.7 Comparative analysis of RDA
user incomes

Similarly, the smaller the user’s load, the greater the amount of
electricity in DR; conversely, the larger the user’s load, the smaller
the amount of electricity in DR. The comparison results of the
incomes of RDA users in different grades are shown in Table 11. It
can be seen from Figure 5 and Table 11 that the load from theMonte
Carlo method is the highest, leading to the lowest income of
81,870 yuan. The loads from the potential game method and the
hidden Markov method are higher than that from the Monte Carlo
method. The RDA users’ incomes are 87,380 yuan and 98,590 yuan.
The proposed method gives the lowest load and the highest user
income, which is 135,010 yuan. Compared with the potential game,

TABLE 9 Adjusted DR prices to RDA users of different types.

Grade Credit range Category/DR price bids (yuan)

b1 b2 b3 b4 b5 b6 b7

A1 90–100 12.61 12.40 12.71 12.50 12.30 12.71 12.82

A2 80–89 11.57 11.67 11.46 11.67 11.77 11.88 11.57

A3 70–79 10.95 10.97 10.95 10.96 10.98 10.99 10.95

A4 61–69 10.74 10.74 10.75 10.73 10.76 10.77 10.78

A5 60 10.42 10.42 10.42 10.42 10.42 10.42 10.42

A6 50–59 10.12 10.12 10.13 10.14 10.13 10.15 10.12

A7 40–49 9.92 9.91 9.90 9.92 9.93 9.95 9.94

A8 30–39 9.48 9.59 9.69 9.49 9.50 9.51 9.52

A9 20–29 8.87 8.88 8.86 8.87 8.87 8.88 8.86

A10 0–19 8.54 8.65 8.39 8.42 8.37 8.34 8.49

FIGURE 6
Load profile of the regional RDA load aggregator.

TABLE 10 Income comparison results.

Method Electricity Income (103 yuan)

The proposed method 13,027 2.06

Potential game 8,236 1.02

Hidden Markov method 9,462 1.17

Monte Carlo method 7,857 0.97
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the hidden Markov, and the Monte Carlo methods, the income is,
respectively, increased by 54.51%, 36.94%, and 64.91%.

5 Conclusion

Focusing on the problem of insufficient demand response
incentives for multiple types of RDA users, a demand-side
aggregated response method based on tiered incentive price is
proposed. The proposed method is to improve the DR benefit of
both load aggregators and users in the RDA. By classifying and
grading users in the RDA, tiered incentives for users of different
grades are provided to increase their enthusiasm for participating
in DR. The case study shows a better performance of the
proposed method compared to other demand response
methods such as the potential game method, the hidden
Markov method, and the Monte Carlo method. Specifically,
the results demonstrate that the proposed user clustering
method has an accuracy of 99.8% in classifying users in a
residential distribution area. Compared with the potential
game, the hidden Markov method, and the Monte Carlo
method, from the results, the income of load aggregators is
increased by 101.96%, 76.07%, and 112.37%, respectively, and
the income of the users is increased by 54.51%, 36.94%, and
64.91%, respectively. Our future work is to improve the demand
response capability of the entire RDA.
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TABLE 11 Comparison of the incomes of RDA users.

Grade Number
of users

The proposed method Potential game Hidden Markov
method

Monte Carlo method

Electricity
(kWh)

Income
(103

yuan)

Electricity
(kWh)

Income
(103

yuan)

Electricity
(kWh)

Income
(103

yuan)

Electricity
(kWh)

Income
(103

yuan)

A1 67 151 0.189 89 0.094 92 0.096 72 0.075

A2 782 1,507 1.727 997 1.058 1,137 1.185 895 0.933

A3 1,193 2,672 2.951 1,620 1.719 1812 1.888 1727 1.800

A4 987 2017 2.165 1,295 1.374 1,352 1.409 1,308 1.363

A5 17 58 0.060 31 0.033 38 0.040 29 0.030

A6 1,275 2,972 3.004 1,698 1.802 1873 1.952 1,519 1.583

A7 681 1,236 1.224 892 0.946 1,237 1.289 779 0.812

A8 516 1,127 1.057 877 0.930 929 0.968 814 0.848

A9 479 976 0.864 632 0.671 846 0.882 672 0.700

A10 81 311 0.259 105 0.111 146 0.152 42 0.044

Total 6,078 13,027 13.501 8,236 8.738 9,462 9.859 7,857 8.187
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