
A framework for the practical
development of condition
monitoring systems with
application to the
roller compactor

Rexonni B. Lagare1*, Marcial Gonzalez2, Zoltan K. Nagy1 and
Gintaras V. Reklaitis1

1Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States, 2School
of Mechanical Engineering, Purdue University, West Lafayette, IN, United States

Implementing a condition-based maintenance strategy requires an effective
condition monitoring (CM) system that can be complicated to develop and
even harder to maintain. In this paper, we review the main complexities of
developing condition monitoring systems and introduce a four-stage
framework that can address some of these difficulties. The framework
achieves this by first using process knowledge to create a representation of
the process condition. This representation can be broken down into simpler
modules, allowing existing monitoring systems to be mapped to their
corresponding module. Data-driven models such as machine learning models
could then be used to train the modules that do not have existing CM systems.
Even though data-driven models tend to not perform well with limited data,
which is commonly the case in the early stages of pharmaceutical process
development, application of this framework to a pharmaceutical roller
compaction unit shows that the machine learning models trained on the
simpler modules can make accurate predictions with novel fault detection
capabilities. This is attributed to the incorporation of process knowledge to
distill the process signals to the most important ones vis-à-vis the faults under
consideration. Furthermore, the framework allows the holistic integration of
these modular CM systems, which further extend their individual capabilities
by maintaining process visibility during sensor maintenance.

KEYWORDS

condition-monitoring, fault detection and diagnosis, condition-based maintenance,
continuous pharmaceutical manufacturing, oral solid dosage, model-based machine
learning, machine learning

1 Motivation

Abnormal conditions in pharmaceutical manufacturing need to be corrected before
they can degenerate further and start compromising product quality, equipment health, and
operator safety. Without timely intervention of these faulty conditions, operators could be
forced to perform costly product diversions and process shutdowns; and if they happen
frequently enough, they could negatively offset any potential benefit of shifting
pharmaceutical manufacturing from batch to continuous mode. Lee et al. (2015);

OPEN ACCESS

EDITED BY

Luis Puigjaner,
Universitat Politecnica de Catalunya, Spain

REVIEWED BY

Hari Ganesh,
Indian Institute of Technology Gandhinagar,
India
Arnab Dutta,
Birla Institute of Technology and Science, India

*CORRESPONDENCE

Rexonni B. Lagare,
rlagare@purdue.edu

RECEIVED 06 December 2023
ACCEPTED 06 February 2024
PUBLISHED 12 April 2024

CITATION

Lagare RB, Gonzalez M, Nagy ZK and
Reklaitis GV (2024), A framework for the
practical development of condition monitoring
systems with application to the
roller compactor.
Front. Energy Res. 12:1351665.
doi: 10.3389/fenrg.2024.1351665

COPYRIGHT

© 2024 Lagare, Gonzalez, Nagy and Reklaitis.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 12 April 2024
DOI 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1351665/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1351665/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1351665/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1351665/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1351665/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1351665&domain=pdf&date_stamp=2024-04-12
mailto:rlagare@purdue.edu
mailto:rlagare@purdue.edu
https://doi.org/10.3389/fenrg.2024.1351665
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1351665

Schenkendorf, (2016); Ganesh et al. (2020) Maintaining steady-state
operation for continuous systems thus requires not only effective
process control but also real-time monitoring of the system
condition; faults need to be detected and diagnosed promptly so
that appropriate maintenance activities can be promptly performed
Venkatasubramanian et al. (2003b); Ganesh et al. (2020).

Implementing this condition-based maintenance strategy
requires an effective condition monitoring system, which is
challenging to develop because of the evolutionary nature of drug
production process development. Drug manufacturing process
systems often utilize equipment with varying levels of technology,
different levels of control, Su et al. (2019) and with already existing
but incomplete fault detection and diagnostic capabilities.
Furthermore, development of condition monitoring systems
traditionally employs data-driven methods that require large
amounts of data while largely ignoring expert knowledge of the
process; this is problematic for pharmaceutical processes where
initial process data is expensive to acquire.

A further challenge to developing CM systems is the lack of a
complete fault library during process development. This has at least
two major consequences: existing CM systems must be able to
manage novel faults as they are discovered, Venkatasubramanian
et al. (2003b) and existing CM systems must be retrained to be able
to classify these novel faults after discovery. Furthermore, there is no
way to evaluate the observability of a process condition; given several
existing CM systems monitoring a process, are they sufficient to
observe the process condition, or do additional CM systems need to
be developed, and on what section of the process?

A practical solution is needed to navigate through these
complexities and this paper reports on a proposed solution that
centers on a four-stage framework. Using a pharmaceutical roller
compactor unit as an example, the capabilities and advantages of the
framework are discussed including the ability to manage
novel faults.

2 Primer on condition monitoring

Condition monitoring has been a subject of research for at least
6 decades now. It has traditionally been applied to monitoring the
condition of major equipment such as jet engines, power stations,
and railway equipment. The underlying motivation for these
systems is safety, particularly of the equipment and the workers
interacting directly with the equipment, and this is true across the
chemical process industries, where condition monitoring is applied
to unit operations equipment to improve reliability and safety.

In chemical processing, safety concerns are often treated
separately from product quality, even though the former can
have ramifications on the latter. This might be because of the
differences in addressing them. Occurrence of safety incidents
and accidents typically require a series of events to align (as per
the Swiss cheese model) and they generally occur infrequently; thus,
monitoring is sufficient. Product quality deviations are likely to
happenmore frequently, often necessitating active process control to
mitigate this issue.

As a result, condition monitoring systems in manufacturing
processes tend to be comprised of disparate systems that work
independently of each other. With this approach, it is unclear if

these independent systems are providing complete visibility of the
process condition. Furthermore, their autonomy prevents the
capitalization of potential causal dependencies that one system
might have on the other.

2.1 Safety in condition monitoring

The proposed framework addresses the limitations of having
autonomous condition monitoring systems, particularly between
systems that address safety and product quality. The first step in
achieving this is to subsume product quality as one of the facets of
safety. This is possible for a pharmaceutical manufacturing
application because a poor-quality drug could have a negative
impact on the treatment and health of the patient consuming the
drug. Furthermore, product quality monitoring most likely sources
its data from the same sensors and machine data; so, it makes sense
to treat them under a unified framework. Hence, throughout the
remaining discussions in this paper, we will refer to safety as either
operator safety, equipment safety, or consumer/patient safety.

However, although it is convenient to view these facets of safety
as separate, there is a directed relationship between them. Failures
that affect operator and equipment safety tend to affect product
quality because safety systems address these failures through
mandatory shutdowns, thereby stopping the manufacturing
process and its associated control systems. However, this
dependency does not necessarily flow in the other direction, as
product quality issues tend to remain a product quality concern and
do not necessarily translate into an operator or equipment safety
problem. It will be apparent in Section 4.1 that this observation is
important, since it influences the methodology behind the
Representation stage, which is the first stage of the
proposed framework.

2.2 Anatomy of a failure

A failure is a condition where safety (operator, equipment, or
product quality) is compromised, and an emergency shut down is
necessary to prevent further damage and possibly loss of life. The
goal of condition monitoring is to prevent failures by detecting them
at their onset, which is when they are still considered a fault. A fault
can henceforth be considered as the root cause of a failure, or one of
the root causes if the failure is a result of multiple faults
Venkatasubramanian, (2011). The root cause does not necessarily
compromise safety, at least not right away. However, it needs to be
detected and corrected before it leads to an unsafe situation.

This implies that a fault is not a failure, although the terms are
often used synonymously. This is an important distinction to point
out because a system can perform in a state of fault, or even with
multiple simultaneous fault events, without any undesired
consequences to safety. It is when a failure occurs, as a result of
one or more uncorrected faults, that safety is compromised with
consequences for the operators, equipment, or product quality.

Figure 1 shows an example of condition monitoring where API
concentration is measured at the outlet of a powder blender to
monitor product quality. A fault was induced at the 20-minute mark,
which means that something abnormal happened. In this case, the

Frontiers in Energy Research frontiersin.org02

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

feeder control system starts to malfunction. At this point, a fault is
present, but everything still looks normal from the perspective of the
dataset; the fault is currently undetectable.

Faults at their onset are not necessarily detectable. For the API
concentration example, it could be that the extent of malfunction is
not yet significant at the beginning, or the blender control system is
somehow mitigating the effects of a faulty API feeder. As the fault
worsens, the sensor signals start deviating away from “normal”
conditions and starts to match its fault signature, eventually
reaching detectability.

In practice, fault detection and diagnosis entail real-time
monitoring of one or more variables. The traditional way is to
use a univariate approach, where the fault would be detected if one
or more variables exceed the fault detection threshold. This can
become impractical as the process scale increases with more sensors
installed and thus more advanced approaches such as Principal
Components Analysis (PCA) become useful. With such techniques,
the sensor signals are combined and projected onto principal
components, and a few outlier detection statistics can then be
monitored instead of individually monitoring a large number of
highly correlated variables.

Although the concept of a fault detection threshold could
become moot by using such techniques, it is important to
understand the distinction between fault onset and fault
detectability, what affects fault detectability, and how earlier
detection can allow more time for implementing the best possible
response to the fault.

2.3 Symptoms and sensors

Reducing the time from fault onset to detection is one of the
primary considerations in designing a condition monitoring system.
This can be achieved by using more sensitive sensors, generating
more information by adding more sensors, and/or by signal
processing; all of which effectively lower the detection threshold.

The sooner the fault is detected after onset, the longer the time
available between fault detection and failure and thus the time
available for implementing the critical activity of responding
appropriately to the fault.

These measures allude to the relationship between a fault and its
symptoms. Symptoms are the data signatures of a fault, which are a
collection of process variable values, both measured and
unmeasured, that are characteristic of that fault. It can be
assumed that the symptoms start appearing immediately at the
fault onset, but not all symptoms are manifested until after the fault
has progressed to failure to a certain degree. Often, the more
immediately manifesting symptoms are currently unmeasured, if
not unmeasurable by a process system. It can then be surmised that a
fault can be detected earlier by targeting the measurement of
symptoms that would happen immediately at fault onset. This
could be an additional objective and significance in the
deployment of PAT sensors for monitoring, control, and real-
time release.

Although the ability of a condition monitoring system to detect a
fault depends on the ability of any of the process sensors to capture
the symptoms, it does not require that all the symptoms are
measured; at least just one needs to be captured. However, it is
possible that multiple faults share the same symptom, so
discriminating between these faults depends on capturing other
symptoms that are unique to each fault. It is also possible that some
symptoms persist throughout the occurrence of fault, while some do
not. If a condition monitoring system is working with symptoms
that do not persist, then training a system to detect that fault could
be challenging.

It is thus important to know beforehand the nature of the
symptoms that are measured by the system, since developing a
condition monitoring system on symptoms that are not persistent
and unique would definitely lead to condition classification
problems. It would be more effective to pursue efforts to capture
the proper symptoms before attempting to train a classification
model to detect and diagnose these faults.

FIGURE 1
Univariate condition monitoring.

Frontiers in Energy Research frontiersin.org03

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

2.4 Condition monitoring and active control

Because condition monitoring systems are intended for the
implementation of condition-based maintenance, they can only
deal with faults that take a relatively long time to degrade into a
failure. A fault with a degradation time in the order of hours to days
would be applicable as this allows ample time for a response via
maintenance by a human operator.

At the other end of the spectrum are faults with degradation
times in the order of seconds, or minutes. These cannot be managed
via condition-based maintenance. Rather, active process control or a
process redesign is required, especially if the magnitude of failure
impact is expected to be severe.

Initially, all known faults in a fault library would have long
degradation times. As more knowledge is generated throughout the
life of a process system, newly discovered faults that have very short
degradation times should prompt a process redesign. If this is not
possible, an active process control could be installed to mitigate the
degradation. Doing this transforms the fault into another type of
fault, namely that of the active control system
malfunctioning—which ought to take a long time as a result of a
proper design. It can then be argued that such active control systems
effectively transform faults with short degradation time into faults
that occur less frequently and degrade slowly, thereby allowing
ample time for detection and intervention.

A safe process system could be ultimately characterized as a
system that has no known faults with short degradation times, and
an effective fault management system would be one that can detect
unknown faults and classify them according to their degradation
times. As these faults are discovered, active process control systems
ought to be installed to manage them, and the faults with long
degradation times would then be added to the fault library, where
future occurrences of the fault could be automatically detected by a
condition monitoring system and then addressed via maintenance
activities.

2.5 Special faults

The degradation time of fault from onset to failure can take a
long time, in the order of days or weeks. Sometimes, it could be
economical to allow the fault to linger and to delay maintenance
activities until a reasonable time to failure remains. This practice is
called predictive maintenance, and it is a subset of the condition-
based maintenance paradigm. It is beyond the scope of the proposed
framework, but it is important to mention the dangers of allowing a
fault to linger until it economically makes sense to take action.

Even if a fault might take a very long time to failure, it should still
be detected and addressed promptly. This is especially true if the
degradation time decreases rapidly in combination with other faults.
This is consistent with the Swiss cheese model in process safety
where the deficiencies in each layer of protection line up to allow a
safety incident to occur. The lining up of each layer protection is
similar to the simultaneous occurrence of multiple faults that by
themselves could take a very long time to occur, but when occurring
concurrently could lead to rapid progression into a failure.

Another type of fault that rarely goes to failure, but needs to be
detected, are self-correcting faults. These are faults that do not

always degrade into failure but return to normal condition even
without intervention. An example of this would be short-term
temperature and humidity disturbances that could potentially
affect powder properties. If undetected, process managers would
be unaware of near misses on the product quality. Although nothing
happened, future occurrences of the fault might reach failure before
self-correcting. It is best to develop a condition monitoring system
that can detect these faults so they can be investigated. Learning
from these faults could lead to useful adjustments on the process
design and/or operation to prevent them from happening again.

2.6 The condition library

Condition monitoring is essentially the practice of fault
detection and diagnosis (FDD), and practitioners usually refer to
them synonymously. However, there are key differences between
them that need to be discussed in order to avoid confusion in the
ensuing sections.

Firstly, FDD practitioners usually approach fault detection and
diagnosis separately. For example, fault detection could be
performed by monitoring outlier statistics of PCA and comparing
them against a pre-determined threshold, similar to the fault
detection threshold discussed in Figure 1. Once a fault is
detected, diagnosis would then be performed in a different
manner—e.g., analyzing patterns in the contributions plot to
classify which fault occurred.

Under the aforementioned approach, the PCA contributions
plots can be considered the fault signatures, and these would be
stored and labelled in a fault library. Upon detection of a fault, the
human operator could then extract the contributions plot of the
current data and compare it with the plots from the fault library. If
one of the plots matches, a diagnosis could be made.

This is a typical approach to FDD when pattern recognition
during fault diagnosis is made by a human, albeit fault detection
could still be automated in this manner. However, when FDD is fully
automated, where pattern recognition is performed by an Artificial
Intelligence agent, a fault library that contains the data signatures
(e.g., contribution plots) is no longer relevant. This information is
already embedded in the machine learning model, which takes in the
pre-treated process data, and reports the predicted fault.

In automated cases, the concept of a fault library becomes
relevant during model development for fault diagnosis, not
during fault diagnosis. Because model development requires
discrimination of machine learning models and data pre-
treatment techniques, the process data contained in the fault
library should no longer be limited to certain features such as
contribution plots. It should contain as much of the data
possible, and in their rawest form as possible; the fault library
effectively becomes the training dataset for machine learning
model development. This facilitates the retraining of the model
as better machine learning models and data pre-treatment methods
are discovered, and as new faults are experienced and identified.

With the use of classification machine learning models, fault
detection and diagnosis can be performed as a single operation. The
model takes the pre-processed process data as input, and typically
reports probabilities of each possible condition, including the
normal condition. Hence, it would make sense to refer to the

Frontiers in Energy Research frontiersin.org04

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

training data for these models as a condition library instead of fault
library, since it now includes data during normal conditions.

Even though detection and diagnosis do not have to be separate
operations with the use of traditional classification models, it could still
be implemented as a sequential process for computational efficiency.
Especially if computational resources are limited, it might be a good idea
to implement two models hierarchically: one for classifying between
normal condition and faulty conditions, and another one for classifying
among the faulty conditions. For the first model, all the known faults
could be lumped as one condition, and the classification job would be
reduced to a “one-vs-all” classification approach where the model
would either predict if the process is normal or faulty. Running the
second model would only be necessary if the prediction of the first one
was a faulty condition; the second model would then classify the
condition among all the fault types. This hierarchical approach can
be implemented explicitly, or implicitly as one of the standard
implementations of machine learning models. Regardless, the
condition library remains the same, a dataset for training
classification models.

2.7 Development of sensors and condition
monitoring systems

The condition library rarely has the complete set of possible
faults for a process, especially in the initial stages of process
development. One of the reasons for this is the lack of
appropriate sensors that can monitor the pertinent data
signatures for the fault. It could also be that a fault shares data
signatures with another fault, and the process does not have the
differentiating sensors that can discriminate between the two.
Hence, these similar faults could be initially classified as one.
Thus, the ability of a condition monitoring system to properly
detect faults is not just about the classification models being
deployed, or the quality and quantity of the training data, but
also of the availability of data sources that can provide the right
features for classification.

It is often the case that the appropriate sensors could be installed
in the later stages of process development and new faults would be
discovered along the way and added to the fault library. It is thus
very important that the condition monitoring systems should have
the flexibility to handle a dynamic fault library and allow frequent
retraining of the machine learning models that need to be able to
classify the newly discovered faults. This flexibility is a key feature of
this proposed condition monitoring framework.

3 Application case study:
roller compactor

For purposes of illustrating the proposed framework we consider
a simple case study centered on the WP-120 Roller Compactor by
Alexanderwerk (Becker-Hardt, 2018). Although housed as a single
machine, it is comprised of multiple unit operations with aggregate
control systems. Material transformations also occur multiple times
as the powder blend turns into ribbon and then into granules. This is
illustrated in Figure 2, which shows the material transformations
and the unit operations involved.

3.1 Roller compactor components and
control systems

The RC schematic in Figure 2 shows two main sections: the
powder compaction and the milling section. The powder
compaction section comprises a feed screw that pushes the
powder from the hopper into two counter-rotating rolls, forming
the ribbon. The lower roll is at a fixed position while the upper roll is
movable. A hydraulic pressure unit pushes this upper roll at a set
pressure towards the lower roll, and this pressure can be controlled
from the control panel of the RC; roll pressure is one of the
parameters affecting the density of the ribbon and is a key
variable for condition monitoring of the RC.

Under a given roll pressure, the upper roll may also be set at a
nominal position to set the roll gap (i.e., the gap between the upper
and lower rolls), which is an important parameter that affects the
ribbon width. This is achieved by activating the gap controller,
which maintains the roll gap under any roll pressure settings by
manipulating the speed of the feed screw. If the roll gap is increased,
then more material is required to maintain the roll pressure, and the
gap controller increases the feed screw speed accordingly.
Conversely, the gap controller will decrease the feed screw speed
if the roll gap is decreased.

The gap controller will also respond to the changes in the roll
pressure settings. Increasing the pressure will prompt the gap
controller to increase the feed screw speed, since a higher
pressure will squeeze the ribbon more tightly, effectively lowering
the roll gap. Conversely, the controller will decrease the feed screw
speed in response to a lower roll pressure setting.

In the milling section of the RC, the ribbon is broken into flakes,
and which are then milled into granules by two screen mills, each of
which involves a rotating “hammer” that breaks and grinds the
flakes until they become small enough to pass through the screen.
The distance between the hammer and the screen is one of the
controllable parameters of the milling operation, as well as the

FIGURE 2
Schematic of the WP-120 roller compactor.

Frontiers in Energy Research frontiersin.org05

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

rotation speed of the hammers. The rotation speed of both mills can
only have one setting, but the hammer-screen distances could be
different for the upper and lower mills. The upper mill is the first
screen mill through which the flakes pass and usually has a larger
screen size than the lower mill. The screen size of the lower mill
mainly determines the range of the particle size distribution of the
product granules, but it is a combination of the screen sizes of the
upper and lower mills, the distance between the rotary hammers and
the screens, and the rotation speeds of the hammer that would
determine the final size and shape distributions of the product
granules Akkisetty et al. (2010); Kazemi et al. (2016); Sun
et al. (2018).

3.2 Roller compactor condition
monitoring systems

Similar to larger scale manufacturing systems, the RC has a
built-in CM system that is focused on equipment and operator
safety, but not necessarily on the process condition. Hence, such CM
components are useful, but incomplete, and would require
additional CM systems that could handle faults related to the
process condition. This is a common experience in larger
systems, and it begs the question of how to handle them.

One alternative would be to ignore these existing systems and
create an entirely new CM system that covers all unit operations.
In an ideal world where data is free, it might be possible to
develop a machine learning model that can achieve this.
However, data is expensive in pharmaceutical manufacturing,
especially during process development. Moreover, maintaining
this model would be challenging as the process potentially
evolves to incorporate additional unit operations and as new
types of conditions (or faults) are discovered. A more sensible
option would be to determine which parts of the process the
existing built-in CM systems are monitoring, identify the blind
spots and develop CM systems for the blind spots, and then to
make these systems work collectively. However, this alternative
comes with challenges.

Different CM systems tend to focus on either operator and
equipment safety or product quality. It would be tempting to drop
one for the other, but this is not recommended since operator and
equipment failures do have a direct impact on product quality. These
CM systems also tend to work at different timescales, where systems
focused on equipment and operator condition tend to operate
within seconds or minutes, and CM systems focused on product
quality tend to operate within minutes or hours.

The proposed framework for developing CM systems for a
pharmaceutical manufacturing process can address these issues,
allowing for a practical development of CM systems where
existing but incomplete systems can be utilized and integrated
into newer ones to form a holistic condition monitoring strategy.

4 The framework

The proposed framework has four major stages: representation,
modularization, machine learning (ML) model development, and
integration.

This framework generally attempts to use process knowledge to
aid ML model development, which is largely a data-driven process,
and this incorporation of process knowledge starts with the
representation step. The main goal of a condition monitoring
system is to continuously predict the condition of a process in
real-time. This is challenging when the “condition” of a system could
be focused on either product quality or operator and equipment
safety. It is thus important to operate under a well-rounded
definition of the process condition, so it would be useful for
creating a holistic condition monitoring system.

To achieve this, the first stage of the framework attempts to
consider the different components involved in the condition of a
process and establish the relationships between these components
using the graphical modeling methodology Bishop and Nasrabadi,
(2006); Bishop, (2013). This process of representing the condition of
the process is the first stage of the framework, and it is called the
representation stage.

4.1 Representation

Representation of the process condition is arguably the most
important stage of this framework. It provides a visual description of
the process condition, which can be used to evaluate the ability of
existing condition monitoring systems to completely monitor the
process condition.

Taking the RC as an example; if PAT sensors, such as NIR, are
already installed to monitor the concentration and density of the
powder feed blend and the ribbon, then these same attributes could
be used to train a condition monitoring system to predict faults
related to the material (i.e., composition and density) and the sensor
(e.g., fouling). Moreover, RC machine data could be used to predict
faults such as powder blockages and gap control malfunction. If
these condition monitoring systems are in place, would they be
sufficient for monitoring the process condition? It would be very
difficult to make this evaluation without a way to properly define
process condition.

Representation addresses this problem and is the first stage in
developing a holistic condition monitoring system for a
manufacturing process. The process condition can be very
challenging to define, so we use techniques in graph theory since
it is a very effective way for abstracting complex concepts in math
and physics. The representation of a process condition will thus be
comprised of two main components: nodes and arcs. The nodes will
represent the condition of the parts of the system that are relevant to
condition-based maintenance, and the arcs will depict the
relationships between the nodes.

Defining nodes can be a very boundless endeavor, but it can be
specified by starting with the very purpose of any chemical
process—to transform material into desired products. This means
that any chemical process has material transformations that need to
be represented. These transformations could be as simple as
physically mixing two streams together or could be as
sophisticated as two streams chemically reacting to form multi-
phase product streams. In any case, this transformation can be
depicted by defining two types of nodes: the material condition node
and the equipment condition node. Both nodes are similar in that
they represent a condition and have at least two states: normal and

Frontiers in Energy Research frontiersin.org06

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

faulty. If multiple faults are known about the material or the
equipment, then the number of states would increase by the
number of additional known faults. Mathematically, these nodes
are random variables that have a discrete distribution for each of
the states.

These two nodes are thus only different by the type of condition
that they represent. The material condition node represents the
condition of a material. In the example of two streams physically
mixing, there would be at least three material condition nodes: one
node for each of the input streams and another one for the output
stream. The equipment responsible for the mixing (e.g., a
continuous blender or a simple pipe) would have an equipment
condition node to represent its condition.

Even for a more complex material transformation that occurs in
a chemical reactor, the process condition could be represented by
material and equipment condition nodes. The condition of the input
and output streams of the reactor would be represented by their
material condition nodes, and the chemical reactor would be
represented by its own equipment condition nodes. If additional
sensors and controllers are employed to control and impact these
material transformations, then they would be represented by an
equipment condition node as well.

These nodes would then be connected using directed arcs,
which link one or more variables with each other. In the mixing
example, there would be arcs from each of the two input streams
to the output stream. This means that the condition of the input
stream has a direct impact on the condition of the output
stream—e.g., if one of the input streams has a higher viscosity,
the output stream would likely have higher viscosity. Arcs would
also be drawn from the equipment condition node to the material
condition node that it directly impacts. In other words, arcs are
drawn to represent conditional relationships between nodes; if
one condition node directly impacts the condition of another,
then directed arcs need to be drawn to represent that
relationship.

Altogether, these material and equipment condition nodes, as
well as the directed arcs, represent the process condition. Just as
graphs offer a convenient way for abstracting mathematical
functions, it can be used to simplify a seemingly obscure process
condition and visualize it. As will be discussed in the later sections,
such a visualization of the process condition would be key for the
other benefits that can be achieved with the proposed framework.

This construction of nodes and arcs is similar to signed directed
graphs (SDG) but differs mainly because the former is quantitative
in nature, while signed directed digraphs are qualitative. The nodes
of an SDG represent process variables that are either observable or
measurable, and the faults that need to be determined. These nodes
assume values of high, normal, or low; and the arcs between the
nodes represent how one variable/s affect the other. Based on these
relationships, an initial response table is generated, which would
then be used to compare with real-time observations of the process
in order to perform fault diagnosis Iri et al. (1979); Vedam and
Venkatasubramanian, (1997); Venkatasubramanian et al. (2003a).
By contrast, the condition monitoring framework does not explicitly
represent the process variables in the graph structure. The nodes
represent the condition of the process components, and the directed
arcs represent the probabilistic relationships between the nodes.
Once the graph is built, the process variables and the faults are

mapped onto the nodes, and modules are created accordingly. This
will be explained further in the succeeding sections.

For a continuous pharmaceutical manufacturing system, there
are at least two types of conditions to consider during the
representation stage: the condition of the material being
processed and the condition of the equipment processing the
material. While there could be other types as well, like the
condition of the sensors and controllers, the discussion will be
limited to only the material and the equipment condition. It
should be apparent that the techniques discussed in the following
sections could potentially be extended to a larger number of
condition types.

The material condition pertains to the quality of the material,
and this is usually the focus of CM systems that focus on process
condition. The equipment condition pertains to the health and
safety of the equipment, and this is usually the focus of built-in
CM systems that focus on equipment and operator safety. While
seemingly unrelated, the equipment condition does affect the
condition of the material and hence, product quality. Establishing
the relationships between these condition types is one of the main
goals of the representation stage, which can be performed as follows.

4.1.1 Representing the condition of the
roller compactor

The material transformations in the roller compactor start with
the feed, which is a powder blend of an active pharmaceutical
ingredient and excipients. This blend is transformed into a
ribbon, cut into flakes, and then milled into granules that have
better processability than the powder blend. Thus, there should be
three blue nodes to represent the condition of the blend, rolls, and
granules. As shown Figure 3A, these nodes are then connected by
directed arcs to depict their conditional relationships; that the blend
is transformed into rolls, and the rolls into granules.

Once material transformations have been depicted, the next step
is to consider the equipment conditions, which we represent as green
nodes instead of blue, to visually differentiate equipment from
material conditions. For the roller compactor, this would be the
condition of the rolls and the mill, which respectively affect the
transformation of the powder blend into a ribbon, and the ribbon
into granules. Their roles in material transformations could then be
captured using arrows, forming a directed graph (Roweis and
Ghahramani, 1999) as shown in Figure 3B.

Similarly, for cases where more types of conditions are
considered, i.e., condition of the sensors and the controllers, they
could be integrated into the graph using arrows. For example, if a
sensor is monitoring the ribbon, and that sensor is providing
feedback to the control system of the roller compactor, then a
directed arrow should connect the node depicting the condition
of that sensor towards the ribbon condition node. This implies that if
the sensor is malfunctioning, it could negatively impact the
condition of the roll.

The graph produced during the representation stage offers an
illustrated model of the condition of the roller compactor, which
would have otherwise been a complicated concept to describe, and
even more so to predict. With such a representation, the goal of
condition monitoring could now be defined as the process of
predicting the values of the equipment and condition nodes in
real-time.

Frontiers in Energy Research frontiersin.org07

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

4.2 Modularization

Having a proper representation of the process condition enables
the proper evaluation of the current visibility of the condition of the
process system. For example, the WP-120 roller compactor already
has existing CM systems. Previous fault detection and diagnosis
efforts focused on automatically detecting powder blockage and gap
control malfunction from machine data Gupta et al. (2013); Lagare
et al. (2021). Moreover, efforts were ongoing to develop a CM system
that can automatically discriminate material faults from sensor
faults Lagare et al. (2021).

Would it be sufficient to use these CM systems autonomously?
Do they offer holistic monitoring of the process condition? Having a
proper representation of the process condition in Figure 3B allows
the proper mapping of the existing systems on the condition
representation. By looking at the location of the faults considered
by the two different CM systems, it can be established that the CM
system focused on detecting powder blockage and gap control
malfunction is monitoring the condition of the rolls, while the
other one is monitoring the condition of both the blend and
the ribbon.

By properly mapping these systems as shown in Figure 3C, it
becomes apparent that there is limited visibility on the full process
condition—i.e., there are no systems monitoring the mills and the
granules. These “blind spots,” which are marked with orange boxes
in Figure 3C, thus need their own CMmodules. The creation of these
modules could be prioritized in the next stage of the
framework—i.e., machine learning model development.

Notice that the two blind spots could also be addressed by
having one condition monitoring system that covers both the
mills and granules. This could certainly be the case and the
actual implementation would depend on the availability of
sensors or the availability of known faults. If nothing is
measured from the mills and there are no known faults, then
it would be impossible to have a CM system created just for the
mill. As will be further explained in Section 4.3, any modular
CM system would require at least one measurement variable and
one fault that is localized in that module. It would be more
sensible to just integrate it with the granule condition node or
leave it as a blind spot. The latter would be the more flexible
option because additional sensors would leave the granule
module undisturbed.

As new sensors are installed, new faults could be discovered.
Having the process condition modularized means that retraining the
condition monitoring systems, to accommodate the additional input
variables from the new sensors and the new faults to classify, is
confined to only the affected module. This makes it so much more
efficient in comparison to retraining a much larger singular model
had the process condition not been modularized.

Because of the simplicity of the RC process condition, the
modularization job was relatively straightforward; the mill
condition and granule condition variables could be assigned their
own separate (or combined) CM modules. However, for larger
systems, this modularization problem might not be as trivial, so a
proper workflow is required. This proposed workflow is shown in
Figure 4 and it involves designating a central node, which must have
a fault associated with it as a primary requirement. This also means
that faults are always located on any one of the condition variable
nodes. Otherwise, the process condition representation in Figure 3B
might be incomplete and is most likely missing a condition variable.

If this central node also has measured variables in addition to the
fault, then it can potentially stand alone as a module since it would
complete the predictor and predicted variable sets for the machine
learning development phase. If this central node has measured
variables, then adjacent nodes need to be incorporated into the
module. If the adjacent nodes still do not have measured variables,
then the nodes adjacent to it would be added, repeating this process
until all added nodes have a measured variable associated with them.

This modularization methodology ensures that the measured
variables closest to the fault location are included in the modules. It
can be reasonably expected that these variables have a higher chance
of displaying signatures that can identify a fault, by comparison to
other variables that are farther away. This methodology essentially
filters out variables that would have added to the complexity of the
machine learning task, but not necessarily improved its
performance.

While the resulting modules in the RC application case study
were consistent with this workflow, the simplicity of its process did
not require the full extent of its features. However, this will be
covered in a follow-up paper to this publication where more
complicated case studies are tested using the framework.

The workflow in Figure 4 also considers the presence of existing
CM systems that may or may not cover all the known faults
associated with the central node. If the latter is the case, it is

FIGURE 3
Representing the Condition of a Roller Compactor. (A) Representing Material Transformations. (B) Depicting Equipment and Unit Operations
Responsible for Material Transformations. (C) Mapping existing CM systems to the process condition representation.

Frontiers in Energy Research frontiersin.org08

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

recommended to create a new CM system that would cover all
known faults for the central node. This new system could then be
treated as the primary monitoring module, while the existing one
could be used as a redundant option.

4.3 ML model development

Machine learning models have recently become synonymous
with neural networks. However, they are much more general than
that. A machine learning model is any model that does not have to
be explicitly programmed to perform a task. It assumes a general
structure with a fixed set of parameters (or hyperparameters) but
uses data to tune these parameters in a way that it performs the task
well given the scope of the data. There are many tasks that a machine
learning model could perform, and classification is a machine
learning task that can be used to automate fault detection
and diagnosis.

It is certainly possible to simply take all the data from a process,
apply appropriate pretreatments, and use the pre-treated data to
train a classification machine learning model that can classify in
real-time the process condition into any of the possible conditions in
the condition library.

Doing this has disadvantages: updating new sensors and new
faults would require retraining a very big model; changes in the
process would require training a very big model; and training a very
big model would require a very large training dataset. The proposed
framework addresses these issues by breaking the entire process
condition representation into smaller modules; simplifying machine
learning model training during initial development as well as model
retraining as new sensors are installed and new faults are discovered.

In the RC example, the representation and modularization
stages break down the process condition monitoring task into
four smaller condition monitoring modules, each with their own
condition libraries that can be used to train their own condition
monitoring system. The next stage would be to train machine
learning models for these modules so that the measured variables

in the module can be used to predict the condition associated with
the central node (or the node containing the faults) of the module.

This operation can be visualized in Figure 5, where the
measured/manipulated variables in the rolls and blend-ribbon
modules are used to assign a probability to each possible
condition in the central node—i.e., normal, fault 1, fault 2,
etc.—and a voting system will identify the one with highest
probability to be the predicted condition.

The gray broken arrows in Figure 5 indicate that the condition nodes
represent discrete probability tables. When a condition monitoring
module makes a prediction, it essentially assigns a value of 1.0 to the
condition probability of each node that is included in themodule. This is
a simple concept to understand for the Rolls module since it only
comprises one node. However, for the Blend-Ribbon module, it is not
very straightforward, although it is still relatively simple.

Consider the list of conditions for the Blend-Ribbon module in
Table 1. It Is a list that predates this proposed framework, so this list does
not resemble anything like the discrete probability tables in Figure 5,
which is a result of representation and modularization. If a machine
learning model would be trained to classify the process among the
conditions in this list, it is not obvious how these predictions could be
used to update the probabilities of the condition nodes in Figure 5. To
make this connection, each of the items in the condition list should
assign a state to all the condition nodes that are involved in themodule, if
they are predicted to be the condition. For example, if Fault 1 in Table 1
is the predicted condition, then it should assign a normal state (value = 0)
to the blend and ribbon condition nodes. Similarly, if Fault 4 was the
predicted condition, then the blend condition and ribbon condition
nodes would be assigned a value = 1, since the state of the blend is low
API, which would result in a low-density state for the ribbon.

Translating the results of a modular condition monitoring
system into a value for each of the nodes in the module is an
important aspect of this framework. This is a requirement for
mapping existing condition monitoring modules onto the process
condition representation. Non-translatability could be an indication
that the mapping is incorrect, and a review needs to be made of the
scope of the existing system.

FIGURE 4
Modularization workflow.

Frontiers in Energy Research frontiersin.org09

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

This translatability is a concern even if the modular system was
identified as a blind spot after representation and modularization. If
a module covers one or more condition nodes, it would be ideal to
redefine the condition library in terms of the different states of the
condition nodes that are included in the module. However, if this is
impractical to do, it is mandatory to implement a translation scheme
that assigns corresponding states to all the pertinent condition nodes
for every predicted condition in the condition library.

4.3.1 The ML model development workflow
One of the enabling technologies of this framework is the

availability of machine learning platforms that automatically
suggest a machine learning algorithm for the data and the
particular type of machine learning job. For condition
monitoring, the machine learning job type is classification, where
continuous variables are used as predictors for the fault types, which
can be assigned as discrete variables (e.g., 0, 1, or 2) that correspond
to each of the predicted fault types.

Themachine learning platform used for the RC case study isML.
NET, Microsoft, (2022) which has the Model Builder feature that
can take training data from the process, suggest the most effective

machine learning algorithm, and then generate the code of the
trained model that one could use for predictions. In the machine
learning model development workflow shown in Supplementary
Figure S1, the Model Builder feature primarily handles the “Build
and Train” stage, which involves selecting the best machine learning
model for the loaded data, and then training and evaluating the
model. This results in a code containing the fully trained model that
can be used to make predictions on real-time data. The engineer
tasked with developing the CM system can then focus on preparing
the data and extracting features from the data, a task that can require
domain expertise Lagare et al. (2023).

A major benefit of the Model Builder feature is the accessibility
of the most advanced machine learning algorithms within a single
package. This promotes a streamlined workflow of model training
and discrimination, which could lead to the best possible model for a
given dataset. This is most useful given the evolutionary nature of
the process and the corresponding condition monitoring system; the
most appropriate machine learning model might change as more
fault data is collected and as more faults are discovered. Having an
integrated package for all machine learning models facilitates this
evolution better by promoting a toolbox-oriented approach

FIGURE 5
How CM systems work (figure showing measured and manipulated variables predicting the central nodes).

TABLE 1 Condition list for blend-ribbon module.

Condition label Description

Normal Label Everything is normal

Fault 1 The NIR sensor monitoring the blend is fouling, but the blend and ribbon are normal

Fault 2 The NIR sensor monitoring the ribbon is fouling, but both the blend and ribbon are normal

Fault 3 Both NIR sensors are fouling, but the blend and ribbon are normal

Fault 4 All NIR sensors are normal, but the API concentration is low for the blend and the ribbon

Fault 5 All NIR sensors are normal, but the API concentration is high for the blend and the ribbon

Frontiers in Energy Research frontiersin.org10

Lagare et al. 10.3389/fenrg.2024.1351665

http://ML.NET
http://ML.NET
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

(Venkatasubramanian, 2009) to model development. This is an
advantage over the widespread practice of implementing different
models using different programming platforms, different languages,
and different libraries; because even if a condition monitoring
system developer is familiar with a certain algorithm, its limited
availability on specific programming platforms and languages could
discourage its inclusion into the machine learning model
development workflow.

4.3.2 Data preparation
As specified in Supplementary Figure S1, training data needs

pre-treatment before ML model development can begin. For this
case study, it is advantageous to make the predictions robust against
random fluctuations by capturing the rolling average and standard
deviations. Furthermore, it is better to center and scale the data using
the mean and standard deviation, Chiang et al. (2000); Yin et al.
(2012); Basha et al. (2020) both of which are measured from normal
operating conditions data.

This pretreatment workflow is illustrated in Supplementary
Figure S2 and can be considered as part of the feature extraction
step described in Supplementary Figure S1 for the ML Model
Development Workflow. This workflow does not have to be
followed exactly for all CM systems development jobs since the
appropriate one would most likely vary on the situation, depending
particularly on the data and the ML Model Development scheme
that is employed. However, for the Model Builder Feature of ML.
NET, this data pretreatment scheme yielded superior results across
the modules in the RC case study.

4.3.3 Alternative ML development methodologies
ML.NET is very advantageous for CM systems development, as

will be shown in the Results and Discussion section, and it is
certainly a very convenient way for a non-expert in machine
learning to harness the latest advances in the field. However, it is
worth mentioning that it is not necessarily the best platform for ML
model development.

If the CM systems developer can invest time in learning about
probabilistic graphical modeling, particularly factor graphs, it is
possible to utilize a new paradigm in ML model development called
Model-based Machine Learning (MBML). Bishop, (2013) The idea
behind this paradigm stems from a unifying view of machine
learning where the models can be represented as a factor graph,
Roweis and Ghahramani, (1999) and the ML predictions can be
implemented by performing Bayesian inference on the graphs. Infer.
NET is a program that can perform these inferences efficiently via
message passing algorithms (Minka et al., 2018a) and has been
demonstrated to be successful in running ML models that are
bespoke to the applications. Braunagel et al. (2016); Vaglica et al.
(2017); Minka et al. (2018b) Discussing the details of this paradigm
is beyond the scope of this paper, and its possible advantages over
ML.NET requires further investigation. However, the reader is
directed to http://dotnet.github.io/infer for more information.

4.3.4 ML performance evaluation and novel fault
detection capabilities

Condition monitoring systems are typically evaluated using fault
detection rates (FDR) and false alarm rates (FAR). Chiang et al.
(2000); Yin et al. (2012) In order for a classification model to be

useful, fault detection rates should be close to 1 and false alarm rates
need to be close to 0. One of these cannot be underperforming; a very
high fault detection rate is useless if the system is in a constant state
of false alarms, and a very low false alarms rate is pointless if a system
is unable to detect most faults. Hence, the FDR and FAR have
become standard measurements in comparing the effectiveness of
different machine learning algorithms applied to condition
monitoring of the same processes.

While these two metrics are included in evaluating the machine
learning models developed in the RC application case study, they
can be insufficient. These CM systems are meant to be utilized by a
human operator, which would only happen if the latter can trust the
predictions made by the former. Trusting these predictions can be
tricky if the fault library is initially incomplete, as is the case for
many process systems. An incomplete fault library means that the
CM system would try to classify a novel fault as one of the conditions
in the fault library, which can lead to an incorrect and a potentially
disastrous response. Hence, it is important that novel conditions are
properly detected and managed; otherwise, the operator would
never be able to trust the condition predictions, even though the
FDR and FAR are perfect.

Hence, two additional metrics are introduced in this study to
evaluate the trained ML models: normal condition prediction
certainty index and the overall prediction certainty. These
proposed indices capitalize on prediction certainties as an
additional layer of information that can be used to predict novel
faults. More information on novel fault management and novel
detection performance indices are detailed in Section 4.3.5.

4.3.5 Novel fault management
As noted above, it is imperative that a condition monitoring

system employs an effective system for managing novel faults,
particularly to detect them before they are properly identified.
Novel fault detection practically acknowledges the limitation of
the model and properly initiates intervention by the operator to
detect and diagnose faults that are either novel or have data signals
that have not been experienced before.

The management of novel conditions or faults is often
neglected in the condition monitoring literature, but it is a very
important aspect of condition monitoring systems, especially when
facing the possibility of encountering faults with a very short
degradation time. A proposed solution is to employ machine
learning classifiers that assign scores or probabilities to the
different classes; a voting mechanism would select the class
with the highest probability and assign it as the predicted class.
Often, this probability is merely used to get the predicted class, but
this can serve as a layer of information that can aid in detecting
novel conditions.

Consider the predictions made by a condition monitoring
system in Figure 6. This system employs a machine learning
model that has been trained to classify two conditions: normal
and fault type 1 (powder blockage). So, regardless of the actual
condition, it will classify either normal or fault type 1. In the figure,
fault type 2 was induced at 100 s; the model does not recognize fault
type 2, so it incorrectly predicts the condition to be normal. But
notice the probability assigned to the condition being normal; it
went from higher than 0.95, to less than 0.85. If a threshold was
applied at a probability of 0.90, where any prediction that has an

Frontiers in Energy Research frontiersin.org11

Lagare et al. 10.3389/fenrg.2024.1351665

http://ML.NET
http://ML.NET
http://Infer.NET
http://Infer.NET
http://ML.NET
http://dotnet.github.io/infer
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

assigned probability less than 0.90 would be rejected, a novel
condition could be deduced.

This proposed method of novel fault detection thus requires the
use of machine learning classifiers that assign a score or a probability
to each condition (and then uses a voting mechanism to select the
condition with the highest score or probability to be the predicted
condition), and that the predictions for the known conditions be
higher than an assigned threshold (e.g., 0.90). The latter requirement
could be challenging to accomplish especially with a very large
system, but this should be remedied by the representation and
modularization aspects of the proposed framework.

A full demonstration of this novel fault detection will be
reported in an upcoming paper, but at this point we simply note
that it is important to consider beforehand the ability of a machine
learning model to detect novel faults as part of the model
discrimination process during the ML model development stage
of the proposed framework. Since the proposed detection scheme for
novel faults relies on high prediction certainties, at least relative to a
threshold, it is possible to evaluate novel fault detection capabilities
based on prediction certainty criteria.

4.3.6 Novel fault detection performance indices
We propose at least two certainty indices to evaluate for novel fault

detection capabilities: the normal condition certainty index and the
overall prediction certainty index. These indices are computed using a
threshold, which we nominally select to be 0.90. The overall prediction
certainty index is calculated by counting the number of predictions that
has a probability higher than the nominally selected threshold, and then
dividing this by the total number of predictions. The normal condition
certainty index is calculated by counting the number of normal condition
predictions that have a probability higher than the nominally selected
threshold, and then dividing this by the total number of normal
condition predictions. These certainty indices have no regard for the
accuracy of their predictions, so they need to be used in conjunction with
the accuracy analytic, which is just the number of correctly predicted
conditions, divided by the total number of predictions.

Computing these certainty indices effectively evaluates the
ability of a machine learning model to detect novel faults.

Together with fault detection rate, false alarm rate, and accuracy,
these indices provide a comprehensive scheme to discriminate
machine learning models during the ML model development
stage of the proposed framework. Table 2 is a summary of
performance indices used for model selection and their definitions.

4.3.7 Updating CM modules
The discovery of new faults necessitates updating the CM

system. With a framework that relies on modularization,
updating entails retraining a ML model for the pertinent module.
This is much more practical than the alternative, which is to retrain
the entire system just to be able to add one fault to the fault library. A
modularized CM system is much more practical to maintain as well.
If a tablet press (TP) were to be added to the process, as it would for a
dry granulation line, then this would be as simple as adding more
modules after the granule condition node. A centralized system
would have to retrain a new model that would now include both the
RC and the TP, and this could be more expensive to do, if not
impossible, to yield a high performing classifier of conditions.

4.4 Module integration

After the ML Model development stage, all the CM modules
identified in Figure 3C should already have a working ML model. For
the RC application case study, this means that values of the nodes
depicted in Figure 5 could now be predicted in real-time. The ability of
these modular systems to make reliable predictions on the values of
the nodes depends on the reliability of the sensors, which require
regularmaintenance.When they do, the CMmodules relying on those
sensors to make predictions would cease to function, which would
compromise the visibility of the condition nodes.

Fortunately, the directed graph (Figure 3B) that is the end-product
of the representation stage in the framework can be treated as a such. As
a directed graph, the condition nodes are linked by unidirectional
arrows that determine their causality, which can be used to make
inferences, both qualitative and quantitative. Qualitatively, for the RC
case, the rolls and blend nodes both have an arrow directed to the
ribbon node. This can be interpreted as the dependency of the condition
of the ribbons on the condition of the blend and the condition of the
rolls transforming the blend into ribbons. With these known
dependencies, it is possible to make useful inferences.

4.4.1 Inferring missing condition nodes
For example, in Figure 7A, if the condition of the both the ribbon

and the rolls are both unknown, but the blend was observed to be
defective, then it is reasonable to infer that the ribbon might end up
being defective. Likewise, in Figure 7B if the rolls aremalfunctioning,
the produced ribbon could be defective. If both the rolls and blend
were observed to be abnormal, then the chances of the ribbon being
defective is even higher, as shown in Figure 7C.

An even more interesting inference is when it goes upstream of
the flow of dependencies. For example, in Figure 7D, the ribbon was
observed to be defective, but the rolls were found to be working
normally; it would be reasonable to infer that the blend might be the
defective one. Similarly, in Figure 7E, it would be reasonable to infer
that the rolls might be malfunctioning if the ribbon was found to be
defective, but the blend was confirmed to be normal.

FIGURE 6
Test predictions of the Condition Monitoring System for Fault 2
(before the module was trained for its data signatures).

Frontiers in Energy Research frontiersin.org12

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

These reasoning scenarios show that the availability of a directed
graph to represent the process condition is useful in cases where only
some nodes are observed; one can use the observed nodes to predict
the condition of the unobserved ones. In an ideal case for a fully
functional CM system, all condition nodes should always be visible.
However, the ability of the CM systems to “observe” the nodes
depends on the performance of pertinent sensors, and sensors do
experience performance drifts and regular maintenance. When these
issues occur, and sensors need to be temporarily taken out of
operation, it would be valuable to maintain the visibility of the
process system condition, thereby ensuring that quality assurance is
maintained without having to resort to a process shutdown.

4.4.2 Probabilistic programming and inference
Although the variable relationships discussed in Figure 7 are all

qualitative reasonings, they can also be performed quantitatively
using Bayesian inference. This makes it possible to automate the
process and implement it as the fourth stage of the framework
(Figure 8)—i.e., module integration.

Taking the situation in Figure 7D as an example, where the
nodes represent random variables and the arrows represent their
probabilistic relationships, the directed graph represents the
following equation by the basic laws of probability:

P Blend, Rolls, Ribbon() � P Rolls()P Blend()P Ribbon|Rolls, Blend()
(Equation 1)

To infer the condition of the blend, observations of the rolls and
the ribbonmust be utilized, which were 0 and 1 respectively since the
rolls were normal and the ribbon was defective. Applying Bayes’
Rule yields:

P Blend|Roll � 0, Ribbon � 1() � P Blend, Rolls � 0, Ribbon � 1()
P Rolls, Ribbon()

(Equation 2)
The denominator in Equation 2 can be calculated by summing

over the Blend variable from Equation 1, which yields the
following equation.

TABLE 2 Summary of performance indices used for machine learning model selection.

Performance index Definition

Fault Detection Rate Ratio of the number of faulty conditions that were correctly predicted to be faulty, over the number of faulty conditions

False Alarm Rate Ratio of the number of normal conditions that were incorrectly predicted to faulty, over the total number of faulty conditions

Accuracy Fraction of all conditions that were correctly predicted

Normal Condition Certainty Index Fraction of all normal conditions that were correctly predicted to be normal with a prediction probability that is higher than the
threshold

Overall Prediction Certainty Index Fraction of all conditions that were correctly predicted with a prediction probability that is higher than the threshold

FIGURE 7
Reasoning scenarios of using observed nodes (blue or green colored nodes) to unobserved nodes (black nodes). (A) Inferring ribbon condition based
on observed condition of the blend. (B) Inferring ribbon condition based on observed condition of rolls. (C) Inferring ribbon condition based on observed
condition of rolls and blend. (D) Inferring the blend was defective since the ribbon was observed to be defective while the rolls were confirmed to be
functioning normally. (E) Inferring rolls are malfunctioning since the ribbon was defective but the blend was good.

Frontiers in Energy Research frontiersin.org13

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

P Blend|Roll � 0, Ribbon � 1() � P Blend, Rolls � 0, Ribbon � 1()
∑BlendP Rolls � 0, Ribbon � 1, Blend()

(Equation 3)

Substituting the numerator Equation 1 into the numerator in
Equation 3 yields:

P Blend|Roll � 0, Ribbon � 1() � P Rolls � 0()P Blend()P Ribbon� 1 |Rolls � 0, Blend()
∑BlendP Rolls � 0()P Blend()P Ribbon� 1 |Rolls � 0, Blend()

(Equation 4)

Using Equation 3 posterior probabilities of the blend being
normal or defective can be computed. For demonstration
purposes, we can assign variables to the conditional probability
tables that the nodes in Figure 7D represent, as shown in Tables 3–5.
The variables x, y, a, b, c, d, e represent actual probability values of
the condition nodes. Hence, these conditional probability tables
must be learned beforehand to perform these inferences. We can
substitute these variables into Equation 4 for brevity to give Equation
5 and Equation 6 for the blend being normal or defective
respectively. These probabilities could then be compared to make
a prediction about the condition of the blend.

P Blend� 0 |Roll � 0, Ribbon � 1() � xy 1 − a()
xy 1 − a() + xy 1 − b()

(Equation5)
P Blend� 1 |Roll � 0, Ribbon � 1() � xy 1 − b()

xy 1 − a() + xy 1 − b()
(Equation 6)

The preceding development equation for the 3-node graph from
Figure 7D can be applied to the full Roller Compactor representation
in Figure 3B, where the following joint probability equation in
Equation 7 would be used instead of Equation 1. Predicting the

blend condition could then be computed by starting out with the
following equation and then applying Bayes’ rule as
previously outlined.

P Blend, Rolls, Ribbon,Mill, Granules()
� P Rolls()P Blend()P Ribbon|Rolls, Blend()P Mill()
P Granules|Mill, Ribbon()

(Equation 7)
Of course, working out these equations will lead to Equation 5

and Equation 6 because the denominator in Equation 2 would now
entail summing the joint probability over the blend, mill, and
granules condition variables, which will lead to a value of 1 for
P(Mill) and P(Granules|Mill, Ribbbon).

The ability to perform this type of inference even with increasing
number of variables is an important modularity feature that would
allow the integration of other unit operations like the tablet press,
adjacent to the roller compactor. However, exact inference on
graphical models is NP-hard (Dagum and Luby, 1993), and as the
model gets bigger withmore condition variables, exact inference can be
computationally expensive and impractical for monitoring purposes.

Fortunately, inference can be performed approximately (Bishop
and Nasrabadi, 2006; Bishop, 2013) through a probabilistic
programming framework like Infer.NET, Minka et al. (2018a)
which is the same program used for the MBML paradigm
described in Section 4.3.3. Infer.NET allows a user to program
the graph in Figure 7D probabilistically—i.e., the condition nodes
have assigned probabilities—and perform Bayesian inference on
those nodes via computationally efficient message passing
algorithms Lagare et al. (2022).

4.4.3 Learning the priors
The first three stages of the framework shown in Figure 8 results

in modular CM systems that ultimately convert process data from
the sensors and equipment into a dataset with discrete values. If the
individual nodes in RC condition model in Figure 3B were all
binomial—i.e., the nodes have two possible values—then the
dataset from the CM modules would resemble Figure 9, which
shows that for each observation, all the condition nodes (e.g., blend,
rolls, etc.) would have two possible values (0 or 1) that would
correspond to its actual state (normal or faulty).

The collection of this discrete dataset, when all the CM modules
are functional—i.e., no sensors or equipment are under
maintenance—is the critical piece that can be used to learn about
the ground truth of a process condition. This ground truth is
illustrated in Figure 10, where each node represents a discrete
probability distribution that is represented by the corresponding
conditional probability tables. For simplicity, most of the nodes

FIGURE 8
Framework for development of condition monitoring systems.

TABLE 3 Probability table of the rolls condition node.

Rolls condition Rolls condition value P(Rolls)
Normal 0 x

Gap Control Deactivated 1 1 − x

TABLE 4 Probability table of the blend condition node.

Blend condition Blend condition value P(Blend)
Normal 0 y

Low API 1 1 − y

Frontiers in Energy Research frontiersin.org14

Lagare et al. 10.3389/fenrg.2024.1351665

http://Infer.NET
http://Infer.NET
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

assume a binomial distribution to represent that the possible states
could be normal or faulty. However, these nodes can be assigned a
multinomial distribution to align with the typical fault library that
would most likely have more than one fault type. To demonstrate
this extendibility, the granules node was assigned such a distribution
with three possible states.

In order to make accurate inferences on unobserved nodes based
on the observed conditions of adjacent nodes, it is important to learn
this ground truth. This can be done by first adding additional nodes
to represent the prior probability of each of the condition nodes.
With each observation from a fully functional CM system with no

ongoing sensor or equipment maintenance, one can use Bayesian
inference or message passing algorithms to infer the values of the
prior probability nodes. This parameter learning scheme is
illustrated in Figure 11.

The size requirement of the data for learning the prior
probabilities is a potential issue for integration, especially as the
number of unit operations, and hence the number of condition
nodes, increase. However, for the RC application case that has five
condition nodes, the assumed ground truths in Figure 10 was
learned after 100 observations, which is subjectively a
manageable number. As shown in Figure 12, further observations
only increase the certainty of the prior probabilities.

There will be a critical number of observations that are
required to correctly learn the ground truths. This number is
expected to increase as more condition nodes are integrated into
the model and as more faults are added to the fault library, since it
would increase the number of states in the existing condition
nodes. While Bayesian inference could be performed regardless,
the accuracy of those inferences can only be useful once the
ground truths have been properly learned. Hence, the ability to
estimate this critical number based on the current structure of the
graphical model (i.e., the result of the process condition
representation stage) could provide framework users a
convenient way to set a target number of complete condition
data from the modules, indicating when process condition

TABLE 5 Conditional probability table of the ribbon condition node.

Rolls condition value Blend condition value P(Ribbon � 0) P(Ribbon � 1)
0 0 a 1 − a

0 1 b 1 − b

1 0 c 1 − c

1 1 d 1 − d

FIGURE 9
Data from the modular CM systems.

FIGURE 10
Sample ground truth of a process condition model.

Frontiers in Energy Research frontiersin.org15

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

graphical model could be reliably used for integration. Such
investigations are important but are beyond the scope of this
paper but should be addressed in future studies.

4.4.4 Enhancing decision-making and robustness
With a properly trained condition model, it would now be

possible to reliably use the priors to enhance the capabilities of
the CM system. An important scenario arises when the granule
condition is not visible, possibly due to sensor maintenance. Since
the granule condition practically pertains to the Critical-Quality-
Attributes (Yu et al., 2014) of the RC operation, the inability to
monitor it removes the assurance of product quality, and a process
shutdown might be necessary, which can be costly.

However, with a holistic module integration scheme, quality
assurance does not have to suffer during sensor maintenance. As
shown in Figure 13A, it is possible to use the observations on the
condition of the adjacent nodes—e.g., the ribbon and mill condition
nodes—to infer the condition of the product granules. These
inferences are summarized in Figure 14, where the predictions on
the granule condition varies with possible observations on the
ribbon and mill conditions.

Furthermore, inferences are even possible with multiple
unobserved nodes. In the case of Figure 13B, the ribbon node is
also unobserved in addition to the granule, but the condition of the
product quality could still be inferred to maintain quality assurance
during operation. This is possible because the remaining observed
nodes—e.g., blend, rolls, and mill—are “connected” under the
d-separation (Bishop and Nasrabadi, 2006) criterion. Since the
inferred condition of the granules are now dependent on the
observations of three nodes instead of two, there are more
possible predictions for the granule condition, which are
summarized in Figure 15.

5 Results and Discussion

The focus of this paper is to introduce the concepts underlying
the framework for developing CM systems. However, even with the
RC as a target application case, it is not currently possible to give a
full demonstration of the framework in this paper; the development
of the individual CM systems is still a work in progress. In fact, a
concept of virtual sensor for monitoring granule flowability has just
been recently published (Lagare et al., 2023), and a working sensor
for monitoring granule properties in real-time does not exist yet.
Likewise, the CM module for the mill condition also lacks a proper
sensor for monitoring, and this is still ongoing research by our team.

FIGURE 11
Learning the prior probabilities.

FIGURE 12
Parameter learning versus observations.

Frontiers in Energy Research frontiersin.org16

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

However, two modules—e.g., rolls and blend-ribbon
modules—that were identified and mapped by framework, are
already prime for discussion and offer sufficient proof of the
effectiveness of the framework.

5.1 Performance of modular systems

5.1.1 Roll module
The roll module mapped in Figure 3C is based on an earlier

study (Gupta et al., 2013) that utilized statistics based on Principal
Components Analysis (PCA) to detect abnormal conditions, but
then relied on an operator to diagnose the nature of the condition
based on the PCA loadings. To avoid this reliance on a skilled

operator to classify the fault, ML.NET was used to select and train a
machine learning model that can automatically detect and classify
faulty conditions.

As illustrated in Figure 5, the rolls module can have any of the
three conditions: normal, powder blockage (fault 1), or gap control
malfunction (fault 2). To predict these conditions, machine data was
used: roll gap, roll speed, feed screw speed, and roll pressure. These
data would then be used to predict the probabilities of each possible
condition of the rolls, depicted in Figure 16 as either x, y, or z; where
the sum of x, y, and z equals 1.

This classification problem in machine learning is one of the
pre-defined scenarios in the Model Builder feature in ML.NET; thus,

FIGURE 13
Product granule quality inference scenarios during sensor maintenance. (A) Inferring granule condition monitoring module under maintenance. (B)
Inferring ribbon and granule condition monitoring module under maintenance.

FIGURE 14
Inferred probabilities of granule condition based on possible
conditions of the ribbon and the mill.

FIGURE 15
Possible granule inferences based on observations of the blend,
roll, and mill.

Frontiers in Energy Research frontiersin.org17

Lagare et al. 10.3389/fenrg.2024.1351665

http://ML.NET
http://ML.NET
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

reducing the task of ML development to gathering the training data,
loading it to the Model Builder platform, and then getting the
trained model from the platform and then further validating it with
testing data (see Supplementary Figure S1).

For this supervised machine learning problem (Jordan and
Mitchell, 2015), three datasets are required for training: data
during normal conditions, data during powder blockage, and
data during gap control malfunction. The datasets for these

FIGURE 16
Role of machine learning in converting data into condition probabilities.

FIGURE 17
Simulating data on the feed screw speed, roll gap, roll pressure, and roll speed of the roller compactor. (A) Process data under normal condition. (B)
Process data under powder blockage condition. (C) Process data under gap control malfunction.

FIGURE 18
Mean-centered and scaled data on the Feed Screw Speed, Roll Gap, Roll Pressure, and Roll Speed of the Roller Compactor under (A) Normal
Condition, (B) Powder Blockage Condition, and (C) Gap Control Malfunction.

Frontiers in Energy Research frontiersin.org18

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

conditions are shown in Figure 17, which are simulated based on
actual data collected by previous research (Gupta et al., 2013); the
simulations of faulty data started out as normal with a fault induced
at 500 s. Pretreatment of this data as described in Section 4.3.2 yields

the plots shown in Figure 18, which shows the rolling means and
standard deviations of the data centered around zero during normal
conditions, and then deviating away as a fault is introduced.

After this series of data preparation steps, the training data was
loaded into theModel Builder feature ofML.NET, which recommended
a gradient-boosted decision tree called LightGBM (Ke et al., 2017) to be
the best model among the 52 trained machine learning models that it
considered. For additional information on gradient-boosted decision
trees (GBDT), see the Supplementary Appendix section.

As shown in Figure 19, the recommended model did not only

correctly predict the actual conditions of the testing data, but it also

predicted the onset of the fault with minimal delay and with high

prediction probabilities. High probabilities can be interpreted as

high prediction certainty, which can be useful for adding useful

capabilities to the model like novel fault management. Management

of novel faults will be discussed in more detail in Section 4.3.5.
Visually, the prediction performances look good, which can be

further quantified into appropriate classification performance
evaluation metrics such as accuracy, fault detection rate, and false
alarm rates. Chiang et al. (2000); Yin et al. (2012) In order to further
evaluate potential capabilities of the trained models to detect novel
faults, additional metrics were computed: normal condition
prediction certainty index and the overall prediction certainty
index. The computation of these indices is discussed in more
detail in Section 4.3.5.

FIGURE 19
Predictions on roller compactor process condition for (A) powder blockage, and for (B) gap control malfunction.

TABLE 6 Performance of the CM system developed for the rolls and blend-ribbon module.

Metric nth Fault in rolls module mth Fault in blend-ribbon module

Fault Detection Rate (%) 100 100

False Alarm Rate (%) 0 0

Accuracy (%) 100 100

Normal Condition Certainty Index 0.99–1.00 0.99–1.00

Overall Prediction Certainty Index 1.00 0.99–1.00

FIGURE 20
Dual NIR monitoring of the RC.

Frontiers in Energy Research frontiersin.org19

Lagare et al. 10.3389/fenrg.2024.1351665

http://ML.NET
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

Table 6 shows the computed measures of performance for the
Rolls module. It shows the effectiveness of the current ML Model
development methodology employed in developing the CM system
for the module, which is practically perfect.

5.1.2 Blend- module
Just like the rolls module, the blend-ribbon module was part of

an earlier fault detection and diagnosis study on the RC, which
focused on two NIR sensors monitoring the RC, as shown in

FIGURE 21
Simulating different sensor fouling scenarios with normal blend and ribbon conditions during roller compaction operation. (A) NIR sensor
monitoring the blend is fouling. (B) NIR sensor monitoring the ribbon is fouling. (C) Both NIR sensors are fouling.

FIGURE 22
Simulating faulty RC operating conditions under normal functionality of NIR sensors. (A) Simulating API concentration being too low in the blend and
the ribbon. (B) Simulating API concentration being too high in the blend and the ribbon.

Frontiers in Energy Research frontiersin.org20

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

Figure 20. Dual NIR monitoring of the RC allows simultaneous
monitoring of the powder blend in the feed hopper and the ribbon
coming out between the rolls. A chemometric model can then be
used to predict the composition and density of the powder or the
compact based on the NIR spectra readings. Roggo et al. (2007);
Stranzinger et al. (2021) This offers redundancy in measurements on
API measurements in the feed and the ribbon, while giving unique
information on the density of the ribbon and the feed.

Creating a fault detection and diagnosis system practically
attempted to investigate if dual NIR monitoring allows the
discrimination between sensor faults and material faults. NIR
sensors are prone to drift and fouling issues; if the composition and
density estimates from the sensors indicate the blend or the ribbon is
off-specification, is it possible to rule out the sensor being faulty?

Framing this in a CM system development problem requires the
creation of a fault library, which has the following faults:

1. The NIR sensor monitoring the blend is fouling, but the blend
and ribbon are normal.

2. The NIR sensor monitoring the ribbon is fouling, but the blend
and ribbon are normal.

3. Both NIR sensors are fouling, but the blend and ribbon
are normal.

4. All NIR sensors are normal, but API blend is too low.
5. All NIR sensors are normal, but the API blend is too high.

Datasets for each of these faults were simulated and shown in the
following figures. The plots in these figures show the time series
estimates of density and composition from the NIR readings, as well
as the true values of the density and composition. For all these fault
datasets, the condition starts at normal, and the corresponding fault is
induced at 400 s. The data for the first two faults shows the true values of
composition and density staying constant, but the estimates from either
the first or second NIR sensor drop to a lower steady-state value, as
shown in Figures 21A, B respectively. Figure 21C shows the dataset for
the third fault, when the both the first and secondNIR sensors drop to a
lower steady-state, while the true values are constant.

The fourth and fifth faults all have both the NIR sensors working
well, and something really is wrong with the material. The datasets
for these faults show how the true values of the composition, and
consequently the density, changes to a new steady-state value.
Figure 22A shows the NIR sensors capturing the drop in the

FIGURE 23
Predicting RC process conditions under different scenarios. (A) Fault 1: NIR-1 is fouling. (B) Fault 2: NIR-2 is fouling. (C) Fault 3: NIR-1 and NIR-2 are
fouling. (D) Fault 4: Low API, normal NIR sensors. (E) Fault 5: High API, normal NIR sensors.

Frontiers in Energy Research frontiersin.org21

Lagare et al. 10.3389/fenrg.2024.1351665

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

density and API composition of the blend and the ribbon, while
Figure 22B shows the NIR sensors capturing the increase in the
density and API composition. For both the datasets, notice the slight
delay in the density and composition changes in the ribbon relative
to the blend. This delay was intentionally included to account for the
residence time distribution of the blend particles from the location of
the first NIR sensor that is monitoring the powder blend, to the
second NIR sensor that is monitoring the ribbon.

Similar to the workflow discussed in Section 5.1.1, the data
preparation scheme illustrated in Supplementary Figure S2 was
applied to all the datasets. Using only the NIR sensor readings
(i.e., not including the true values of density and composition), the
datasets were entered into Model Builder in ML.NET, which
suggested Gradient-boosted Decision Trees (Ke et al., 2017) for
the classification job, just like the Rolls Module.

The prediction performance for the test data involving all known
conditions for the module are shown in Figure 23. Each of these plots
represent a time-series of scores that the machine learning classifier
assigned for each of the conditions in the fault library (e.g., normal,
Fault 1, Fault 2, etc.), and the predicted condition would be the one
with the highest score. Ideally, the predicted condition would be the
true condition at that time step, and the prediction score would be
high, as this could be interpreted as the prediction certainty.

It can be seen from Figure 23 that the classifier correctly
predicted the condition to be normal at time steps before 400 s.
Moreover, the prediction score is close to 1.0, which can be
interpreted as having a prediction certainty close to 100%. When
the corresponding faults are induced at 400 s, the classifier assigned
the highest score to the appropriate fault, with a prediction certainty
that is still close to 100%. There is also minimal delay in the
prediction change, as the corresponding faults were correctly
predicted a few seconds after they were induced.

The prediction performances of the machine learning classifiers
trained for this module is summarized in Table 6; just like the Rolls
Module, the classifiers performed perfectly based on the
performance measurement indices listed in Table 2.

6 Conclusion

We introduced a framework that enables the practical development
of effective condition monitoring systems. It involves four stages:
representation, modularization, machine learning model development,
and module integration. Representation uses process knowledge to
create a graph that represents the condition of the process, and
modularization uses this graph to break down the process into more
manageable modules, which would have a smaller set of faults to classify
and a smaller input of variables to consider. High-performance machine
learning models could then be trained for eachmodule so they would be
able to correctly predict the condition of that respective module in real-
time and potentially detect novel fault conditions. Finally, since
modularization was based on a directed graph that was created based
on the causal relationships of the process condition components, they
can be integrated holistically. This allows important inferences to be
made that can aid in decision-making and improve the robustness of the
process, especially duringmaintenance involving one ormore sensors or
equipment. The leveraging of available process knowledge to boost the
condition monitoring performance of machine learning models is what

makes this framework unique, and applying this approach to other
problems could prove beneficial.

Ultimately, this framework promotes modularization, which can
not only drive down costs of developing condition monitoring
systems, but also for maintaining it. As new faults are added to
the fault library, a centralized system would have to retrain a very
large model, while a modular system would only need to retrain the
pertinent module. Furthermore, as new components of the process
are added, the modular system would only need to add more
modules and at most would only modify a few modules, whereas
a non-modular system would need to start from scratch every time.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

RL: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Software,
Validation, Visualization, Writing–original draft, Writing–review
and editing. MG: Funding acquisition, Resources, Supervision,
Writing–review and editing. ZN: Funding acquisition, Resources,
Supervision, Writing–review and editing. GR: Funding acquisition,
Resources, Supervision, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the NSF under grant #2140452.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenrg.2024.1351665/
full#supplementary-material

Frontiers in Energy Research frontiersin.org22

Lagare et al. 10.3389/fenrg.2024.1351665

http://ML.NET
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1351665/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1351665/full#supplementary-material
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

References

Akkisetty, P. K., Lee, U., Reklaitis, G. V., and Venkatasubramanian, V. (2010).
Population balance model-based hybrid neural network for a pharmaceutical milling
process. J. Pharm. Innov. 5, 161–168. doi:10.1007/s12247-010-9090-2

Basha, N., Ziyan Sheriff, M., Kravaris, C., Nounou, H., and Nounou, M. (2020).
Multiclass data classification using fault detection-based techniques. Comput. Chem.
Eng. 136, 106786. doi:10.1016/j.compchemeng.2020.106786

Becker-Hardt, M., 2018. The compaction people continuous dry granulation by roller
compaction an introduction to the Alexanderwerk roller compaction process.

Bishop, C. M. (2013). Model-based machine learning. Philosophical Trans. R. Soc. A
Math. Phys. Eng. Sci. 371, 20120222. doi:10.1098/rsta.2012.0222

Bishop, C. M., and Nasrabadi, N. M. (2006). Pattern recognition and machine
learning. Springer.

Braunagel, C., Geisler, D., Stolzmann, W., Rosenstiel, W., and Kasneci, E. (2016). “On
the necessity of adaptive eye movement classification in conditionally automated
driving scenarios,” in Proceedings of the Ninth Biennial ACM Symposium on Eye
Tracking Research & Applications, 19–26.

Chen, T. (2014). Introduction to boosted trees. Univ. Wash. Comput. Sci. 22, 115.

Chiang, L. H., Russell, E. L., and Braatz, R. D. (2000). Fault detection and diagnosis in
industrial systems. Springer Science & Business Media.

Dagum, P., and Luby, M. (1993). Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artif. Intell. 60, 141–153. doi:10.1016/0004-3702(93)
90036-B

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Ann. Statistics 29, 1189–1232. doi:10.1214/aos/1013203451

Ganesh, S., Su, Q., Vo, L. B. D., Pepka, N., Rentz, B., Vann, L., et al. (2020). Design of
condition-based maintenance framework for process operations management in
pharmaceutical continuous manufacturing. Int. J. Pharm. 587, 119621. doi:10.1016/j.
ijpharm.2020.119621

Gupta, A., Giridhar, A., Venkatasubramanian, V., and Reklaitis, G. V. (2013).
Intelligent alarm management applied to continuous pharmaceutical tablet
manufacturing: an integrated approach. Ind. Eng. Chem. Res. 52, 12357–12368.
doi:10.1021/ie3035042

Hastie, T., Tibshirani, R., and Friedman, J. (2009). “Ensemble learning,” in The
elements of statistical learning: data mining, inference, and prediction. Editors T. Hastie,
R. Tibshirani, and J. Friedman (New York, New York, NY: Springer), 605–624. doi:10.
1007/978-0-387-84858-7_16

Iri, M., Aoki, K., O’shima, E., and Matsuyama, H. (1979). An algorithm for diagnosis
of system failures in the chemical process. Comput. Chem. Enyinerriny 3, 489–493.
doi:10.1016/0098-1354(79)80079-4

Jordan, M. I., and Mitchell, T. M. (2015). Machine learning: trends, perspectives, and
prospects. Science 349 (1979), 255–260. doi:10.1126/science.aaa8415

Kazemi, P., Khalid, M. H., Szlek, J., Mirtič, A., Reynolds, G. K., Jachowicz, R., et al.
(2016). Computational intelligence modeling of granule size distribution for oscillating
milling. Powder Technol. 301, 1252–1258. doi:10.1016/j.powtec.2016.07.046

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). Lightgbm: a
highly efficient gradient boosting decision tree. Adv. Neural Inf. Process Syst. 30.

Lagare, R., Sheriff, M. Z., Nagy, Z., and Reklaitis, G. (2021). “The use of hybrid modeling
schemes in the development of a probabilistic condition monitoring system for a continuous
drug product manufacturing process,” in 2021 AIChE Annual Meeting (AIChE).

Lagare, R. B., Huang, Y.-S., Bush, C.O.-J., Young, K. L., Rosario, A. C. A., Gonzalez,
M., et al. (2023). Developing a virtual flowability sensor for monitoring a
pharmaceutical dry granulation line. J. Pharm. Sci. 112, 1427–1439. doi:10.1016/j.
xphs.2023.01.009

Lagare, R. B., Sheriff, M. Z., Gonzalez, M., Nagy, Z., and Reklaitis, G. V. (2022). A
comprehensive framework for the modular development of condition monitoring
systems for a continuous dry granulation line. Comput. Aided Chem. Eng. 49,
1543–1548. doi:10.1016/B978-0-323-85159-6.50257-8

Lee, S. L., O’Connor, T. F., Yang, X., Cruz, C. N., Chatterjee, S., Madurawe, R. D., et al.
(2015). Modernizing pharmaceutical manufacturing: from batch to continuous
production. J. Pharm. Innov. 10, 191–199. doi:10.1007/s12247-015-9215-8

LightGBM (2023). LightGBM 4.1.0.99 documentation. Microsoft Corporation.

Microsoft (2022). What is ML.NET and how does it work?. Available at: https://learn.
microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-work?WT.mc_id=
dotnet-35129-website (Accessed January 12, 22).

Minka, T., Cleven, R., and Zaykov, Y. (2018a). Trueskill 2: an improved bayesian skill
rating system. Tech. Rep.

Minka, T., Winn, J. M., Guiver, J. P., Zaykov, Y., Fabian, D., and Bronskill, J., 2018b.
Infer.NET 0.3.

Natekin, A. (2020). Topic 10. Gradient boosting | kaggle. Available at: https://www.
kaggle.com/code/kashnitsky/topic-10-gradient-boosting/notebook (Accessed May
10, 23).

Roggo, Y., Chalus, P., Maurer, L., Lema-Martinez, C., Edmond, A., and Jent, N.
(2007). A review of near infrared spectroscopy and chemometrics in
pharmaceutical technologies. J. Pharm. Biomed. Anal. 44, 683–700. doi:10.1016/
j.jpba.2007.03.023

Rogozhnikov, A., 2016. Gradient Boosting explained [demonstration]. Available at:
http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html
(Accessed 10.May.23).

Roweis, S., and Ghahramani, Z. (1999). A unifying review of linear Gaussian models.
Neural comput. 11, 305–345. doi:10.1162/089976699300016674

Schenkendorf, R. (2016). Supporting the shift towards continuous pharmaceutical
manufacturing by condition monitoring Conference on Control and Fault-Tolerant
Systems, SysTol 2016-November, 593–598. doi:10.1109/SYSTOL.2016.7739813

Stranzinger, S., Markl, D., Khinast, J. G., and Paudel, A. (2021). Review of sensing
technologies for measuring powder density variations during pharmaceutical solid
dosage formmanufacturing. TrAC - Trends Anal. Chem. 135, 116147. doi:10.1016/j.trac.
2020.116147

Su, Q., Ganesh, S., Moreno, M., Bommireddy, Y., Gonzalez, M., Reklaitis, G. V., et al.
(2019). A perspective on Quality-by-Control (QbC) in pharmaceutical continuous
manufacturing. Comput. Chem. Eng. 125, 216–231. doi:10.1016/j.compchemeng.2019.
03.001

Sun, W. J., Rantanen, J., and Sun, C. C. (2018). Ribbon density and milling parameters
that determine fines fraction in a dry granulation. Powder Technol. 338, 162–167. doi:10.
1016/j.powtec.2018.07.009

Vaglica, V., Sajeva, M., McGough, H. N., Hutchison, D., Russo, C., Gordon, A. D.,
et al. (2017). Monitoring internet trade to inform species conservation actions.
Endanger. Species Res. 32, 223–235. doi:10.3354/esr00803

van Wyk, A. (2018). An overview of LightGBM. Available at: https://www.avanwyk.
com/an-overview-of-lightgbm/ (Accessed May 10, 23).

Vedam, H., and Venkatasubramanian, V. (1997). Signed digraph based multiple
fault diagnosis. Comput. Chem. Eng. 21, S655–S660. doi:10.1016/s0098-1354(97)
00124-5

Venkatasubramanian, V. (2009). Drowning in data: informatics and modeling
challenges in a data-rich networked world. AIChE J. 55, 2–8. doi:10.1002/aic.11756

Venkatasubramanian, V. (2011). Systemic failures: challenges and opportunities in
risk management in complex systems. AIChE J. 57, 2–9. doi:10.1002/aic.12495

Venkatasubramanian, V., Rengaswamy, R., and Kavuri, S. N. (2003a). A review of
process fault detection and diagnosis Part II: qualitative models and search strategies.
Comput. Chem. Eng. 27, 313–326. doi:10.1016/s0098-1354(02)00161-8

Venkatasubramanian, V., Rengaswamy, R., Yin, K., and Kavuri, S. N. (2003b).
A review of process fault detection and diagnosis: Part I: quantitative model-
based methods. Comput. Chem. Eng. 27, 293–311. doi:10.1016/s0098-1354(02)
00160-6

Yin, S., Ding, S. X., Haghani, A., Hao, H., and Zhang, P. (2012). A comparison study of
basic data-driven fault diagnosis and process monitoring methods on the benchmark
Tennessee Eastman process. J. Process Control 22, 1567–1581. doi:10.1016/j.jprocont.
2012.06.009

Yu, L. X., Amidon, G., Khan, M. A., Hoag, S. W., Polli, J., Raju, G. K., et al. (2014).
Understanding pharmaceutical quality by design. AAPS J. 16, 771–783. doi:10.1208/
s12248-014-9598-3

Frontiers in Energy Research frontiersin.org23

Lagare et al. 10.3389/fenrg.2024.1351665

https://doi.org/10.1007/s12247-010-9090-2
https://doi.org/10.1016/j.compchemeng.2020.106786
https://doi.org/10.1098/rsta.2012.0222
https://doi.org/10.1016/0004-3702(93)90036-B
https://doi.org/10.1016/0004-3702(93)90036-B
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.ijpharm.2020.119621
https://doi.org/10.1016/j.ijpharm.2020.119621
https://doi.org/10.1021/ie3035042
https://doi.org/10.1007/978-0-387-84858-7_16
https://doi.org/10.1007/978-0-387-84858-7_16
https://doi.org/10.1016/0098-1354(79)80079-4
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1016/j.powtec.2016.07.046
https://doi.org/10.1016/j.xphs.2023.01.009
https://doi.org/10.1016/j.xphs.2023.01.009
https://doi.org/10.1016/B978-0-323-85159-6.50257-8
https://doi.org/10.1007/s12247-015-9215-8
https://learn.microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-work?WT.mc_id=dotnet-35129-website
https://learn.microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-work?WT.mc_id=dotnet-35129-website
https://learn.microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-work?WT.mc_id=dotnet-35129-website
https://www.kaggle.com/code/kashnitsky/topic-10-gradient-boosting/notebook
https://www.kaggle.com/code/kashnitsky/topic-10-gradient-boosting/notebook
https://doi.org/10.1016/j.jpba.2007.03.023
https://doi.org/10.1016/j.jpba.2007.03.023
http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html
https://doi.org/10.1162/089976699300016674
https://doi.org/10.1109/SYSTOL.2016.7739813
https://doi.org/10.1016/j.trac.2020.116147
https://doi.org/10.1016/j.trac.2020.116147
https://doi.org/10.1016/j.compchemeng.2019.03.001
https://doi.org/10.1016/j.compchemeng.2019.03.001
https://doi.org/10.1016/j.powtec.2018.07.009
https://doi.org/10.1016/j.powtec.2018.07.009
https://doi.org/10.3354/esr00803
https://www.avanwyk.com/an-overview-of-lightgbm/
https://www.avanwyk.com/an-overview-of-lightgbm/
https://doi.org/10.1016/s0098-1354(97)00124-5
https://doi.org/10.1016/s0098-1354(97)00124-5
https://doi.org/10.1002/aic.11756
https://doi.org/10.1002/aic.12495
https://doi.org/10.1016/s0098-1354(02)00161-8
https://doi.org/10.1016/s0098-1354(02)00160-6
https://doi.org/10.1016/s0098-1354(02)00160-6
https://doi.org/10.1016/j.jprocont.2012.06.009
https://doi.org/10.1016/j.jprocont.2012.06.009
https://doi.org/10.1208/s12248-014-9598-3
https://doi.org/10.1208/s12248-014-9598-3
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351665

	A framework for the practical development of condition monitoring systems with application to the roller compactor
	1 Motivation
	2 Primer on condition monitoring
	2.1 Safety in condition monitoring
	2.2 Anatomy of a failure
	2.3 Symptoms and sensors
	2.4 Condition monitoring and active control
	2.5 Special faults
	2.6 The condition library
	2.7 Development of sensors and condition monitoring systems

	3 Application case study: roller compactor
	3.1 Roller compactor components and control systems
	3.2 Roller compactor condition monitoring systems

	4 The framework
	4.1 Representation
	4.1.1 Representing the condition of the roller compactor

	4.2 Modularization
	4.3 ML model development
	4.3.1 The ML model development workflow
	4.3.2 Data preparation
	4.3.3 Alternative ML development methodologies
	4.3.4 ML performance evaluation and novel fault detection capabilities
	4.3.5 Novel fault management
	4.3.6 Novel fault detection performance indices
	4.3.7 Updating CM modules

	4.4 Module integration
	4.4.1 Inferring missing condition nodes
	4.4.2 Probabilistic programming and inference
	4.4.3 Learning the priors
	4.4.4 Enhancing decision-making and robustness

	5 Results and Discussion
	5.1 Performance of modular systems
	5.1.1 Roll module
	5.1.2 Blend- module

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

