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In order to better describe the uncertainty of renewable energy output, this paper
proposed a novel robust optimizationmethod for new distribution systems based
on adaptive data-driven polyhedral sets. First, an ellipsoidal uncertainty set was
established using historical data on renewable energy output, and a data-driven
convex hull polyhedral set was established by connecting high-dimensional
ellipsoidal vertices; on this basis, an adaptive data-driven polyhedral set model
was established to address the problem of high conservatism in the scaling
process of convex hull polyhedral sets. Furthermore, a novel adaptive data-driven
robust scheduling model for new distribution systems was established, and a
column-and-constraint generation (C&CG) algorithm was used to solve the
robust scheduling model. Finally, the improved IEEE-33 bus system simulation
verification shows that the robust scheduling model for new distribution systems
based on adaptive data-driven polyhedral sets can reduce conservatism and
improve the robustness of optimization results.
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1 Introduction

With the high proportion of new energy access, the operation of new distribution
systems is facing unprecedented challenges. Compared with traditional fossil fuel power
generation, new energy is characterized by volatility and randomness, which brings an
unpredictable disturbance risk to the operation of distribution systems. The traditional
distribution system operation mode is based on reliable load prediction and controllable
power generation methods, but the access of new energy has changed this mode (Su et al.,
2018; Aenovi and Jakus, 2020).

In order to deal with the uncertainty of distributed photovoltaic (PV) output, there are
mainly two uncertain optimization methods for distribution system dispatching: stochastic
optimization methods (Wang et al., 2016; Torquato et al., 2018; Leng et al., 2023) and robust
optimization methods (Sun et al., 2015; IsmaSmA et al., 2019). Robust optimization
methods usually use the set form to describe the distribution range of uncertain
parameters. Compared with stochastic methods, it does not need to obtain the
probability distribution of uncertain parameters and avoids the high-dimensional
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problem introduced by a large number of scenarios, so it has
attracted more and more attention.

However, different set forms will affect the robust optimization
results of new distribution systems, so selecting an appropriate set
can not only reduce the conservatism of the robust optimization
results but also ensure the robustness of the results. Ding andMather
(2017), Gao et al. (2017), and Abad and Ma (2021) used the box set
to describe the distribution range of uncertain parameters, and for
the box set model, the worst cases were obtained only at the border.
However, in reality, these conditions rarely occur, so the robust
optimization methods based on the box set will have the problem of
overly conservative results. Some scholars also use uncertain
parameter sets to control the envelope range of uncertain
parameters, thereby optimizing the conservatism of the results
(Yu et al., 2016). Zhang X. et al. (2022) established a
collaborative robust optimization model for reactive power
optimization and reconstruction of AC/DC hybrid distribution
networks, which improved the economic efficiency of distribution
network operation. Xu et al. (2021) proposed a distributed robust
optimization scheduling model for the interconnection and
interoperability between electric vehicle clusters and power
systems. Xu et al. (2021) and Zhang X. et al. (2022) used
polyhedral sets to describe the envelope range of uncertain
parameters, which are more conservative than interval sets.
However, polyhedral sets do not consider the correlation between
uncertain parameters, and their conservatism still needs
improvement. Florin et al. (2015) proposed a new uncertainty set
based on classification probability chance constraints to fully
consider the differences in the random distribution of various
uncertainty factors. This method can accurately describe the
robustness of dispatching schemes so as to better deal with the
effects of various uncertainties. However, for uncertain parameters
with correlation, the conservatism of the above studies needs to
be improved.

In recent years, in order to enhance the reliability of robust
optimization results and describe the correlation between uncertain
parameters, some scholars have used the historical data on uncertain
variables to try finding out the relationship between random variable
changes and propose a data-driven uncertainty set (Dent et al., 2010;
Florin et al., 2015; Abad et al., 2018; Masoume et al., 2022). Chen
et al. (2017) established a polyhedral uncertainty set based on
historical wind data to model, analyze, and optimize economic
dispatch. Tan et al. (2020) established a correlation polyhedral
set model by bending the boundary of the polyhedral set with
the method of mathematical analysis based on the polyhedral set.
Taha et al. (2021) further improved the construction of a generalized
correlation polyhedral set model on the basis of the study proposed
in Tan et al. (2020) so that the polyhedral set can better cover the
range of the occurrence of uncertain parameters. Moreira et al.
(2017) constructed an elliptic set to describe the PV output, and an
affinely adjustable robust optimal operation strategy for the active
distribution network was proposed. Although the elliptic set can
well-consider the correlation between uncertain parameters, its
nonlinear structure increases the difficulty of solving the model.
Although the correlation of uncertain sets is considered in Chen
et al. (2017), Moreira et al. (2017), Tan et al. (2020), and Taha et al.
(2021), the large envelope range of the uncertain sets they
established will increase the conservatism of decision-making.

In addition to building with polyhedral and elliptic sets, another
common approach is to build uncertain sets based on extreme
scenarios. Zhang S. et al. (2022) and Palahalli et al. (2022) first
selected the historical data on uncertain sets, then constructed
convex hull sets based on extreme scenarios filtered from
historical data, and introduced appropriate scaling factors to
cover all historical data. Finally, a robust optimization model
based on extreme scenarios is established. The method proposed
by Zeng and Zhao (2013) and Chen et al. (2018) did not presuppose
the shape of the uncertain set but represented the uncertain set as the
convex hull of historical scenarios. The above research has improved
the problem of high conservation in polyhedral sets, but the sets
constructed based on extreme scenarios may face difficulties in a
robust solution.

In view of the shortcomings of the above sets, a novel robust
optimizationmethod for new distribution systems based on adaptive
data-driven polyhedral sets is proposed in this paper. First, the
elliptic set is constructed based on the historical scenarios, then the
convex hull polyhedral set is constructed by connecting the elliptic
vertices, and finally all the historical scenarios are covered by scaling.
In order to solve the problem of high conservation in the scaled
convex hull polyhedral set, an adaptive data-driven polyhedral set
based on the idea of hyperplane is constructed. Finally, the
effectiveness of the proposed method is verified by an improved
IEEE-33 bus system.

The rest of the paper is organized as follows: Section 2
introduces the representation methods of convex hull
uncertain and hyperplane uncertain sets; Section 3 presents an
economic dispatch model for the new distribution system;
Section 4 uses the C&CG algorithm to construct a robust
scheduling model; Section 5 uses an improved 33-node system
to verify the effectiveness of the method proposed in this paper;
finally, the conclusion is presented in Section 6.

2 Data-driven uncertainty set modeling

2.1 Convex hull polyhedral set

This paper first collected data on photovoltaic reception in
different areas of a township city in Guangdong Province and
divided the collected historical data into days. The number of
days for collecting historical data was set as Nh, and the number
of photovoltaic scenes was set as Nw. The daily output data were
recorded as a historical scene, and the collected data were written in
the form of a vector as follows:
wk � (PPV,k

1,1 /PPV,k
1,T /PPV,k

Nw,T
), k � 1, 2 . . .Nh, and T represents the

time dimension, which is 24 h in this paper. PPV,k
1,t indicates the

output size of the i-th photovoltaic scene at time t in the k-th
group. In practical applications, a photovoltaic data processing
platform can be designed based on the historical data on the
local photovoltaic output, and the required information can be
obtained by inputting data. According to the scatter plot formed
by the historical data on the distributed PV output, different
envelope lines can be used to represent different sets, such as the
box set and ellipsoid set, as shown in Figure 1. For different sets, this
paper uses a budget uncertainty set U to describe the fluctuation
range of the distributed PV output.
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2.1.1 Box set
The specific expression is represented as follows:

U � zPV ∈ RNPV×1
∣∣∣∣∣βzPVdown ≤ zPV ≤ βzPVup{ }, (1)

where NPV represents the number of distributed PVs; zPV

represents the distributed PV uncertainty variable. zPVup and
zPVdown represent the upper and lower boundaries of distributed
PV uncertainty variables, respectively. β represents the
adjustment coefficient, and the conservative value used to
adjust the box set is (0, 1].

Figure 1A shows that the box set envelops all possibilities of the
distributed PV output. However, because the distributed PV often has a
certain temporal and spatial correlation at different times and at
different locations, PV output data are mostly concentrated around
the y = x and y = -x function lines. At this time, if the box set is used to
describe the uncertainty of the PV output, the optimization schememay
be too conservative because the box set not only covers all possibilities of
fluctuations but also covers the blank area with a low probability of
fluctuations. Therefore, it is necessary to adopt a more appropriate
approach to modeling uncertain sets.

2.1.2 Ellipsoid set
The specific expression is shown in Eq. (2):

U � zPV ∈ RNPV×1
∣∣∣∣ zPV − c( )TΣ−1 zPV − c( )≤ 1{ }, (2)

where c represents the center point of the high-dimensional
ellipsoid. Σ ∈ RNPV×NPV indicates a positive definite matrix that
represents the offset direction of the high-dimensional ellipsoid
relative to the coordinate axis.

Figure 1B shows that both the ellipsoid and box sets envelop all
possibilities of the distributed PV output. At the same time, unlike the
box set, the ellipsoid set reduces the blank area with a low probability of
envelope fluctuation and reduces the conservative of the decision result.
However, the expression of the ellipsoid set is quadratic, so it is more
difficult to solve in the process of robust optimization.

On this basis, Palahalli et al. (2022) proposed a generalized
convex hull set that can effectively reduce the conservatism of

optimization results and avoid the introduction of quadratic
forms in the modeling process. First, this method utilizes existing
high-dimensional ellipsoid-solving algorithms to propose a novel
data-driven uncertain set modeling method, which generates
uncertain sets in the form of linear generalized convex hulls;
compared with traditional box sets, generalized convex hull sets
can reduce the conservatism of results by reducing the envelope of
empty hull regions, while uncertain sets in linear form reduce the
complexity of computational results. Therefore, this article
constructs a data-driven uncertain set based on Palahalli et al.
(2022), and the modeling process is shown in Figure 2.

Step (1): First, a high-dimensional ellipsoid uncertainty set U e1

that covers all historical data fluctuations and has the smallest
volume is constructed. The constructed high-dimensional
ellipsoid is shown in Figures 2A and is specifically expressed
in Eq. 3:

FIGURE 1
Uncertain set.

FIGURE 2
Modeling process of the convex hull polyhedral uncertainty set.
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U e1 � zPV ∈ RNPV×1
∣∣∣∣ zPV − c( )TΣ−1 zPV − c( )≤ 1{ }. (3)

Step (2): On the basis of the original high-dimensional ellipsoid,
the positive definite matrix Σ is orthogonally decomposed,
Σ � PTJP � P−1JP. The original ellipsoid is rotated and
translated so that the center of the ellipsoid falls on the center
point of the coordinate axis, as shown in the green dotted line in
Figure 2B. At this time, the high-dimensional ellipsoid
uncertainty set is U e2, As shown in Eqs (4, 5):

U e2 � zPV′ ∈ RNPV×1
∣∣∣∣ zPV′( )TJ−1 zPV′( )≤ 1{ }, (4)

zPV′ � P × zPV − c( ), (5)
where J represents the diagonal matrix, denoted as
J � diag(λ1 . . . λNPV). P indicates the transformation matrix,
representing the offset angle of the matrix. According to the
diagonal matrix J, the coordinates of the vertex zPVc,i ′ of the
transformed high-dimensional ellipsoid are as shown in Eq. (6):

zPVc,1 ′ � 1/ 


λ1

√
, 0 . . . 0[ ], zPVc,NPV+1′ � − 1/ 



λ1
√

, 0 . . . 0[ ]
zPVc,2 ′ � 0, 1/ 



λ2
√

. . . 0[ ], zPVc,NPV+2′ � − 0, 1/ 


λ2

√
. . . 0[ ]

..

.

zPVc,NPV
′ � 0, 0 . . . 1/ 





λNPV

√[ ], zPVc,2NPV
′ � − 0, 0 . . . 1/ 





λNPV

√[ ]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
.

(6)
Furthermore, the vertices of the high-dimensional ellipsoid are

connected to form a high-dimensional polyhedron, as shown by the
red line in Figure 2B. At this time, the high-dimensional linear
polyhedral uncertainty set Up2 is as shown in Eq. (7):

Up2 � zPV′ ∈ RNPV×1

zPV′ � ∑2NPV

i�1
miz

PV
c,i ′

∑2NPV

i�1
mi � 1; 0≤mi ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (7)

where mi represents the weight coefficient of the i-th vertex.

Step (3): Since the high-dimensional linear polyhedral set used
in step 2 provides a small number of data points outside the
envelope, it is necessary to scale the original set, as shown in the
red solid line in Figure 2C. The vertices of the scaled high-
dimensional linear polyhedron are as shown in Eq. (8):

kzPVc,1 ′ � k/ 


λ1

√
, 0 . . . 0[ ], kzPVc,NPV+1′ � − k/ 



λ1
√

, 0 . . . 0[ ]
kzPVc,2 ′ � 0, k/ 



λ2
√

. . . 0[ ], kzPVc,NPV+2′ � − 0, k/ 


λ2

√
. . . 0[ ]

..

.

kzPVc,NPV
′ � 0, 0 . . . k/ 





λNPV

√[ ], kzPVc,2NPV
′ � − 0, 0 . . . k/ 





λNPV

√[ ]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
,

(8)
At this time, the scaled high-dimensional linear polyhedral

uncertainty set Up2 is represented as shown in Eq. (9):

Up2 � zPV′ ∈ RNPV×1

zPV′ � ∑2NPV

i�1
mikz

PV
c,i ′

∑2NPV

i�1
mi � 1; 0≤mi ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (9)

where k represents the scaling factor, which is used to adjust the
conservative degree of the envelope range of the high-dimensional
linear polyhedron. The calculation method of k is shown in Palahalli
et al. (2022). Therefore, there is a minimum kmin value, which makes
the scaled polyhedral set cover all possible data points, so the value
range of k is [0, kmin]. The polyhedral set formed by different k is
shown in Figure 3.

Step (4): The scaled high-dimensional linear polyhedron is rotated
and translated to make it fit the range of original data points.
According to (5), the high-dimensional linear polyhedral
uncertainty setUp1 after rotation and translation as shown inEq. (10):

Up1 � zPV ∈ RNPV×1

zPV � ∑2NPV

i�1
mi c + kP−1zPVc,i ′( )

∑2NPV

i�1
mi � 1; 0≤mi ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (10)

2.2 Hyperplane polyhedral set

The convex hull polyhedral set introduced in Section 2.1 is
used to build a high-dimensional polyhedral uncertain set

FIGURE 3
Range of convex hull polyhedral sets under different k-values.

FIGURE 4
Uncertainty set based on extreme scenarios.
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connecting all vertices on the basis of establishing the ellipsoidal
polyhedral set first and then make the high-dimensional
polyhedral set envelop all historical data points using a scale.
However, since the scale is a global scale, an excessive increase in
the scaling factor may occur in order to envelope a certain data
point, resulting in more blank areas being enveloped
accordingly. Therefore, the uncertainty set construction
method based on extreme scenarios proposed by Zeng and
Zhao (2013) and Chen et al. (2018) does not determine the
shape of the envelope range in advance but envelopes extreme
scenarios successively to form an irregular polyhedral set, as
shown in Figure 4.

The uncertainty set expression based on extreme scenarios is
represented as follows:

U � zPV ∈ RNPV×1

zPV � ∑Nex

i�1
σ iz

PV
i

∑Nex

i�1
σ i � 1; 0≤ σ i ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (11)

where Nex represents the number of extreme scenarios; zPVi
represents the i-th extreme scenario; and σ i represents the weight
coefficient of extreme scenarios.

Compared with the convex hull uncertainty set, the uncertainty
set of extreme scenarios can greatly reduce the envelope of the blank
region with small probability distribution. Therefore, this method
has the best conservatism. However, it can be seen from (11) that the
construction of the uncertainty set based on extreme scenarios
depends on the number of extreme scenarios, i.e., the number of
polyhedral vertices. If there are many extreme scenarios, it will
increase the difficulty of solving robust optimization. Wu et al.
(2019) proposed a set of hyperplane polyhedra. First, assuming the
total dimension of the uncertainty variable is E, a closed box
polyhedron is formed in the E-dimensional space that exactly
covers all historical data. This closed box polyhedron is
equivalent to a box uncertainty set. Starting from each vertex of
the boxed uncertain set, a suitable hyperplane is found to separate
the boundary of the boxed uncertain set from all historical data and
maximize the removal of blank “invalid” areas in the process, as
shown in Figure 5.

In general, for the K-dimensional space, the hyperplane is
expressed as shown in Eq. (12):

αm
Tz � βm,∀m, (12)

where αm represents a K-dimensional non-zero vector;
βm represents a scalar, and m represents the vertex sequence
number of the K-dimensional box set. Let the vertex of
the K-dimensional box set be zBm, and the vertex generated
by the hyperplane cutting the K-dimensional box set be zHn ;
then, the relationship between the vertex sequence number m
and n as shown in Eq. (13):

n � m − 1( ) × Κ + s, s � 1, 2 . . .Κ,∀m � 1, 2 . . . 2Κ. (13)
At this point, the vertices generated by hyperplane cutting can be

obtained by solving the following model:

∀m, max
αm,βm,ξms,zHn

1
Κ!
∏Κ
s�1

ξms, (14)

αm
TzBm ≥ βm, αm

Tτ ≤ βm, αm
TzHn � βm,∀s,∀τ ∈ Τ, (15)

zBmo − zHno � 0,∀s, o � 1, . . . s − 1, s + 1, . . .Κ, (16)
ξms � θms zBms − zHns( ),∀s, (17)

ξm1s + ξm2s≤ z
B
m2s

− zBm1s
,∀s,∀h ∈ H s( ), m1, m2 ∈ h. (18)

Equation 14 aims to solve the blank region with the maximum
volume cut by the hyperplane, where ξms represents the geometric
distance between zHn and the corresponding zBm. Since (14) is a
factorial form, in order to ease the calculation pressure, it is
converted into the form of (19) without affecting the variables to
be solved:

∀m, max
αm,βm,ξms,zHn

∑Κ
s�1

ln ξms. (19)

Equation 15 indicates cutting the K-dimensional space into
inner and outer parts, where the vertex vector zBm indicates that
the box set is outside and the data vector τ is inside, and Τ

represents the dataset. Equation 16 indicates that, except for the
o � s dimension, the coordinate difference of other dimensions is
0; eq. 17 represents the calculation equation for the geometric
distance ξms, where the value of θms is 1 or −1, obtained when zBms

is greater/less than zHns in the s-dimension. Equation 18
represents that any two hyperplanes do not intersect in the
K-dimensional box set; h and H(s) represent the interval
sequence number and set of the s-dimensional box uncertain
set, respectively. m1 and m2 represent the boundary of
the interval.

The above model is a nonlinear model, so the interior point
method is adopted to solve it. After solving the hyperplane vertex
coordinates, combined with (11), the hyperplane uncertainty set is
expressed as

U � zH,PV ∈ RNPV×1

zH,PV �∑NH

n�1
εiz

H,PV
n

∑NH

n�1
εi � 1; 0≤ εi ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (20)

where εi represents the weight coefficient of the i-th vertex.

FIGURE 5
Hyperplane polyhedral set.
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3 Economic dispatching model for new
distribution systems

3.1 Objective function

This paper considers the economic dispatch goal of minimizing
the comprehensive costs of network loss cost, abandoning PV cost,
and electricity purchase cost for a new distribution system, which is

minC �∑T
t�1
∑
ij∈L

closs Pij,t + Pji,t( ) +∑T
t�1
cTRPTR

t +

∑T
t�1

∑
i∈ΩPV

N

cPV ~P
PV

i,t − PPV
i,t( )Δt, (21)

where Pij,t and Pji,t represent the active power flow direction of
branch ij at time t; Pij,t represents the power flow from bus i to bus j
at time t; Pji,t represents the power flow from bus j to bus i; PTR

t

represents the gateway power at time t; ~P
PV
i,t represents the maximum

available power of the distributed PV system connected to bus i after
fluctuation at time t; PPV

i,t represents the actual injected power of the
distributed PV system connected to bus i at time t; PPV

i,t represents
the actual injected power of the distributed PV system connected to
bus i at time t; C represents the total cost of economic dispatch; closs
represents the cost coefficient of network loss; cTR represents the cost
coefficient of electricity purchased for the main network at the
gateway; cPV represents the cost coefficient of PV abandonment.
ΩPV

N represents the set of bus connected to distributed PV, and L
represents the set of all branches of the distribution network.

3.2 Constraint condition

3.2.1 Second-order cone relaxation power flow
constraints

Psum
i,t − Pcur

i,t � ∑
j∈N i( )

Pij,t, (22)

Qsum
i,t − QD

i,t � ∑
j∈N i( )

Qij,t, (23)

Psum
i,t � PTR

t + PPV
i,t − Pch

i,t + Pdis
i,t , (24)

Qsum
i,t � QTR

t + QCB
i,t , (25)

Pij,t �


2

√
glui,t − glRl,t − blTl,t, (26)

Pji,t �


2

√
gluj,t − glRl,t + blTl,t, (27)

Qij,t � − 

2

√
blui,t + blRl,t − glTl,t, (28)

Qji,t � − 

2

√
bluj,t + blRl,t + glTl,t, (29)

I2l,t �


2

√
g2
l + b2l( ) ui,t + uj,t −



2

√
Rl,t( ), (30)


2
√

Rl,t

2

√
Tl,t

ui,t − uj,t

�����������
�����������≤ ui,t + uj,t, (31)

Vi
min( )2

2

√ ≤ ui,t ≤
Vi

max( )2

2

√ , (32)
Il,t ≤ Il

max. (33)

Equations 17–25 represent the power balance constraints of the
branch, where Psum

i,t represents the total active power injected by bus

i at time t. It includes the active power injected by the gateway at
time t, the output power of distributed PV connected to bus i at time
t, and the charging power Pch

i,t and discharging power Pdis
i,t of the

energy storage battery connected to bus i at time t. Pcur
i,t represents

the load of bus i after implementing the demand-side response at
time t; Qsum

i,t represents the total reactive power injected by bus i at
time t, including the reactive power QTR

t injected by the gateway at
time t and the reactive compensation power QCB

i,t of the reactive
power compensator connected to bus i at time t. QD

i,t represents the
reactive load of bus i at time t, Qij,t represents the reactive power
flow of branch ij at time t, and N(i) represents the set of all bus
connected to bus i. Equations 26–30 represents the active/reactive
power of the branch and the amplitude of the branch current, where
gl and bl represent the conductance and admittance of the branch l,
respectively, and Il,t represents the current amplitude of the branch l
at time t. Meanwhile, introducing ui,t � V2

i,t/


2

√
, uj,t � V2

j,t/


2

√
,

Rl,t � Vi,tVj,t cos θl,t, and Tl,t � Vi,tVj,t sin θl,t, where Vi,t and Vj,t

represent the voltage amplitude of the head bus i and the end bus j of
branch l at time t, respectively, θl,t represents the voltage phase angle
of both ends of branch l at time t. Equation 31 is a second-order cone
relaxation constraint. Equations 32–33 represent the amplitude
constraints of voltage and current, where Vi

min and Vi
max

represent the maximum and minimum voltage amplitude of bus
i, respectively, and Il max represents the maximum current amplitude
of branch l.

3.2.2 Distributed PV constraints

~P
PV

i,t � PPV,f
i,t + ΔPPV,maxzPVi,t , (34)

0≤PPV
i,t ≤ ~P

PV

i,t ,∀i ∈ ΩPV
N , (35)

PPV
i,t( )2 + QPV

i,t( )2 ≤ SPVi,t( )2,∀i ∈ ΩPV
N . (36)

Equations 34–36 represent the operation constraints of
distributed PV, where PPV,f

i,t represents the maximum available
power of the distributed PV connected to bus i before fluctuation
at time t; ΔPPV,max represents the maximum fluctuation of
distributed PV; QPV

i,t and SPVi,t represent the reactive power and
capacity of distributed PV connected to bus i at time t.

3.2.3 Battery energy storage constraints

SSOCi,t � SSOCi,t−1 + ηi,ch
Pch
i,tΔt

Ei,max
− Pdis

i,t Δt
ηi,disEi,max

,∀t ∈ H, (37)

0≤Pch
i,t ≤Pch

i,maxD
ch
i,t

0≤Pdis
i,t ≤Pdis

i,maxD
dis
i,t

Dch
i,t +Ddis

i,t ≤ 1

⎧⎪⎨⎪⎩ , (38)

SSOCi,min ≤ SSOCi,t ≤ SSOCi,max. (39)

Equations 37–39 represent the operation constraints of battery
energy storage, where SSOCi,t represents the state of charging of battery
energy storage connected to bus i at time t; Dch

i,t and Ddis
i,t represent

0–1 variables, representing the charging and discharging states of the
battery storage connected to bus i at time t, respectively, where
1 represents charging and 0 represents discharging; ηi,ch and ηi,dis
represent the charging and discharging efficiencies of the battery
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energy storage connected to bus i, respectively. Ei,max represents the
maximum amount of energy stored by the battery of bus i. SSOCi,min and
SSOCi,max represent the minimum and maximum values of the state of
battery energy storage connected to bus i, respectively. Δt represents
the battery energy storage dispatching interval, andH represents the
charging and discharging time set of the battery energy storage.

3.2.4 Capacitor bank operation constraints

0≤ xC
i,t ≤xC

i,max, i ∈ ΩCB
N

QCB
i,t � xC

i,tCi,step, i ∈ ΩCB
N

{ , (40)

∑T
t�1

xC
i,t − xC

i,t−1
∣∣∣∣ ∣∣∣∣≤Δ CB

max . (41)

In eqs 40–41, xC
i,t represents the number of groups of capacitor

connected to bus i at time t; Ci,step represents the capacity of each
group of capacitor connected to bus i; ΩCB

N represents the set of all
installed capacitor bank bus; and Δ CB

max represents the maximum
value of the change in the number of capacitor input groups in
adjacent time periods.

3.2.5 On-load tap changer constraints
The schematic diagram of the on-load tap changer branch is

shown in Figure 6:

um,t � t2ijuj,t, (42)
tij � tmin

ij + TijΔtij, (43)
0≤Tij ≤Kij, (44)

Δtij � tmax
ij − tmin

ij( )/Kij. (45)

In eqs 42–45, tij represents the transformer ratio on branch ij; Tij

denotes an integer variable that represents the optimal gear position
of the transformer. Δtij represents the change value of each gear of
the transformer tap. Kij represents the number of gears of the
transformer tap. tmax

ij and tmin
ij represent the upper and lower limits

of the transformer ratio, respectively, where um,t � (Vm,t)2/


2

√
,

uj,t � (Vj,t)2/


2

√
, and ui,t � (Vi,t)2/



2

√
.

3.2.6 AC/DC converter constraints
Figure 7 shows a schematic diagram of the AC/DC converter.
The active power of the AC side of the converter is set at time t as

Pref ,AC
ji,t , the reactive power as Qref ,AC

ji,t , and the reference point voltage
asVref ,AC

j,t . The active power of the DC side at time t is Pref ,DC
jk,t , and the

reference point voltage is Vref ,DC
j,t . Meanwhile, uref ,ACj,t �

(Vref ,AC
j,t )2/ 


2
√

and uref ,DCj,t � (Vref ,DC
j,t )2/ 


2
√

are introduced. Similar

to the AC power flow in polar coordinates, the branch power flow
equations with an AC/DC converter can be written as follows:

Pij,t �


2

√
glui,t − glRl,t − blTl,t,∀l ∈ Ωref

L , (46)
Pref ,AC
ji,t � − 


2
√

glu
ref ,AC
j,t − glRl,t + blTl,t( ),∀l ∈ Ωref

L , (47)
Qij,t � − 


2
√

blui,t + blRl,t − glTl,t,∀l ∈ Ωref
L , (48)

Qref ,AC
ji,t � − − 


2
√

blu
ref ,AC
j,t + blRl,t + glTl,t( ),∀l ∈ Ωref

L , (49)
Pref ,DC
jk,t � 


2
√

glu
ref ,DC
j,t − glRl,t,∀l ∈ Ωref

L , (50)
Pkj,t �



2

√
gluk,t − glRl,t,∀l ∈ Ωref

L . (51)

In eqs 46–51, Ωref
L represents the set of converter branches.

The voltage amplitude relation between AC and DC sides of the
converter station as shown in Eq. (52):

Vref ,AC
j,t � KcMiV

ref ,DC
j,t , (52)

whereKc represents the utilization rate of DC voltage;Mi represents
the modulation degree. The relationship between the active power of
the AC and DC sides of the converter station as shown in Eq. (53):

Pref ,AC
ji,t � Pref ,DC

ji,t

ηConv
, (53)

where ηConv represents the conversion efficiency.

3.2.7 Demand-side response constraints

−ξ i,t �
ΔPD

i,t

Δρt
� Pcur

i,t − PD
i,t

ρcurt − ρt
, (54)

∑Ni

i�1
∑T
t�1
Pcur
i,t �∑Ni

i�1
∑T
t�1
PD
i,t, (55)

ρcur,max
t ≤ ρcurt ≤ ρcur,min

t , (56)

ρcurt � ρpeak t ∈ Tpeak

ρvalley t ∈ Tvalley{ . (57)

In eqs 54–57, ξi,t represents the elastic coefficient of electricity price
of bus i at time t; ΔPD

i,t represents the change in the load of bus i
before and after implementing the demand-side response at time t;
PD
i,t represents the load of bus i before implementing the demand-

side response at time t. Δρt represents the change in electricity price
before and after implementing the demand-side response at time t;
ρt and ρcurt represent the electricity price before and after
implementing the demand-side response at time t, respectively.
ρcur,max
t and ρcur,min

t represent the upper and lower limits of
electricity price before and after implementing the demand-side

FIGURE 6
Schematic diagram of branches with OLTC.

FIGURE 7
Schematic diagram of the AC/DC converter station.
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response at time t, respectively. ρpeak and ρvalley represent the peak
and valley electricity price before and after implementing the
demand-side response at time t, respectively. Tpeak and Tvalley

represent the peak and valley period before and after
implementing demand-side response at time t, respectively (He
et al., 2021; Qiu et al., 2021).

4 Robust dispatching method for new
distribution systems

4.1 Robust dispatching model for new
distribution systems

Let the constraint variable of power flow be the vector
P � Pij,t, Pji,t, Qij,t, Qji,t, PTR

t , QTR
t , ui,t, Rl,t, Tl,t, Il,t{ }; the constraint

variable of PV is the vector PPV � PPV
i,t , Q

PV
i,t{ }; the variable of battery

energy storage operation is the vector PESS � SSOCi,t , Pch
i,t , P

dis
i,t{ }; the

operating variable of the capacitor bank is the vector QCB � QCB
i,t{ };

the constraint variable of the on-load tap changer is the vector
UOLTC � um,t, tij{ }; the constraint variable of the AC/DC converter
is the vector I � Pref ,AC

ji,t , Pref ,DC
jk,t , Qref ,AC

ji,t , uref ,ACj,t , uref ,DCj,t{ }; and the
constraint variable of a demand-side response is the vector PD �
Pcur
i,t , ρ

cur
t{ }.

Based on the data-driven polyhedral set of the distributed PVoutput,
a two-stage robust economic dispatching model for new distribution
systems is established in this paper. The matrix form is as follows:

min
x

max
u∈U

min
y∈Ω x,u( )

cTy( )
s.t. Ax ≤ d a( )

Gy ≤ h − Ex −Mu b( )
Ry
���� ����2 ≤ rTy c( ),

(58)

where x, y represent the decision variables of the model, and u
represents an uncertainty variable. The decision variable in the first
stage is x � Dch

i,t , D
dis
i,t , x

C
i,t, Tij{ }; the decision variable in the second

stage is y � P,PPV,PESS,QCB,UOLTC, I,PD{ }; the uncertainty
variable in the second stage is u � ~P

PV
i,t{ }. The constant matrix A

represents the coefficient matrix associated with the decision
variable x, and the column vector d represents the coefficient
vector associated with the decision variable x. The constant
matrices G, E, and R represent the coefficient matrix related to
the decision variable y. The column vectors h and r are constant
vectors representing the coefficient vector related to the decision
variable y. The constant matrix M represents the coefficient matrix
associated with the uncertain variable u. Ω(y, u) represents the
feasible region of the continuous variable y when (x, u) is given. cTy
represents the objective function of the second stage, corresponding
to (18); (54-a) corresponds to the constraints related to the variable x
in the first stage; (54-b) corresponds to the constraints related to the
variable y in the second stage; (54-c) corresponds to second-order
cone constraints related to the variable y in the second stage.

For a two-stage robust optimizationmodel such as (58), it cannot be
directly solved due to the presence of both continuous and integer
variables, and the uncertain parameter u in the second stage of the
model. Therefore, this paper adopts theC&CGmethod (Qiu et al., 2020;
Wang et al., 2021) to transform it into amaster-sub problem for solving.
Among them, the master problem is to solve the new distribution

system robust scheduling model with the minimum comprehensive
cost in the worst case scenario. After solving the integer solution of the
master problem first (including the charging and discharging states of
the energy storage battery, the number of capacitor bank groups, and
the gear change of the on-load tap changer), the sub-problem
minimizes the comprehensive cost of the system in the worst case
scenario by optimizing the remaining continuous variables.

4.2 C&CG iterative solving method

4.2.1 Master–sub problem model
The master–sub problem model corresponding to (58) is

as follows:

MP1:

min
x,y,u

η( )
s.t. Ax ≤ d

Gyl ≤ h − Ex −Mul ∀l≤ k
Ryl
���� ����2 ≤ rTyl ∀l≤ k
η≥ cTyl ∀l≤ k

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
, (59)

SP1:

max
u∈U

min
y∈Ω x,u( )

cTy

s.t. Gy ≤ h − Ex* −Mu: π
Ry
���� ����2 ≤ rTy: τa, τb

⎧⎪⎪⎨⎪⎪⎩ . (60)

First, the master problem MP1 is solved corresponding to (59). In
this case, MP1 belongs to the mixed-integer second-order cone
programming problem. The first stage variable solution x*
corresponding to MP1 and the auxiliary variable η introduced in the
k+1 iteration are C&CG cuts. Then, the variable solution x* obtained in
the first stage is substituted into the second-stage subproblem SP1 to
find the worst scenario ul, where l represents the number of historical
iterations and k represents the number of current iterations. Finally, the
worst scenario ul obtained in the second stage is brought into themaster
problemMP1 in the first stage for iteration. The last three constraints of
(59) are the optimal cut plane and the feasible cut plane set generated by
the previous k iterations, respectively. π, τa, and τb are the dual
variables of the subproblem constraints.

4.2.2 Sub-problem solving method
Equation 60 is a max–min optimization problem. Therefore, the

duality theorem is used in this paper to convert the inner min
problem of (60) into its dual form and combine it into a
maximization problem. The specific form is shown in (61):

max
u,π

− h −Mu − Ex( )Tπ
s.t. c + NTπ + RTτa + rτb � 0

τa‖ ‖2 ≤ τb

π, τa, τb ≥ 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ . (61)

In eq. 61, there exists a bilinear term (Mu)Tπ, which is solved by the
external approximation method of the bilinear term (Kersting,
2010). The master problem MP2 and the sub-problem SP2 are
obtained, as shown in (62) and (63):

SP2:

max
u,π

− h −Mu − Ex( )Tπ
s.t. c + NTπ + RTτa + rτb � 0

τa‖ ‖2 ≤ τb

π, τa, τb ≥ 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (62)
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MP2:

max
u,π

− h − Ex( )Tπ + β

s.t. c + NTπ + RTτa + rτb � 0
τa‖ ‖2 ≤ τb

π, τa, τb ≥ 0
β≤Gm u, π( ),∀m≤ n

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
. (63)

In eqs 62 and 63, MP2 and SP2 are used to solve the upper and lower
bounds of (61), respectively, where m represents the number of
historical iterations and n represents the number of current
iterations. The auxiliary variable β is introduced to replace the
bilinear term in the original equation. The bilinear term exists in
Gm(u,π) � (Mu)Tπ in (63). Therefore, the outer layer
approximation method is needed for linearization, and the
linearization equation is shown in (64):

Gn u,π( ) � un( )Tπn
sp + u − un( )Tπn

sp + π − πn
sp( )Tun. (64)

4.3 Solving steps and processes

The specific steps for solving the C&CG algorithm are as follows:

1) Let the initial values of the upper and lower bounds of the
master-sub problem be U1 � +∞ and L1 � −∞, the initial
number of iterations k = 1, and the convergence value be ε1 max.

2) Solving the master problem in the worst case scenario, where
the constraints of the master problem do not include C&CG
cuts, then the integer solution x* is obtained.

3) Based on the integer solution x* obtained by solving the
master problem, the sub-problem is solved to obtain the

worst scenario (ul+1)* and the objective function value of
the sub-problem. The upper limit U1 � min(U1, cTy)
is updated.

4) Then, whether U1 − L1 is less than the convergence value
ε1 max is checked. If so, the operation ends. If this is not true,
k � k + 1 is set, and a new set of scenario variables uk and
C&CG cuts are added to the master problem. Solving the
master problem to obtain η* and update the lower bound
L1 � max(L1, η*), then step 3 is repeated.

The specific solving steps are shown in Figure 8.

5 Example analysis

5.1 Example system settings

In order to verify the feasibility of the new distribution system
optimization method based on the adaptive data-driven polyhedral
set, in this section, the improved IEEE-33 bus system is used for
example analysis. The wiring diagram of the improved IEEE-33 bus
system is shown in Figure 9. Table 1 shows the parameter settings of
PV, BESS, CB, and OLTC of the access system. The reference voltage
of the system is 12.66 kV, and the reference capacity is 10 MVA. The
active power range of the gateway is 0–2000 kW, the reactive power
range is 0–2000 kVAr, the upper limit of the branch current
amplitude is 0.5 p.u., and the bus voltage amplitude is
0.95–1.05 p.u. For the convenience of the analysis, this paper
assumes that the available power of the two distributed PV
systems is the same before the fluctuation and the demand-side
response only for the load of the residential and commercial areas.
According to the calculation method given by Palahalli et al. (2022),
the value of kmin here is 1.41.

5.2 Analysis of 33-bus system examples

5.2.1 The impact of the scaling factor k on
optimization results

The influence of the scaling factor k on the robust
dispatching results of the new distribution system is shown in

FIGURE 8
Solution flowchart of C&CG.

FIGURE 9
Modified IEEE-33 bus test system.
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Table 2. The size of the scaling factor k determines the coverage
degree of the constructed convex hull polyhedral set to the
historical data. It is not difficult to observe from Table 2 that
the network loss cost is almost unchanged, the electricity
purchase cost and the penalty cost of abandoning PV are
slightly increasing, and the total system cost is constantly
increasing. This is because, when the scaling factor k becomes
larger, the convex hull uncertainty set will continue to expand
the envelope range of historical output data. In other words, the
fluctuation range of the distributed PV output will continue to
grow, making it more prone to the worst scenario. When the
distributed PV output with large fluctuations is continuously
injected into the distribution network, the system needs to filter
out most of the distributed PV power injection in order to meet
the balance of supply and demand and reduce the disturbance
caused by uncertain energy injection, so the penalty cost of
abandoning PV is constantly increasing. At the same time, due to
the significant reduction in the injection of distributed energy, in
order to meet the power supply of the system, it is necessary to
increase the injection power of the gateway, so the cost of
electricity purchase gradually increases. The network loss cost
depends on the network parameters of the system, so the
network loss cost is almost constant. The total cost of the
system is mainly the cost of abandoning PV and the cost of
purchasing electricity, so the total cost of the system continues
to increase.

5.2.2 The impact of the robust adjustment
coefficient β on optimization results

Figure 10 shows the impact of the robust adjustment coefficient
on the dispatching results of the new distribution system. As can be
seen from the figure, with the robust adjustment coefficient
increasing from 0.2 to 1, the network loss cost of the system
remains almost unchanged at approximately 148 yuan, but the
total cost of the system continues to increase. When the box set
is adopted, the variation amplitude of the total system cost is
basically stable with the increase in the robust adjustment
coefficient β. When convex hull polyhedral sets with different
scaling factors are used, the variation range of the total system
cost decreases gradually. Specifically, when the scaling factor k
changes from 0.6 to 1.4, the change amplitude of the total system
cost tends to flatten out at 0.4, 0.6, and 0.8. The reason for this
phenomenon is related to the change in electricity purchase and PV
abandonment costs, which constitute the total cost of the system.

The robustness of the constructed polyhedral set is determined by
the robustness adjustment coefficient β. When the robust adjustment
coefficient β is small, the adaptability of the system to distributed PV
disturbance is poor, and the cost of PV abandonment is almost
unchanged whether the box set or the convex hull polyhedral set is
used. On the contrary, when the robust adjustment coefficient β is
larger, the system has better adaptability to distributed PV disturbance.
Therefore, for the robust adjustment coefficient β � 1, the use of box
sets cannot accurately respond to various situations in PV generation,

TABLE 1 System configuration parameters.

Equipment Access nodes Parameter

PV 19 and 29 Capacity: 1000 kVA

BESS 22 and 27 State of charge: 5%–95%

Capacity: 1.2 MW

Investment cost: 1 million yuan

Percentage of capacity at the end of life: 5%

Battery charging rate: 0.5

CB 6 and 26 Single group compensation power: 50 kVAr

Maximum number of compensation groups: 6

Maximum number of CB actions in a day: 5

OLTC 33–1 Transformer ratio: 0.95–1.05

Transformer tap change value at each gear: 0.01

Number of transformer tap gears: 10

TABLE 2 Impact of the scaling factor k on various costs.

Various costs/yuan k = 0.6 k = 0.8 k = 1 k = 1.2 k = 1.4

Network loss cost 148 148.36 148.07 148.74 148.43

Purchasing electricity cost 12648.12 12706.37 12744.05 12783.96 12785.60

Abandoning PV cost 445.69 485.52 512.07 538.62 565.17

Total cost 13241.82 13340.26 13404.20 13471.33 13499.21
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which may lead to higher PV abandonment costs. However, when the
convex hull polyhedral set is used, the envelope range of the convex hull
set will be different due to different scaling factors k. When the scaling
factor k � 0.6, the envelope range of the convex hull polyhedral set is
also small. In this case, changing the size of the robust adjustment
coefficient β does not significantly affect the cost of PV abandonment.
However, when the scaling factor k � 1.4, the convex hull uncertainty
set will encompass all the historical data, so the corresponding
adjustment will be made according to the increase in the robust
adjustment coefficient β, which will affect the PV abandonment
cost. The change trend of the cost of purchasing electricity is similar
to the cost of abandoning PV.When the scaling factor k> 1, the convex
hull uncertain set covers all the worst historical scenarios as well as the
box set. In this case, in order to stabilize the system power balance, the
system needs to filter most of the uncertain PV injection and increase
the gateway power. However, when the scaling factor k≤ 1, the convex
hull uncertain set cannot completely encompass all the historical data,
and some of the worst scenarios may be missed. Similar to the cost of
abandoning PV, the cost of purchasing electricity may remain the same
despite changing the size of the robust adjustment coefficient β.

5.2.3 The various costs of the three polyhedral set-
based robust optimization methods

The influences of the three polyhedral set-based RO methods on
various costs are further compared, as shown in Table 3. It can be seen
from Table 3 that when different polyhedral set-based ROmethods are

adopted, the cost of the hyperplane polyhedral set-based ROmethod is
lower than that of the convex hull polyhedral set-based ROmethod and
the box set-based RO method, except that the system network loss is
basically unchanged. The convex hull polyhedral set-based ROmethod
needs to scale the original convex hull to achieve the purpose of
enveloping all historical data. Figure 3 shows that when the scaling
factor k � 1.4, the convex hull uncertainty set envelopes all historical
data on the PV output. Although this enhances the robustness of the
solution results, an excessive scale of data for some scenarios increases
the conservatism of the solution,making the total cost of the convex hull
polyhedral set-based ROmethod close to the box set-based ROmethod.
The hyperplane polyhedral set-based RO method uses the
mathematical idea of a hyperplane to greatly reduce the envelope
range, optimize the robustness of the system, and reduce the
conservatism of the system on the basis of enveloping all the
historical data on PV. Therefore, the distributed PV system, using
the hyperplane polyhedral set-based ROmethod, reduces the cost of PV
abandonment and electricity purchase. It can be seen that the
hyperplane polyhedral set-based RO method not only optimizes the
robustness of the result but also reduces its conservatism.

5.2.4 The voltage distribution under three
uncertain set-based RO methods

Figure 11 shows the node voltage distribution of the improved
IEEE-33 bus system for the box set-based RO method with the
robust adjustment coefficient β � 1, the convex hull polyhedral set-

FIGURE 10
Impact of the robust adjustment coefficient β on various costs: (A) total loss, (B) network loss, (C) abandoning PV, and (D) purchasing electricity.
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based RO method with a scaling factor k � 1.4, and the hyperplane
polyhedral set-based RO method. Figure 11 shows that the voltages
of the three uncertain set-based RO methods are all distributed in
the range of 0.95 p.u.~1.05 p.u. However, during the distributed PV
generation period (10:00–14:00), the node voltage using the box set-
based RO method is higher than that of the other two set-based RO
methods. The node voltage of the hyperplane polyhedral set-based
RO method is generally stable, and the voltage fluctuation is less
than that of the convex hull polyhedral set-based RO method. This

further shows that the hyperplane polyhedral set-based RO method
has stronger robustness and better conservation compared to the
convex hull polyhedron set-based RO method.

6 Conclusion

In this paper, a new distribution system robust dispatching
model based on adaptive data-driven polyhedral sets is constructed

TABLE 3 Impact of three uncertain set-based RO methods on various costs.

Various costs/
yuan

Box set-based RO
method

Convex hull polyhedral set-based
RO method

Hyperplane polyhedral set-based
RO method

Network loss cost 149.30 148.43 148.34

Purchasing electricity
cost

12787.55 12785.60 12744.73

Abandoning PV cost 576 565.17 512.07

Total cost 13512.85 13499.21 13405.14

FIGURE 11
Node voltage distribution under three uncertain set-based RO methods: (A) box set-based RO method, (B) convex hull polyhedral set-based RO
method, and (C) hyperplane polyhedral set-based RO method.
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and solved using the C&CG algorithm. Finally, by comparing three
new distribution system robust dispatching methods based on
polyhedral sets, the simulation results show the following:

(1) When the robust adjustment coefficients are the same, the
total cost of the system using the convex hull polyhedral set-
based RO method is lower than that using the box set-based
RO method. For the convex hull polyhedral set-based RO
method with different scaling factors, the robustness of the
optimization results can be enhanced by expanding the
scaling factors.

(2) Compared with the box set-based RO and convex hull
polyhedral set-based RO methods, the hyperplane
polyhedral set-based RO method using adaptive data-
driven polyhedral sets can describe the distribution range
of uncertain variables more accurately, and reduce the
envelope of the low-probability blank region and the
conservatism of optimization results. Therefore, compared
with the convex hull polyhedral set-based RO method, the
new robust dispatching method based on the adaptive data-
driven hyperplane polyhedral set-based ROmethod has lower
conservatism and stronger robustness.

Due to the main research direction of this paper being the
impact of the uncertainty of photovoltaic output fluctuations on
the distribution network, the main control mode of the
photovoltaic model in this paper is the hybrid control mode.
The grid-type control can only operate in parallel to the grid and
cannot operate independently. It is synchronized by extracting
the reference voltage phase angle through phase detection links,
such as the phase-locked loop (PLL). The grid-type control is
synchronized by generating phase angles through power control
(Zhang et al., 2010; Harnefors et al., 2022; Xiao et al., 2023a; Xiao
et al., 2023b). Therefore, from the perspective of control modes,
all three types of control will have a certain impact on the power
flow of the distribution network:

1. Photovoltaic grid-type: This type of system is mainly responsible
for supplying local loads, and the power flow is mainly limited
within the photovoltaic power generation system.

2. Grid following: When the electricity generated by the
photovoltaic power generation system exceeds the local load
demand, the excess energy will be transmitted to other places
through the grid, leading to adjustments in the distribution of
power flow in the grid.

3. Hybrid control: Hybrid control combines photovoltaic
power generation systems with other energy systems and
coordinates management through intelligent control
strategies. This connection method can achieve
complementarity and balance among various energy
systems, thereby affecting the power flow distribution of
the power system. For example, when photovoltaic power
generation is insufficient or unable to generate electricity at
night, other energy systems (such as wind power generation,
energy storage systems, etc.) can supplement power supply
and adjust the distribution of power flow.

In order to further study the impact of photovoltaic integration
on the power system, research can be conducted from the
perspectives of photovoltaic fluctuation uncertainty and
different control modes of photovoltaic systems. Future
research will focus on different photovoltaic control modes, as
mentioned above, such as grid-following control and grid-forming
control of photovoltaic systems. When there is fluctuation in the
connected photovoltaic system, the operating results of the power
system will change. In addition, it is necessary to consider factors
such as how the reactive power of the system changes and how to
maintain the system voltage stability when a large amount of
photovoltaic energy is injected into the distribution network
(Mehrdad et al., 2020).
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