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Against the backdrop of increasing renewable energy penetration, frequent
power network congestion has become a key issue limiting the available
transfer capability of trading channels. In order to avoid power network
congestion while improving the overall utilization of trading channels, we
propose a method for calculating the available transfer capability of a trading
channel based on power network congestion forecasting. First, this study uses a
histogram-based gradient tree boosting (HGTB) model to forecast the severity
and probability of power network congestion, which enables power system
operators to determine the specific circumstances of congestion occurrence.
Second, we analyze the sensitivity of the power trading network and generating
units to transmission lines, aiming to calculate the available transfer capability of
the trading channel on the basis of taking into account the control of transmission
line congestion and the balance of supply and demand in the power market.
Finally, the validity of the validation methodology is verified based on a case study
of the power system in central China.
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1 Introduction

The rapid development of renewable energy sources, such as wind power and
photovoltaic, is an important driving force to promote the energy transition of the
power system. They are highly clean, renewable, and sustainable, can effectively reduce
the dependence on traditional fossil energy, reduce the impact of energy consumption on
the environment, and are of great significance in realizing the global green and low-carbon
development goals (Zhou et al., 2018; Yang et al., 2023). The installed capacity of
intermittent renewable energy sources such as wind power and photovoltaic in the
power system has been increasing every year. This trend has led to a considerable rise
in uncertainty in the power system, and the power network transmission congestion
problem has gradually gained attention (Zhang et al., 2016). On the other hand, on the load
side, the increased interactive demand of devices such as electric vehicles, heat pumps, and
flexible buildings may also cause congestion problems (Hanif et al., 2017; Li et al., 2020a).
Forecasting congestion is the key to solving the congestion problem, and many studies have
applied data-driven control methods, such as support vector machines (Niu et al., 2006),
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decision trees (Li et al., 2005), random forests (Li et al., 2020b; Wu
et al., 2015), and neural networks (Lu et al., 2019; Chen et al., 2020;
Rafi et al., 2021), in the prediction of load and new energy sources for
power systems. In terms of power system stability assessment, data-
driven control strategies can use machine learning algorithms, such
as supervised learning, unsupervised learning, and reinforcement
learning, to learn the power system operation data and forecast
whether the power system will be destabilized (Yang et al., 2022).
The application of data-driven control strategies in power systems
has become more and more widespread, and in the future, with the
continuous development of data science and artificial intelligence
technology, data-driven control strategies will become an important
means of power system intelligence and adaptability (Xue et al.,
2015; Bi et al., 2002).

In a study of calculating the available transfer capability (ATC)
based on the power market, Ding et al. (2018) discussed key
technologies, such as the technical support platform, out-
clearing method, model data management, and others, under the
general framework of the power spot market. Zou et al. (2014)
summarized the universal law in the process of spot market
construction and analyzed the internal logic of spot market
construction by comparing and analyzing the latest practices of
electricity market construction in different countries. Xia and Guo
(2009) discussed the market function and positioning of the spot
electricity market from the perspective of market functionality and
structure on the basis of a coordinated electricity market trading
system. Zeng et al. (2020) measured the sensitivity of DC receiver
and generator nodes to AC lines and proposed a simplified method
of AC–DC hybrid network and an ATC-based inter-provincial
transaction clearing model. Cheng et al. (2022) described the
research and development of inter-provincial medium- and
long-term trading systems taking the ATC into account. The
above studies focus on analyzing the power market mechanism
and the method of market clearing under the assumption that the
channel ATC is known; however, studies on ATC calculation are
lacking. Part of the literature considered the uncertainty of new
energy generation (Bai et al., 2020; Li et al., 2022) and the deviation
of load forecast (Liu et al., 2023), based on which Zhang et al. (2007)
and Huang et al. (2013) accomplished the calculation of
probabilistic ATC from the perspective of risk and return.
However, the above studies focus on inter-provincial trading
channels and simplify the network structure within the
provincial network, which leads to the risk of congestion of
intra-provincial transmission lines during trade execution.

In summary, for the risk of transmission line congestion during
transaction execution, through a data-driven strategy, we propose an
optimization method for the available transfer capability of trading
channels based on power network congestion prediction, aiming to
calculate the available transfer capability of trading channels on the
basis of taking into account the control of transmission line
congestion and the balance of supply and demand in the power
market. First, data processing and characterization are performed to
extract effective information for predicting power network
transmission congestion from redundant data and features.
Second, a histogram-based gradient tree boosting (HGTB) multi-
classified probabilistic prediction of power network transmission
congestion is proposed to predict the severity and probability
distribution of congestion. Finally, a network coupling model

based on the power distribution factor is proposed to consider
the impact of the trading volume of the trading channel on the
congestion line, and a quadratic objective function is designed to
maximize the spot trading capacity and power transfer capacity.
Compared with existing studies, the main contributions of this
paper are as follows:

1) A multi-classified probabilistic prediction model of power
network transmission congestion based on HGTB is
proposed. The proposed model obtains knowledge directly
from data, thus avoiding the physical modeling challenges for
large and complex power systems. The real-time power system
information is fully utilized to accurately predict the
probability and trend of future power network transmission
congestion.

2) An optimization method for the available transfer capability of
trading channels is proposed. By calculating the equivalent
sensitivity, the coupling relationship between the trading
network and the provincial transmission lines is modeled,
and the impact of the trading volume on the provincial
transmission lines is analyzed. Taking into account
congestion control and supply–demand balance, a
normalized quadratic objective function is established to
improve the overall utilization rate of the trading channel
while avoiding excessive restrictions on the available transfer
capability of some trading channels.

The rest of this paper is organized as follows: Section 2
introduces the HGTB-based multi-classified probabilistic
prediction model for power network transmission congestion.
Section 3 presents the calculation method for the available
transfer capability of the trading channel. Section 4 gives the
simulation results. Section 5 concludes the paper.

2 Multi-classified probability prediction
of power network transmission
congestion

This section implements a data-driven approach to real-time
prediction of power network transmission congestion in power
systems by combining the feature selection theory and the
gradient boosting tree theory.

2.1 Feature selection

Due to the large number of feature variables in an actual power
grid, filtering out redundant variables before making predictions can
greatly improve computational efficiency. At the same time, the
power network transmission congestion prediction puts forward the
requirement of multi-classification for feature extraction, so we
choose the Relief-F algorithm based on the expansion of the
Relief algorithm. The specific steps of the Relief-F algorithm are
as follows:

1) Initializing the relevant parameters: We set the dataset D,
which contains m samples and n features. The samples contain
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L categories. We set the weight threshold θ, initialize the
feature weight vector W, and set the loop exit condition.

2) We randomly select a sample xi ∈ D, let it belong to the kth
category, find the nearest neighbor sample xi,nh of the same
category of sample xi, and for each dissimilar category, find an
opposite-class nearest neighbor xi,l,mh, with subscript l
denoting the lth category.

3) For each feature j ∈ 1, 2, ..., n, we calculate the relevance weight
Wj of feature j and update the weight of feature j:

Wj � Wj − diff xij, xij,nh( )2 +∑
l≠k

ρldiff xij, xij,l,mh( )( )2. (1)

4) We repeat steps (2) and (3) until the loop exit condition
is satisfied.

5) We sort the features according to their weights W and select
the features with weights greater than the weight threshold θ as
the optimal feature subset.

2.2 Histogram-based gradient tree boosting

A decision tree is a weak learner, as shown in Figure 1.
Gradient tree boosting (GTB) is a boosting integration
algorithm that boosts the decision tree into a strong learner
by means of integration. In the process of boosting, the latter
learner will successively pay attention to the samples where the
prediction result of the previous learner differs greatly from the
actual result. For power network transmission congestion
caused by system uncertainty, additional learning on
misjudged samples enables the model to gradually improve
its prediction accuracy.

GTB first predicts the target value or category label of a sample
using a combination of all the current weak learners and then
calculates the error between the predicted value and the true
value. GTB then uses these errors as the target value to train the
next weak learner, and this process is repeated until a preset number
of iterations or a stopping criterion is reached. The set of all trained
weak learners becomes a strong learner, represented by an
additive model:

FM x( ) � ∑M
m�1

fm x( ), (2)

where fm(x) denotes the mth weak learner. Choosing the CART
tree as the weak learner of the GTB algorithm makes the lifting
process highly robust and interpretable.

As shown in Figure 2, HGTB is a boosted tree method that
reduces model complexity and improves model generalization using
the histogram data sealing method. Compared with GTB, HGTB
converts continuous eigenvalues into discrete data boxes by means
of histogram boxing, which drastically reduces computation and
memory consumption, and especially performs better when dealing
with large-scale data.

In the figure, the height of the squares indicates the number of
samples in the box, and the scatter indicates the response values of
the individual boxes. After the histogram closure process, the
response values of all the boxes can be used as predictions.

2.3 HGTB-based multi-classification
prediction

The HGTB-based multi-classification prediction method
provides not only the future congestion stall but also the
probability of occurrence of each congestion stall. The training
method for the HGTB-based multi-classification probabilistic
prediction model is as follows:

1) For a K-class classification problem, it is first transformed into
K binary classification problems.

2) Histogram blocking is performed on each continuous feature
of the dataset.

3) Initializing the model: For each category k, we use the CART
algorithm on the training dataset to construct a regression tree
Tk,0(x) for predicting the probability score zk(x) of a sample x
belonging to category k. The prediction score zk(x) of a leaf
node is the average of the samples belonging to category k
among the training samples on that leaf node.

F0 x( ) � ∑K

k�1Tk x;Θ0( ). (3)

FIGURE 1
Structure of the decision tree model.

FIGURE 2
Histogram-type data sealing method.
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4) Updating the model.

The K-predicted scores, zk(x), are transformed by the Softmax
function to obtain the probability distribution Pk(x) of the samples
belonging to each category k:

Pk x( ) � exp zk x( )( )
∑K

j�1exp zj x( )( ), k ∈ 1, K[ ]. (4)

We calculate the negative gradient and fit a new regression tree
to update the model parameters by minimizing the cross-entropy
loss function:

L � − 1
N

∑N

i�1∑K

k�1yiklog Pk xi( ), (5)

where N denotes the number of samples in the training set. The
cross-entropy loss function measures the difference between the
probability distribution predicted by the model and the true
distribution; the smaller the value of cross-entropy, the closer the
prediction is to the true label.

We stack the regression tree Tk(x;Θm) for each category into
the original model:

Fm x( ) � Fm−1 x( ) +∑K

k�1Tk x;Θm( ). (6)

Iterating the above process, we will output a trained
integrated tree model for multi-classified probabilistic
prediction of power network transmission congestion. This
integrated model actually outputs the probability distribution
of the samples, taking the category with the highest probability as
the predicted category.

2.4 Method application

This section theoretically proposes a power network transmission
congestion prediction method that can meet real-time scheduling
requirements. First, using a Relief-F-based feature selection method
for multi-classification problems, the relevance of feature variables to
the classification task can be derived, and then, the feature variables that
are most conducive to labeling line congestion can be selected. The
selected feature variables are fed to the prediction model as labeled
historical data can equip the model with the ability to classify and
predict the power network transmission congestion state at future
moments. Second, following the above ideas, this paper chooses
GTB as the basis of the prediction model, which is characterized by
interpretability, efficient training, and high accuracy. The HGTBmodel
is formed by themethod of histogram data sealing box, which improves
the generalization ability of the model and makes the prediction model
more applicable to the power network transmission congestion
prediction problem in the real-time scheduling process.

3 Calculation method of the available
transfer capability of a trading channel

The current inter-provincial power trading network does not
take into account the structure of the provincial transmission lines,
which leads to inconsistency between the trading network and the

physical transmission network and the risk of congestion of the
provincial transmission lines during trade execution. In this regard,
the constraints of transaction execution are formed by calculating
the sensitivity of the transaction channel and the sensitivity of the
generating unit to the transmission line, based on which the
calculation method of the available transfer capability of the
transaction channel that takes into account the congestion of the
intra-provincial transmission line is proposed.

3.1 Sensitivity calculation formula

By performing the power flow calculation by Newton’s method,
the Jacobi matrix can be obtained as follows:

J0 �
∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where P is the node injected active power, θ is the node voltage phase
angle, and V is the node voltage.

The sensitivity matrix G of the injected power at node k to the
flow of branches i–j is expressed as follows:

G � ∂Sij
∂Uk

J−10 , (8)

where ∂Sij
∂Uk

denotes the partial derivative of the power flow of
branches i–j with respect to the voltage variation at node k and
J−10 denotes the partial derivative of the node voltage with respect to
the injected power at each node.

The sensitivity of each node to the provincial transmission line is
shown as follows:

1) Sensitivity of the trading channel to the provincial
transmission line

Specifying the positive direction of power transmission as the
direction of incoming power to the province, the sensitivityGL

l of the
inter-provincial physical link to the current of branches i–j is

GL
l �

∂Sij
∂Ul

J−10 , (9)

where ∂Sij
∂Ul

denotes the partial derivative of the power flow of
branches i–j with respect to the variation of the voltage at the
sending node l of the trading channel.

2) Sensitivity of critical generating units to provincial
transmission lines

We consider the role of the critical generating unit on the
provincial transmission line, where the sensitivity GRG

n of the
critical generating unit n to the provincial transmission lines i–j is

GRG
n � ∂Sij

∂Un
J−10 , (10)

where ∂Sij
∂Un

denotes the partial derivative of the power flow of
branches i–j with respect to the voltage variation at node n of
the critical generating unit.
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3) Sensitivity of non-critical generating units to provincial
transmission lines

Since the power system operator usually does not give additional
instructions to non-critical generating units when the line is
congested, it can be assumed that the power output of non-
critical generating units no longer changes. Therefore, the non-
critical generating units in the province can be weighted and
aggregated into an equivalent generating node, which has the
following sensitivity GPG

x to the provincial transmission line:

GPG
x � ∑G

g�1
λgx ·

∂Sij
∂Ux

J−10 , (11)

λgx �
Gg

x∑X
x�1G

g
x

, (12)

∑X
x�1

λgx � 1, (13)

where x denotes the number of the non-critical generating units, λgx
denotes the weight of the non-critical unit, ∂Sij

∂Ux
denotes the partial

derivative of the power flow of branches i–j with respect to the
voltage variation of the non-critical unit x, and Gg

x is the capacity of
each generating unit.

3.2 Coupling relationship between the
trading network and provincial
transmission lines

The generation and consumption balance relationship of the
provincial grid can be expressed as follows:

∑M
m�1

ΔPL
m +∑N

n�1
ΔPRG

n + ΔPPG � 0, (14)

where Δ PL
m, ΔPRG, and ΔPPG denote the trading channel transaction

volume, critical generating unit output in the province, and non-critical
generating unit output in the province, respectively.

Based on the above equation, the sensitivity of the inter-
provincial physical link and the critical generating units within
the province after considering the non-critical generating units is
expressed as follows:

GL,c
l � GL

l − GPG
x , (15)

GRG,c
n � GRG

n − GPG
x , (16)

where GL,c
l and GRG,c

n are the sensitivities of the inter-provincial
physical contact line and the critical generating units in the province
after considering the non-critical generating units, respectively.

The coupling relationship between the trading network and the
provincial transmission lines can be expressed as follows:

ΔPSC
i � ∑L

l�1
∑M
m�1

GL,c
l ΔPL

m +∑N
n�1

GRG,c
n ΔPRG

n , (17)

ΔPSC,min
i ≤ΔPSC

i ≤ΔPSC,max
i , (18)

where ΔPSC
i is the power change of the provincial transmission line, i

is the number of provincial transmission lines selected by the

gradient boosting tree prediction model in Section 2, and
ΔPSC,max

i and ΔPSC,min
i denote the upper and lower limits of the

provincial transmission line, respectively.

3.3 Calculation of the available transfer
capability of the trading channel

China’s inter-provincial power spot market uses the ATCmodel,
so power system operators need to calculate the upper and lower
limits for each trading channel. Different trading channels have
different sensitivities to the intra-provincial transmission lines, and
it is necessary to make the calculated channel ATC as close as
possible to the maximum transmission limit and appropriately
adjust the ATC of certain inter-provincial channels in order to
avoid the congestion of intra-provincial lines. As shown in Figure 3,
the outer green portion indicates the feasible region under physical
network constraints, and the inner orange portion indicates the
available transfer capacity range. It is worth noting that each ATC is
determined by the upper and lower limits filled in by the scheduler,
and therefore, the available transfer capacity range can only be
represented as a rectangle in the two-dimensional plane formed by
the two trading channels.

In this regard, the objective function shown in Eq. 19 can be
designed to normalize the inter-provincial trading channels
according to their capacities and then sum up the squares, which
can not only guarantee the utilization rate of the trading channels
but also make the distribution of the ratio of the ATC of the inter-
provincial trading channels to the corresponding maximum limit
nearly uniform.

min∑T
t�1

∑M
m�1

ΔPTL,I
m,t − ΔPTL,max

m,t

ΔPTL,I
m,t

( )2

+∑T
t�1

∑M
m�1

ΔPTL,O
m,t − ΔPTL,min

m,t

ΔPTL,O
m,t

( )2

,

(19)
where ΔPTL,I

m,t and ΔPTL,O
m,t are the upper and lower limits of the inter-

provincial trading channel required by the stabilization regulations,
respectively.

The constraints on the trading channel power are shown
as follows:

0≤ΔPTL,max
m,t ≤ΔPTL,I

m,t , (20)
ΔPTL,O

m,t ≤ΔPTL,min
m,t ≤ 0. (21)

FIGURE 3
Transfer capacity of the trading network.
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The critical generating unit output is also required to meet the
following equations:

ΔPRG,min
n,t ≤ΔPRG

s,n,t ≤ΔPRG,max
n,t , (22)

PRG,plan
n,t + ΔPRG

s,n,t − PRG,plan
n,t−1 − ΔPRG

s,n,t−1
∣∣∣∣∣ ∣∣∣∣∣≤ΔPRG,ramp

n,t , (23)

where ΔPRG,max
n,t and ΔPRG,min

n,t are the maximum and minimum
values of critical generating unit output changes, respectively,
ΔPRG,ramp

n,t is the critical generating unit output climbing capacity,
and PRG,plan

n,t is the critical generating unit day-ahead planned output.

4 Example and result

4.1 Description of the example

The study is based on a provincial grid H with the highest load
level in central China, focusing on 12 intra-provincial transmission
lines, 5 key power plants, and 2 trading corridors. The data time
starting point is 1 March 2021, and the end point is 31 December
2022. In the process of resampling, the resampling frequency is set to
5 min/time, considering that the time scale of the forecast is within
hours. The data content includes not only electrical variables but
also non-electrical variables. It includes the output of the whole
network units (thermal power units, hydropower units, and new
energy units), the transmission power and transmission limit of
critical generating units, the total power generation, the total power
receiving, the new energy generation in each region, the critical bus
voltages of 500 kV and above, and the six elements of meteorology at
each meteorological station in the region.

Power network transmission congestion is defined as the
transmission of power by a line in excess of the specified
capacity that the line can carry. A measure of power network
transmission congestion can be expressed in terms of line loading
factor (LLF), which is calculated as follows:

LLF � Sn
Sn,max

, (24)

where Sn is the transmission power of line n, and Sn,max is the
transmission power limit of line n set in accordance with the relevant
power system security and stability regulations, and the
transmission power limit in this paper is given by the
dispatching department.

The categorization of congestion events is defined as shown in
Table 1, where category 0 denotes no congestion and 1, 2, and
3 denote minor, moderate, and severe congestion, respectively.

The statistics show that more than 150 congestion events
occurred in the fourth quarter of 2021, and more than 50% of
the critical lines have congestion events. Among them, the HX line
had more than 20 power network transmission congestion events in
3 months, as shown in Figure 4. Therefore, the HX line was chosen
as the test object for the subsequent prediction part of the calculus.

4.2 Example results

The data of feature variables are preprocessed, interpolated,
corrected, and then normalized. The HX line power is selected as the
target variable, and feature selection is performed by the Relief-
F algorithm.

As shown in Figure 5, the importance ranking of some power
system feature variables is demonstrated, with the name of each
feature in the horizontal coordinate and the importance score of the
corresponding feature in the vertical coordinate. Here, “_R” denotes
new energy, “_L” denotes load, and “_G” denotes total regional
generation. If a feature is not underlined “_,” it means it is a line
power variable. TW, XXX_R, and KSH_R are the most important
features, followed by ZZXN_G and PDSN1_G, and the more the
features at the top of the list, the more the impact on the target
variable. There are some features with lower importance scores, and
these features have less impact on the target variable and can be
considered eliminated. In this case, the 100 variables with the highest
importance scores are selected as the feature variables to be
subsequently used for categorical prediction.

After selecting the feature variables, the HGTB algorithm is used
to classify the power prediction of the line. As shown in Figure 6, the
HZ line has a high probability of moderate congestion before 02:
20 on 10 November 2021. After 02:20, the power network
transmission congestion will be transformed into severe congestion.

Table 2 gives the multi-classification prediction accuracies of the
different algorithms for different time scales over a 30-min period, as
well as the time taken for training and prediction.

For the power network transmission congestion multi-
classification problem, this paper compares the computational
efficiency and accuracy of HGTB with other machine learning
algorithms. The compared algorithms include logistic regression
(LR), support vector machine (SVM), k neighbors (KN), Gaussian
Naïve Bayes (GNB), and decision tree (DT). HGTB is a robust
integration algorithm. This paper also compares different
integration ideas: bagging and random forest (RF). The
accuracy rate in the table is the ratio of the number of samples
correctly classified by the classification model in the test dataset to

TABLE 1 Power network transmission congestion severity categories.

LLF <50% 50%–60% 60%–70% >70%

Severity categories 0 1 2 3

FIGURE 4
Frequency of congestion events on critical transmission lines.
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the number of all samples in the test dataset. The value outside the
parentheses denotes the mean of the accuracy rate of each
validation in the cross-validation process, and the brackets
denote the variance.

It can be seen that HGTB has the highest accuracy, and its
predictions are the most stable compared to the other algorithms,
with an average accuracy of 0.87 and a variance of only 0.04 in 10-
fold cross-validation.

We select the data before 02:00 on 10 November 2021 for
simulation and calculate the available transfer capability of the

two trading channels in the next half hour, where channel 1 is an
AC line and channel 2 is a DC line. The direction of power sink into
province A is specified as the positive direction. Using the HGTB
algorithm, 12 lines with a high probability of severe congestion are
selected as constraints, shown in Eq. 18. Equation 19 is used as the
optimization objective, and Eq. 18 and Eqs 20–23 are used as
constraints. YALMIP/GUROBI is chosen to solve the problem.

Figure 7 illustrates the available transfer capability of the two
trading channels. By analyzing the calculation results of channel
1, we can learn that, regardless of the positive or negative

FIGURE 5
Relief-F feature importance ranking for HX line congestion events.

FIGURE 6
Multi-categorical prediction of power network transmission congestion events.
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TABLE 2 Comparison of accuracy and computational efficiency.

Arithmetic Accuracy Training time/s Prediction time/s

LR 0.75 ( ± 0.25) 36.20 0.10

SVM 0.80 ( ± 0.12) 98.57 3.26

KN 0.72 ( ± 0.20) 1.20 2.66

GNB 0.76 ( ± 0.15) 1.24 0.10

DT 0.83 ( ± 0.17) 3.65 0.09

Bagging 0.75 ( ± 0.16) 1.29 9.30

RF 0.84 ( ± 0.12) 23.49 0.17

GTB 0.86 ( ± 0.05) 185.67 0.10

HGTB 0.87 ( ± 0.04) 11.09 0.20

FIGURE 7
Available transfer capability for trading channels. The text “Trading Channel 1” and “Trading Channel 2” at the bottom of the image corresponds to
the titles of images (A) and (B), respectively.
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direction, even if a large number of transactions are carried out in
this trading channel, it does not exacerbate the congestion on the
provincial lines. The calculation results of channel 2 show that
although there is a large amount of tradable space in this channel,
the calculated available transfer capability does not reach its
upper limit value after taking into account the congestion of the
transmission lines in the province. Specifically, since the
sensitivity of trading channel 1 to congestion lines in the
positive direction is small, the trades generated by this
channel in the positive direction do not adversely affect the
provincial lines. Therefore, more flexible trading arrangements
can be made on this basis. At the same time, the transactions of
transaction channel 1 in the opposite direction can also alleviate
congestion on the transmission lines in the province. Therefore,
in the event of congestion of the provincial lines, the outward
transmission of electricity through trading channel 2 can be used
to alleviate the congestion of the provincial lines. Channel 2, on
the other hand, has ample tradable space in the forward direction,
but the available transfer capability is limited due to the
congestion of the transmission lines in the province. It is
worth noting that this channel is a DC line and only exists to
trade in the positive direction, hence the absence of negative
values on the histogram for channel 2. These limitations need to
be fully considered before market clearing in order to avoid the
overloading of provincial lines during actual implementation.
Therefore, in order to ensure the stable operation of the system, it
is recommended to refine the analysis of provincial transmission
lines prone to congestion in the market operation so as to better
reflect the actual situation and formulate a reasonable
trading strategy.

5 Conclusion

In this paper, a method for calculating the available transfer
capability of trading channels based on power network congestion
prediction is proposed. First, this study conducted feature selection
based on the Relief-F algorithm to extract effective information for
predicting power network transmission congestion from redundant
data and features, and the input variables of the prediction model
were dimensionally reduced. Next, the severity and probability of
power network congestion were calculated using the HGTB
prediction model. Then, considering the impact of the trading
volume of the trading channel on the congestion line, the
sensitivity of the power trading channel as well as the generating
units to the transmission line was calculated, and the model of the
coupling relationship between the trading network and the
transmission line in the province was clarified, while the
normalized quadratic objective function was established for
taking into account the congestion control and the balance of
supply and demand. Finally, a simulation was carried out using
actual data from central China, comparing this paper’s prediction
algorithm with other algorithms to verify the accuracy of the
prediction algorithm. The ATC results calculated in the
simulation illustrate that the consideration of intra-provincial
congestion lines will lead to the decrease in some of the available

transfer capability of the trading corridor, and the analysis of intra-
provincial congestion-prone transmission lines should be taken into
account in the operation of the market. On the basis of the research
in this paper, the uncertainty brought by the new energy output can
be further considered to assess the risk of the deviation of the trading
volume in the power market.
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