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The modern power generation systems are increasing their reliance on high
penetrations of distributed energy resources (DERs). However, the optimal
dispatching mechanisms mainly rely on central controls which receive the
load demand information from the electricity utility providers and allocate the
electricity production targets to participating generating units. The lack of
transparency and control over the DER fuel inputs makes the physical power
purchase agreements (PPAs) a cumbersome task. This researchwork proposes an
innovative fractal moth flame optimization (FMFO) approach to tackle the
problem of integrated load dispatch (ILD). The proposed methodology
provides a mechanism to integrate the information of the proposed optimizer,
i.e., FMFO into the smart contracts enabled by the blockchain technology. This
problem entails the allocation of loads to power-generating units in a manner
that minimizes the total generation cost in a decentralized manner. To improve
the efficiency of dispatch operations in the presence of a substantial integration
of wind energy, this study proposes a novel framework based on the principles of
fractal heritage, drawing inspiration from the classical MFOmethod. To assess the
effectiveness and adaptability of the algorithm suggested, various non-convex
scenarios in the context of optimization for ILD are considered. These scenarios
incorporate valve-point loading effects (VPLEs), capacity limitations, power plants
with multiple fuel options, and the presence of stochastic wind (SW) power
uncertainty, following a Weibull distribution. The findings demonstrate
exceptional performance in terms of minimizing fuel generation costs
compared to traditional algorithms.
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1 Introduction

Decentralized optimal power flow (D-OPF) in distribution
networks represents a cutting-edge approach to enhancing the
efficiency and reliability of power distribution, and integrating
blockchain technology into this framework further elevates
its capabilities. The traditional power flow management
systems often face challenges in handling the increasing
complexity of modern distribution networks with diverse
energy sources (AlSkaif and Van Leeuwen, 2019; Ullah et al.,
2022; Younesi et al., 2022; Jangir et al., 2023; Nappu et al., 2023).
D-OPF, by distributing decision-making processes across the
network nodes, allows for real-time optimization of power
flows, ensuring optimal utilization of resources and
minimization of losses such as reduction in fuel generation
cost, active power line losses, overall operational costs,
improved network voltage profile, security, and stability.
These objectives are achieved by finding the optimal value
for each of the operational variables, such as the active
power generation, generator voltages, the tap position of the
transformers, the shunt capacitor bank, and flexible alternating
current transmission system (FACTS) devices. In addition,
reactive power planning, which involves the optimum size
and allocation of reactive power sources, is another essential
framework that must be used to attain the highest possible level
of technological and economic advantages during the operation
of a power system.

Blockchain technology plays a pivotal role in ensuring the
security, transparency, and trustworthiness of the decentralized
decision-making process. By using a distributed ledger, every
participant in the network can access a secure and tamper-
resistant record of transactions and decisions. Smart contracts,
executed automatically based on pre-defined rules, facilitate the
seamless execution of optimization strategies. The transparency
provided by blockchain not only ensures the integrity of the
decision-making process but also encourages collaboration
among different stakeholders in the distribution network.

The synergy between D-OPF and blockchain technology not
only improves the operational efficiency of distribution networks
but also addresses issues related to data privacy and security. The
decentralized nature of the system reduces the vulnerability to
cyberattacks and unauthorized access. Additionally, the
incorporation of blockchain enables the creation of decentralized
energy markets, allowing prosumers to participate actively in the
energy trading process.

The D-OPF problems are divided into two subcategories:
distributed economic load dispatch (D-ELD) and optimal reactive
power dispatch (ORPD). The presented research concentrates on
the solution of the D-ELD problem by considering the integration of
distributed energy resources (DERs), with the primary goal of
reducing the total cost of generation. Due to the complexity,
non-stationarity, and non-linearity of power systems, however, it
is difficult to discover the optimal global solution to a power system.
A multitude of conventional, computational intelligence algorithms
and mathematical models are introduced to solve OPF problems in
power networks. To be more specific, we may refer to numerical
techniques such as the Newton method, interior point methods,
gradient-based algorithm (Granville, 1994), linear programming

(Aoki et al., 1988; Deeb and Shahidehpour, 1988), and quadratic
programming (Lo and Zhu, 1991).

The primary objective of this investigation is to propose the
concept of fractional calculus for possible exploration and
application in the optimization ingenuity of swarming and
evolutionary techniques. Researchers will be able to upgrade the
efficacy of traditional algorithms developed for engineering
applications, particularly for the solution of OPF issues
pertaining to electric power systems, which have been a
challenging area of research for the past few decades. In the
proposed research, the global optimum capabilities through a
novel approach of the biological-inspired metaheuristics
paradigm of the fractal moth flame optimization (FMFO)
algorithm are effectively applied on hybrid energy-generating
units of thermal and wind power. According to a recent survey,
the metaheuristic strategy of FMFO has not been applied so far on
integrated load dispatch (ILD) problems. The salient features of the
proposed research can be categorized as follows:

• For the large-scale ILD issue that incorporates SW, a
computational heuristic optimization approach that is based
on the FMFO algorithm is presented.

• The process of identifying a near-optimum solution for an ILD
system involves assessing the effectiveness of the suggested
FMFO technique. This assessment entails exploring and
exploiting variations in historical data terms and the
fractional derivative order.

• Comparative studies of FMFO heuristics outcomes with state-
of-the-art solvers for validating and verifying the strength of
the proposed scheme.

The structure of this paper is as follows: “Literature review "
provides a general overview of relevant studies from the literature.
The objective/fitness function for ELD and the mathematical
modeling of multiple fuel options and cost function for SW
power availability is established in “System mathematical model.”
"Designmethodology” provides an overview of the proposed scheme
of the FMFO algorithm. “Simulations and results” and “Statistical
analysis” analyze several simulations using the proposed method,
involving a comprehensive comparison with other approaches and a
statistical analysis. “Discussion and limitations” provides the
strengths and weaknesses of the proposed method. “Conclusions”
summarizes the principal conclusions.

2 Literature review

Smart contracts serve as the fundamental basis for blockchain
decentralized apps. These structures facilitate transactions in
contexts where trust is not required, using consensus techniques
and software-controlled verification criteria. Currently, there is a
lack of research on the portability of smart contracts, and the ability
to reuse their source code is mostly restricted to cloning. Górski
(2022) investigated the process of designing and implementing
smart contracts, specifically focusing on the explicit description
of verification requirements. The author presented two benefits
of the pattern: the first aspect is the ability to modify the set of
smart contract validation criteria during runtime in order to
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FIGURE 1
Transverse orientation strategy with reference to moonlight and logarithmic spiral trajectory toward artificial light or flame.

FIGURE 2
Operational principle of the proposed FMFO algorithm.
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accommodate different sorts of transactions. Furthermore, the
application of verification criteria may be extended across
multiple versions of the smart contracts. Kirli et al. (2022) gave a
thorough evaluation of the literature with peer review, highlighting

the usage of smart contracts for applications related to energy.
Energy applications are categorized into two primary categories:
energy and flexibility trading and distributed control. The former
includes 65% of the material that was evaluated. According to the
authors, this percentage is expected to grow further as energy
markets become more distributed with individual prosumers
gaining more control over their own energy production, storage,
and consumption. The most popular areas of smart contract
utilization were found to be peer-to-peer trading, market
architecture, EV collaboration, grid administration, and DR
control. Smart contracts are considered a viable alternative for
addressing the challenges associated with implementing local
energy management methods, particularly in terms of automating
negotiations, invoicing, settlement, and other related processes.

Conventional numerical techniques are not able to solve
constrained optimization problems, owing to the stiff situations
introduced because of considering practical constraints in
conventional OPF problems. These techniques are unable to
produce global optimum outcomes and are often trapped in local
optimum regions. On the other hand, stochastic search-based
computing processes are developed to handle optimization
challenges that arise during the study of power systems. These
methods evaluate the global optimum while dealing with non-
linear, discontinuous, and non-convex fitness functions with
success. With the recent development and application of
metaheuristic computational strategies, solutions to OPF
problems have become vastly superior.

Over the course of many decades, many researchers have
developed several optimization strategies with applicability to
real-world issues. Some of these strategies include emission,
combined emission and ELD, integrated power plant systems,
and smart grids. They have gone through fundamental ideas,
theoretical frameworks, and methodological approaches for
dealing with complex non-linear systems. It is impossible to deny
the importance of gradient-free solvers in the field of integrated
power plant systems, yet the research community only makes
limited use of the few metaheuristic algorithms that are of crucial
value. Particle swarm optimization (PSO) is metaheuristic nature-
inspired global technique adopted to find optimal results of ELD
integrated with SW forming hybrid energy-generating units (Pandit
et al., 2015). The genetic algorithm (GA) is exploited to deal with
ELD integrated with physical constraints where numerical
techniques failed to give global optimum outcomes. More stable
and précised results were recorded using a refined genetic algorithm
(RGA) by appropriate scheduling of active power generation
outputs (Durairaj et al., 2005; Chopra and Kaur, 2012a).
Additionally, recently developed metaheuristics-based searching
algorithms have been applied in power and energy sectors
reported in the work of Abbassi et al. (2019), El-Fergany et al.
(2019), Mohseni et al. (2019), Fathy (2020), Yang et al. (2020), and
Zhang et al. (2020).

The development of a biological-inspired metaheuristic strategy
of gray wolf optimization (GWO) developed byMirjalili et al. (2014)
and Faris et al. (2018) is a fascinating methodology to be applied to
stiff scenarios of a practical ELD problem. Numerous preponderant
problems of optimization are addressed using GWO (Alzubi et al.,
2020; Salgotra et al., 2020; Sattar et al., 2020) that includes feature
selection (Chantar et al., 2020), vehicular ad hoc networks (Fahad

FIGURE 3
Process of FMFO integration into the blockchain smart contract.
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et al., 2018), power system stabilizer design (Shakarami and
Davoudkhani, 2016), hydropower prediction (Dehghani et al.,
2019), and energy management (Nimma et al., 2018). Nature-
inspired rainfall optimization (RFO) has been adopted to address
the fuel generation cost in the case of the standard IEEE
40 generating unit test system. The main inspiration behind the
RFO algorithm is the trickling behavior of raindrops from any peak
toward sea level according to gravitational force. The RFO algorithm
simulates the behavior of these random-generated initial
populations of raindrops to find global outcomes in terms of the
deepest position of raindrops in the sea where a differential of cost
function rather than gradient has been applied to find solutions. The
proposed methodology outperformed in terms of convergence
characteristics compared to GA and PSO (Kabolia, 2023).

Greater emissions of toxic gases such as CO, SO, and NOx have
been observed because of electrical power generation from fossil

fuel-operated thermal power-generating units. Due to these
hazardous environmental concerns, mathematical formulations
have been developed to reduce the generation cost and emission
levels of the abovementioned toxic gases simultaneously. The
addition of alternate energy resources such as wind and solar
energies has largely rectified the concerns of higher generation
costs and emission levels of toxic gases. The integration of
renewable energy sources (RES) into thermal power plants has
led to modifications of the conventional quadratic fuel cost
characteristic equation by adding beta and Weibull distribution
functions that address the stochastically varying behavior of solar
and wind power availability, respectively. A recently developed
improved firework algorithm with a non-uniform operator
(IFWA-NMO) is applied on the standard IEEE 15 generating
unit test system with probabilistic varying behavior of solar and
wind power energies (Pandey et al., 2018). Many practical

TABLE 1 Primary regulating parameter settings for the proposed FMFO algorithm.

S no. Parameter Case study A Case study B Case study C

1 Moths’ dimensions 13 40 140

2 Population/size of moths 50 100 150

3 Fractional order of velocity 0.1 to 0.9 0.1 to 0.9 0.1 to 0.9

4 Cognitive behavior constant 0.9 0.9 0.9

5 Social behavior constant 1.5 1.5 1.5

6 Maximum iterations 300 1,000 100

7 Independent trials 100 100 100

8 Best fractional order recorded 0.1 0.9 0.7

TABLE 2Comparative analysis of the proposed FMFO algorithm for the 13-generating-unit test system for fractional-order values that range from0.1 to 0.9.

GUs FMFO FMFO FMFO FMFO FMFO FMFO FMFO FMFO FMFO

I II III IV V VI VII VIII IX

P1 637.30 620.07 623.08 627.92 539.40 640.02 680.00 629.86 535.71

P2 295.96 351.57 360.00 304.55 297.37 360.00 360.00 354.63 331.24

P3 354.83 360.00 307.76 334.63 360.00 289.49 360.00 301.91 303.67

P4 177.78 162.22 116.77 161.60 157.82 60.00 60.00 60.00 115.76

P5 162.87 180.00 180.00 166.51 174.03 180.00 60.00 180.00 114.12

P6 159.68 60.00 89.79 180.00 145.22 162.52 165.91 180.00 160.44

P7 60.00 180.00 110.29 126.40 126.29 142.13 171.73 103.00 160.77

P8 159.86 154.39 60.00 120.57 163.60 158.44 155.39 170.60 146.51

P9 60.00 60.00 180.00 60.00 71.39 60.00 108.39 156.38 170.63

P10 107.67 40.00 120.00 106.22 95.46 119.94 75.21 79.06 89.27

P11 69.06 86.70 120.00 84.92 115.18 72.45 40.00 40.00 109.18

P12 120.00 55.00 97.31 55.00 81.90 55.00 88.10 55.00 92.64

P13 55.00 110.05 55.00 91.67 92.34 120.00 95.27 109.56 90.07

Fuel cost 23938.71 24173.38 24183.83 24113.14 24149.06 24102.62 24074.14 24048.52 24033.65
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constraints, such as multi-fuel options, spinning reserves, and
transmission losses, have made the ELD problem a highly non-
convex optimization problem. Moreover, the economic emission
dispatch (EED) has transformed the single objective of the ELD
problem to a multi-objective problem with two contradictory
objectives. In order to improve robustness, convergence speed,
and accuracy, the roulette wheel mechanism and wavelet
mutation have been included in the conventional harmony
search algorithm (HSA) called modified HSA. The effectiveness

of the proposed modified strategy scheme has been applied on seven
highly non-linear and multi-objective test systems and results
proved even better compared to the classical HSA (Jeddi and
Vahidinasab, 2014).

The hybridization approach of various optimization techniques
has shown greater potential and generated the best global solutions
to real-world problems. The best global solutions are promised
because the hybridization approach takes advantage of exploiting
the best features of individual algorithms simultaneously (Hu et al.,
2015). Over the last decade, hybrid techniques have been
deliberately applied on power systems. The rising trend of these
techniques in the power system is the main motivation for an
extensive literature survey in the power system domain. Hybrid
algorithms take advantage of simultaneously searching for the best
solutions in the search space and rectifying any potential
disadvantages. A recently developed hybrid strategy of
gravitational acceleration enhanced particle swarm optimization
(GAEPSO) has been adopted to optimize the fuel generation
cost, emission, and compromise solution of both. The hybrid
computational approach of GAEPSO has adopted the exploration
feature of PSO and the exploitation property of the gravitational
search algorithm (GSA) simultaneously to give global solutions
(Jiang et al., 2015). More stable and precise results were recorded
using the hybrid genetic algorithm (HGA) by appropriate
scheduling of active power generation outputs (Chopra and Kaur,
2012a). Hybrid imperialistic competitive sequential quadratic
programming (HIC-SQP) has been applied to optimize the
stochastic behavior in terms of direct cost, overestimated cost,

FIGURE 4
Comparing the learning curves of the proposed FMFO algorithm for the best fractional orders in case of the 13-generating-unit test system.

TABLE 3 Comparative analysis of the proposed FMFO algorithm for the 13-generating-unit test systemwith state-of-the-art algorithms from the literature.

Algorithm Base value GA-SQP FA PSO CSA FO-FA FMFO

Fuel cost 24840.18 24040.73 24650.96 24340.50 24190.26 24280.13 23938.71

% reduction - 3.21% 0.76% 2% 2.6% 2.3% 3.6%

FIGURE 5
Comparison of percentage reduction in the fuel cost of the
proposed FMFO algorithm for the 13-generating-unit test systemwith
state-of-the-art algorithms from the literature.
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and underestimated cost of wind power availability integrated with
thermal power-generating units in order to reduce the generation
cost and emission of toxic gases simultaneously. Naderi et al. (2017)
solved the multi-objective problem involving the fuel generation
cost, emission levels, and transmission losses of the ELD problem by
considering the valve-point loading effect (VPLE), prohibited
operating zones (POZs), and multi-fuel options for 10-, 40-, and
160-unit test systems by formulating the fuzzy-based PSO hybrid
with differential evolution (DE) known as FBPSO-DE. The
performance of the proposed hybrid approach of PSO was
analyzed by comparing it with seven constrained benchmark
functions based on 100 independent trials and showed better
convergence and robustness against PSO and its different hybrid
approaches. The continuous greedy randomized adaptive search
procedure (CGRASP) algorithm hybrid with self-adaptive
differential evolution (SaDE) known as CGRASP-SaDE is
adopted to optimize fuel generation cost considering VPLE (Neto
et al., 2017). The effectiveness of the proposed hybrid approach is
validated by considering 13, 40, and 140 generating units. The
simulation results of the proposed CGRASP-SaDE are well
promising and effective compared with standalone strategies of
GRASP and CGRASP. Enhanced mutation, additive competition,
and discrete difference operators were integrated in the hybrid
strategy of the harmony search algorithm with differential
evolution (HSDE) by Zhang et al. (2016) and applied on the day-
ahead scheduling model of micro grid containing photovoltaic, wind
power, diesel generator sets, and battery storage by considering IEEE
9, IEEE 39, and IEEE 57 bus systems. The effectiveness of the
proposed hybrid approach of HSDE is validated by comparing it
with state-of-the-art counterparts by considering the normal and
faulty conditions of IEEE bus systems.

Recently, it has been proposed that the incorporation of
fractional calculus (FC) and the foundational concepts of
fractional derivatives into the underlying mathematical model of
a system will yield far superior results in other disciplines of science
and engineering. These methods have been effectively implemented
in a variety of issues including feature selection (Wang et al., 2018),
image processing (Wang et al., 2019), hyperspectral images
(Ghamisi et al., 2013a), controllers for estimating the robotic
path (Łegowski and Niezabitowski, 2016), Kalman filters (Zhu
et al., 2014a), and fractional-order filters (Ates et al., 2016). This
research suggests that FC tools should be embedded with
evolutionary techniques in order to solve optimization challenges
in the energy industry. We can refer to fractional-order robotic PSO,
FPSO with fractional-order velocity (Couceiro et al., 2012a; Ghamisi
et al., 2013b; Ghamisi et al., 2014; Ates et al., 2017; Machado and
Kiryakova, 2017; Shahri et al., 2019), localization and segmentation
of optical disc (Zhu et al., 2014b), parameter adaptation for Kalman
filtering algorithms (Zhu et al., 2014a), land-cover monitoring

(Yokoya and Ghamisi, 2016), feature selection (Wang et al.,
2018), classification of hyperspectral images (Paliwal et al., 2017),
and robot path controllers design (Łegowski and Niezabitowski,
2016). Other applications include the design of a multi-band power
system stabilizer based on a lead–lag compensator using a hybrid
dynamic GA-PSO (Kuttomparambil Abdulkhader et al., 2018), non-
linear systems identification (Kosari and Teshnehlab, 2018),
continuous non-linear observer using sliding mode PID (Azar
and Serrano, 2018), fractional robust control of coupled tank
systems (Katal and Narayan, 2017), and reference model-based
PID controllers for AVR systems (Li et al., 2017). These studies
motivate the integration of FC tools with metaheuristics algorithms
for power and energy sector optimization problems.

3 System mathematical model

The main goal of the ILD issue is to optimize the distribution of
load among power-producing units to minimize the overall fuel
generation cost. This purpose considers the specific restrictions
associated with substantial multi-fueled power plants and
incorporates the integration of RES to ensure the provision of
sustainable energy.

3.1 Convex fuel cost function formulation

The phenomenon of ELD may be classified as a constrained
optimization problem since it aims to minimize the overall cost
associated with power-producing systems within a certain time
frame. A quadratic function can potentially be used to simulate
the primary objective function of ELD, which reflects input output
characteristics between active power production and fuel-generating
cost (Balamurugan et al., 2014).

Minimize: Fm Pm( ) � FCost � ∑TU
m�1

αm + βmPm + δmP
2
m( ). (1)

‘FCost’ is the total fuel cost generation in dollars per hour ($/hr.),
whereas ‘TU’ is the total number of thermal power-generating units.
Generation coefficients reflecting the social, economic, and other
related terms are being shown by coefficients ‘α’, ‘β’, and ‘δ’ for the
mth thermal power-generating unit in quadratic fuel cost function
formulation.

3.2 Non-convex fuel cost function

The efficiency of power-producing systems including a steam
generator, steam turbine, and alternator often exhibits a quadratic

TABLE 4 Data of wind power units.

C1 C2 C3 K1 K2 K3 D1 D2 D3

8 7 6 2 2.4 1.7 120 120 120

V1 (m/s) Vin (m/s) Vout (m/s) Crw1 (MWh) Crw2 (MWh) Crw3 (MWh) Crp1 (MWh) Crp2 (MWh) Crp3 (MWh)

14 4 25 30 30 30 30 30 30
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TABLE 5 Comparative analysis of the proposed FMFO algorithm for the Taiwan 40-generating-unit test system for fractional-order values that range from
0.1 to 0.9.

GUs FMFO FMFO FMFO FMFO FMFO FMFO FMFO FMFO FMFO

I II III IV V VI VII VIII IX

P1 114.00 114.00 114.00 114.00 114.00 114.00 114.00 114.00 114.00

P2 114.00 114.00 114.00 114.00 114.00 114.00 114.00 114.00 114.00

P3 120.00 60.00 120.00 120.00 60.00 100.87 109.59 104.67 120.00

P4 80.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00

P5 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00

P6 140.00 140.00 140.00 140.00 140.00 140.00 140.00 139.15 140.00

P7 300.00 300.00 300.00 300.00 300.00 300.00 290.98 300.00 300.00

P8 300.00 300.00 300.00 300.00 300.00 284.42 300.00 300.00 300.00

P9 300.00 300.00 300.00 283.74 300.00 300.00 300.00 300.00 300.00

P10 130.00 130.00 130.00 130.00 130.00 130.00 130.00 130.00 130.00

P11 94.00 94.00 94.00 94.00 94.00 94.00 94.00 94.00 96.20

P12 94.00 94.00 94.00 94.00 94.00 94.00 94.00 94.00 94.00

P13 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00

P14 392.90 320.66 304.65 125.00 125.00 125.00 307.39 303.06 307.49

P15 394.10 218.29 300.01 215.09 397.21 214.84 305.67 305.20 304.86

P16 125.00 301.28 125.00 500.00 296.45 500.00 125.00 125.00 125.00

P17 500.00 500.00 500.00 499.93 500.00 500.00 500.00 500.00 488.35

P18 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00

P19 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00

P20 550.00 550.00 550.00 503.58 511.43 508.38 550.00 550.00 550.00

P21 550.00 550.00 550.00 550.00 549.93 550.00 550.00 550.00 539.15

P22 550.00 550.00 550.00 549.15 550.00 529.22 550.00 550.00 550.00

P23 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00

P24 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00 550.00

P25 550.00 550.00 550.00 542.11 550.00 550.00 550.00 550.00 550.00

P26 550.00 522.37 550.00 550.00 550.00 524.27 550.00 550.00 550.00

P27 97.00 85.82 97.00 97.00 97.00 97.00 95.77 97.00 97.00

P28 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00

P29 190.00 190.00 189.90 190.00 190.00 190.00 190.00 190.00 190.00

P30 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00 190.00

P31 200.00 200.00 200.00 198.84 200.00 200.00 200.00 200.00 199.96

P32 200.00 200.00 200.00 197.78 200.00 200.00 199.61 200.00 200.00

P33 200.00 200.00 200.00 165.81 200.00 200.00 200.00 199.91 200.00

P34 25.00 110.00 110.00 109.73 110.00 110.00 110.00 110.00 110.00

P35 110.00 110.00 110.00 96.26 110.00 110.00 110.00 110.00 110.00

P36 110.00 85.44 110.00 110.00 106.96 110.00 110.00 110.00 110.00

P37 550.00 550.00 537.40 550.00 550.00 550.00 550.00 550.00 550.00

(Continued on following page)
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relationship with respect to load demand. The quadratic equation
demonstrates the relationship between the increase in load demand
and the corresponding increase in the generating cost rate, expressed
in $/hr. Nevertheless, contemporary thermal power generation
systems have also taken into consideration the physical
phenomena associated with fluctuations in load demand. The
regulation of the electrical power output from an alternator, in
accordance with the load demand, often involves the use of
controlled valves. These valves are responsible for managing the
quantity of steam that is permitted to be sprayed onto turbines via a
series of distinct nozzle groups. Optimal efficiency is attained by
each nozzle when it operates at maximum output. The attainment of
optimal efficiency for enhanced production is achieved by opening
valves in a sequential manner. In the VPLE system, the turbine

operates at its peak efficiency prior to the activation of the
subsequent valve in the prescribed sequence. The physical
phenomena under consideration may be represented by
incorporating absolute and sine terms into a quadratic fuel cost
function, resulting in a non-smooth function owing to the presence
of ripples associated with the VPLE (Decker and Brooks, 1958).

Minimize: Fm Pm( ) � FCost � ∑TU
m�1

αm + βmPm(
+δmP2

m + abs ξm. sin Im Pm,min − Pm( )( )( )),
(2)

where ξm and Im are the generation coefficients involved
with the VPLE.

FIGURE 6
Comparing the learning curves of the proposed FMFO algorithm for the best fractional orders in case of the Taiwan 40-generating-unit test system.

TABLE 6 Comparative analysis of the proposed FMFO algorithm for the Taiwan 40-generating-unit test system with state-of-the-art algorithms from the
literature.

Algorithm Base value HIC-SQP PWTED1 DWTED1 GA-SQP PSO COOT FMFO

Fuel cost 143587.9 136381.39 137984.38 137190.31 136700.49 139000.03 139000.63 135440.17

% reduction - 5% 3.9% 4.45% 4.8% 3.19% 3.2% 5.67%

TABLE 5 (Continued) Comparative analysis of the proposed FMFO algorithm for the Taiwan 40-generating-unit test system for fractional-order values that
range from 0.1 to 0.9.

GUs FMFO FMFO FMFO FMFO FMFO FMFO FMFO FMFO FMFO

I II III IV V VI VII VIII IX

P38 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00

P39 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00

P40 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00

Total cost 136229.9 135708.3 135570.83 135844.29 135602.67 135505.52 135593.76 135538.73 135440.17
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3.3 Convex cost function involving multiple
fuel options

Power plants are provided with a diverse range of fuel
sources, including coal, oil, and natural gas. However, to
optimize economic efficiency within a certain operational
range, power plants choose the most financially advantageous
fuel type. The following expression denotes the cost function
pertaining to the ELD problem, including a wide range of fuel
alternatives (Liu et al., 2022).

Minimize: Fm Pm( )

� FCost �

αm,1 + βm,1Pm + δm,1P2
m( ) forfuel type 1

αm,2 + βm,2Pm + δm,2P2
m( ) forfuel type 2

αm,3 + βm,3Pm + δm,3P2
m( ) forfuel type 3

..

.

αm,k + βm,kPm + δm,kP2
m( ) forfuel type k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3)

where ‘αm,k’, ‘βm,k’, and ‘δm,k’ are the generation coefficients of the
mth power plant.

3.4 Non-convex cost function involving
multiple fuel options

To obtain a reliable and feasible ELD solution, we must
simultaneously evaluate multi-fuel options and VPLE. The cost
function may, thus, be expressed as follows:

FCost �

αm,1 + βm,1Pm + δm,1P2
m( ) + abs ξm,1. sin Im,1 Pm,min − Pm( )( )( ) forfuel type 1

αm,2 + βm,2Pm + δm,2P2
m( ) + abs ξm,2. sin Im,2 Pm,min − Pm( )( )( ) forfuel type 2

αm,3 + βm,3Pm + δm,3P2
m( ) + abs ξm,3. sin Im,3 Pm,min − Pm( )( )( ) forfuel type 3

..

.

αm,k + βm,kPm + δm,kP2
m( ) + abs ξm,k . sin Im,k Pm,min − Pm( )( )( ) forfuel type k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(4)

where ξm,k andIm,k are the generation coefficients involved with the
VPLE of the mth power plant.

3.5 Wind power cost function formulation

The significant advantage of integrating SW power in thermal
power-generating units is reflected by economic and environment-
friendly electrical power generation. In the power generation system
comprising both thermal and wind power-generating units, various
models have been developed for characterizing the scheduling of real
power generation and operational generation cost. Due to the
inherent random speed of wind power, the power generation
operator is uncertain regarding its availability. He may
overestimate wind power availability where actual power is less
than that of power predicted, and extra power is purchased to fulfill
the load requirements. Sometimes due to the underestimation of
wind power availability, some extra power is available, and
compensation is provided to the wind power supplier’s cost for
not using the complete wind power available. The total generation
cost of wind power can be modeled as follows (Khan et al., 2021):

FW.P Cost( ) � ∑WU

n�1
CW.P DIR,n( )( ) + CW.P OE,n( )( ) + CW.P UE,n( )( )[ ]. (5)

‘FW.P(Cost)’ is the total wind power generation cost, and ‘WU’ is
the total number of wind power generation units. ‘CW.P(DIR,n)’,

TABLE 7 Comparative analysis of the proposed FMFO algorithm for fractional orders ranging from 0.1 to 0.9 in case of case studies A, B, and C.

Variant Case study A Case study B Case study C

Fuel cost ($/hr.) Total cost ($/hr.) Fuel cost ($/hr.)

FMFO-I 23938.71 136229.97 1420608.02

FMFO-II 24173.38 135708.33 1428360.21

FMFO-III 24183.83 135570.83 1426897.98

FMFO-IV 24113.14 135844.29 1424766.86

FMFO-V 24149.06 135602.67 1423897.39

FMFO-VI 24102.62 135505.52 1409251.03

FMFO-VII 24074.14 135593.76 1405421.20

FMFO-VIII 24048.52 135538.73 1413501.88

FMFO-IX 24033.65 135440.17 1410264.52

FIGURE 7
Comparison of percentage reduction in the fuel cost of the
proposed FMFO algorithm for the Taiwan 40-generating-unit test
system with state-of-the-art algorithms from the literature.
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‘CW.P(OE,n)’, and ‘CW.P(UE,n)’ are terms associated with direct cost,
overestimated cost, and underestimated cost associated with wind
power-generating units, respectively.

Output wind power generation is directly proportional to
‘CW.P(DIR,n)’ and can be expressed mathematically for nth wind
power generation unit as follows:

CW.P DIR,n( ) �∑wg
n�1

qn*W.Pn( ). (6)

In Eq. 6, ‘qn’ is the coefficient expressing direct electrical
energy cost from the nth wind power-generating unit in $/MWh,

whereas ‘W.Pn’ is real electrical output power in MW from
the nth wind power-generating unit. ‘CW.P(OE,n)’ is the
unbalanced overestimated cost as a result of the
overestimation of wind power availability, so some extra real
power in MW is purchased due to electrical power shortage from
wind power-generating units and can be expressed
mathematically as follows:

CW.P OE,n( ) �∑wg
n�1

Crw,n*X Voe,n( )( ). (7)

‘Crw,n’ is the cost coefficient for overestimation in $/MWh for
the nth wind power-generating unit, whereas ‘X(VOE,n)’ is the
expected value of wind power overestimation for the nth wind
power-generating unit and can be expressed mathematically
as follows:

X VOE,n( ) � W.Pn 1 − exp −V
Kn
IN,n

CKn
n

( ) + exp −V
Kn
OUT,n

CKn
n

( )[ ]

+ W.Pr,n*VIN,n

Vr,n − VIN,n
+W.Pn( ).

exp −V
Kn
IN,n

CKn
n

( )−
exp −V

Kn
1,n

ckmn
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ W.Pr,n*Cn

Vr,n − VIN,n
( )

× Γ 1 + 1
Kn

,
V1,n

cn
( )Kn⎡⎣ ⎤⎦ − Γ 1 + 1

Kn
,

VIN,n

Cn
( )Kn⎡⎣ ⎤⎦⎧⎨⎩ ⎫⎬⎭.

(8)

TABLE 8 Comparative analysis of the proposed FMFO algorithm for the Korean 140-generating-unit test system with state-of-the-art algorithms from the
literature.

Algorithm Base case GA-SQP FA CSA COOT FO-FA FMFO

Fuel cost 1740000.4 1534832.57 1545000.11 1585000.80 1613000.06 1534000.12 1405421.20

% reduction - 11.8% 11.5% 8.9% 7.3% 11.84% 19.22%

FIGURE 9
Comparison of percentage reduction in the fuel cost of the
proposed FMFO algorithm for the Taiwan 40-generating-unit test
system with state-of-the-art algorithms from the literature.

FIGURE 8
Comparing the learning curves of the proposed FMFO algorithm for the best fractional orders in case of the Korean 140-generating-unit test system.
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‘VIN’, ‘VOUT’, and ‘Vr’ are the cut-in, cut-out, and rated speed
of wind in meters per second, respectively, whereas V1 =
VIN+(Vr-VIN) *W. Pn/W. Pr is the intermediary parameter.
‘Cn’ and ‘Kn’ are the coefficients of the Weibull distribution
reflecting scale and shape factor, respectively, for the nth wind
power-generating unit. ‘W. Pn’ and ‘W. Pr’ are the generated
and rated electrical power in MW for the nth wind power-
generating unit, respectively.

Moreover, the symbol Γ in Eq. 8 represents the incomplete
gamma function having two parameters (Liu et al., 2022) and can be
mathematically expressed as follows:

Γ p, c( ) � 1/Γ c( )*∫
p

0

tc−1e−tdt. (9)

A standard gamma function involves a single parameter
expressed as follows:

Γ p( ) � ∫
p

0

tp−1e−pdt. (10)

‘CW. P (UE, n)’ is the penalty cost imposed because of
underestimating the availability of wind power where the

actual active power available out of wind power-generating
units is more than that of predicted active power.
Compensation in this regard is provided to the wind power
supplier’s cost for not using all the wind power available and can
be mathematically expressed as follows:

CW.P UE,n( ) � ∑NWPG

n�1
Cew,n*Y VUE,n( )( ). (11)

‘Cew, n’ is the cost coefficient for underestimation in $/MWh for
the nth wind power-generating unit and ‘Y (VUE, n)’ is the expected
value of wind power underestimation for the nth wind power-
generating unit and can be expressed as follows:

Y VUE,n( ) � W.Pr,n −W.Pn( ) exp −V
Kn
r,n

CKn
n

( ) − exp −V
Kn
OUT,n

CKn
n

( )[ ] + ...

W.P1,n*VIN,n

Vr,n − VIN,n

+W.Pn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
exp −V

Kn
r,n

CKn
n

( )−
exp −V

Kn
1,n

cknn
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ...

W.Pr,n*Cn

Vr,n − VIN,n
( )

FIGURE 10
Statistical analysis of the proposed FMFO algorithm in terms of CDF. (A) CDF: FMFO-I for case study A. (B) CDF: FMFO-IX for case study B. (C) CDF:
FMFO-VII for case study C. (D) Boxplot: FMFO-I for case study A. (E) Boxplot: FMFO-IX for case study B. (F) Boxplot: FMFO-VII for case study C.
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Γ 1 + 1
Kn

,
V1,n

cn
( )Kn⎡⎣ ⎤⎦ − Γ 1 + 1

Kn
,

Vr,n

Cn
( )Kn⎡⎣ ⎤⎦⎧⎨⎩ ⎫⎬⎭. (12)

3.6 Total generation fuel cost function

The overall objective function can be modeled by combining the
quadratic fuel cost function involving the VPLE and wind power
generation availability cost function in $/hr., as expressed in the
following equation:

FTotal � FCost + FW.P Cost( ), (13)
where ‘FCost’ and ‘FW.P(Cost)’ can be found from Eq. 4
and Eq. (5), respectively, and are presented in the
following equation:

FTotal �

αm,1 + βm,1Pm + δm,1P2
m( ) + abs ξm,1. sin Im,1 Pm,min − Pm( )( )( )

αm,2 + βm,2Pm + δm,2P2
m( ) + abs ξm,2. sin Im,2 Pm,min − Pm( )( )( )

αm,3 + βm,3Pm + δm,3P2
m( ) + abs ξm,3. sin Im,3 Pm,min − Pm( )( )( )

M ..
.

αm,k + βm,kPm + δm,kP2
m( ) + abs ξm,k. sin Im,k Pm,min − Pm( )( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
+∑WU

n�1

CW.P DIR,n( )( ) +/
CW.P OE,n( )( ) +/

CW.P UE,n( )( )
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.

(14)

3.7 Operational constraints

Traditional constraints in ELD analysis include inequality
constraints, such as active and reactive power production, as well
as equality constraints, such as active and reactive power
balancing equations. All these limitations are taken into
consideration in a steady state, without taking into account
any network disruptions that may occur momentarily. The
operational variables and constraints related to ELD are
documented in the following sections.

3.7.1 Load demand constraint
The most important constraint to be handled properly while

optimizing the total generation cost is that the total active power
generation output from different thermal and wind power-
generating units at each bus should be equal to the total load
demand plus active power losses, respectively, as shown in the
following equations:

∑TU
m�1

Pm( ) +∑WU

n�1
W.Pn( ) � Pdemand + Preal−power−loss, (15)

Preal−power−loss � Vo∑n
p�1

Vp Bop sin δo − δp( ) + Gop cos δo − δp( )[ ].
(16)

Similarly, the expression for the loss of reactive power is
given by

Preactive−power−loss � Vo∑n
p�1

Vp Bop cos δo − δp( ) + Gop sin δo − δp( )[ ].
(17)

"Bop” and “Gop” refer to the susceptance and conductance of
the transmission lines interconnecting the oth and pth buses,
respectively.

3.7.2 Generation constraint
Active power generation output from each thermal and wind

power-generating unit should be less than or equal to its maximum
active power generation limits such that

Pm,min ≤Pm ≤Pm,max, (18)
0≤W.Pn ≤W.Pr,n. (19)

3.8 Penalty function method to incorporate
the violation of control variables

In the power system, considerable damage will occur to power
network if control variables violate its limits. In this regard, the
penalty function methodology has been incorporated to take care of
the violation of control variables. The penalty function term will
become zero if control variables are within its pre-defined limits and
objective function incorporating ILD can be expressed as shown in
the following equation:

Minimize: FTotal: TGC + PF X, ra, rb( ). (20)

Here, ‘PF(X,ra,rb)’ is penalty function expressions for
optimizing total generation cost. X = x ∈ [P, W. P] represents
the set of independent variables for thermal power generation and
wind power generation. ‘ra’ represents penalty multipliers for
equality constraints in case of optimizing the total generation
cost, whereas ‘rb’ represents penalty multipliers for
inequality constraints. The penalty multiplier ‘rb’ includes
‘rp’ and ‘rw.p’, which are penalty multipliers for independent
variables in the case of thermal power generation and wind
power generation, respectively. The strategy adopted for
constraint violations of controlled variables is summarized in
the following equation:

Plim
m �

Pmax
m if Pm >Pmax

m

Pmin
m if Pm <Pmin

m

Pm if Pmin
m <Pm <Pmax

m

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭.

m � 1, 2 . . . . . . . . . ,NTU,

(21)

W.Plim
n �

W.Pr,n if W.Pn >W.Pr,n

W.Pn if 0<W.Pn <W.Pr,n

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭

n � 1, 2 . . . . . . . . . ,NWU .

(22)

4 Design methodology

This section introduces a unique way to enhance the local
search strategy of the traditional MFO algorithm. Mirjalili
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(2015), inspired by the transverse positioning of moths during
nocturnal navigation, proposed the MFO method for the first
time. MFO uses spiral trajectory functions to represent dying
behavior in a mathematical model, unlike other nature-inspired
algorithms. Moths use transverse orientation as a navigational
strategy to facilitate more efficient nocturnal migration over
extended distances, whereby they maintain a constant angle
relative to the moonlight (Figure 1A). The presence of
nocturnal artificial lights or flames often causes moths to
deviate from their intended trajectory. This phenomenon may
be attributed to the fact that moths tend to be in greater proximity
to artificial lights than moonlight. As seen in Figure 1B, moths die
as they fall toward artificial light due to a lethal spiral orientation.

The MFO algorithm is a search algorithm that operates on a
population-based approach. In this system, every moth serves as a
search agent, with the orientation of each agent indicating the
quantity of controllable variables. This approach aims to discover
the optimum solutions. The framework incorporates an initial
solution for moths, denoted as ‘M’, which consists of ‘n’
candidate solutions and ‘d’ dimensions representing controllable
variables. These candidate solutions are evaluated based on an
objective function, and their fitness is represented by the
matrix ‘OM’.

Mpos �
M 1,1( ) M 1,2( ) M 1,3( )//M 1,d( )
M 2,1( )

..

.
M 2,2( )

..

.
M 2,3( )//M 2,d( )

..

.

M n,1( ) M n,2( ) M n,3( )//M n,d( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (23)

OMfitness � OM 1,1( ) OM 2,1( )//OM n,1( )[ ]T. (24)

A matrix is developed for flames, denoted as ‘F’, which has a
resemblance to the matrix structure seen in moths. The matrix
contains encoded fitness values represented as ‘OF’. Moths choose
the most advantageous position, and subsequent search agents
adjust their placements in accordance with the ideal position that
has been reached so far.

The ‘S’ spiral function is used to adjust the position of every nth
moth relative to the kth flame.

Mn � S Mn, Fk( ). (25)

Historically, the MFO method has replicated the spiral flight
trajectory of moths using a logarithmic spiral function, and the
alignment has been enhanced using Eq. 26. The variable ‘Dn’
represents the linear distance among the nth moth and the kth.
Here, ‘k’ is the form factor of the logarithmic spiral, and ‘r’
represents a randomly generated value within the range
of −1 to 1.

S Mn, Fk( ) � Dn.e
kr. cos 2πt( ) + Fk. (26)

The proposed method integrates FC with the fundamental MFO
to generate a fractional-order MFO algorithm in order to control the
accelerated convergence tendency and achieve acceptable results.
MFO has a reasonable predisposition for global search, but its
ineffectual local search results in a subpar reduction in
convergence speed. To circumvent the aforementioned limitation,

the proposed method integrates the FC into the fundamental MFO
in order to use the FC retention feature of the earlier solutions to
guarantee information sharing across solutions during the
exploitation phase. Consequently, both the response accuracy and
convergence speed are altered. FC is well-suited to describing
intriguing phenomena, such as irreversibility and disorder, due to
the characteristics it reveals and its inherent memory component.
According to this theory, the dynamic nature of an MFO trajectory
creates a unique situation, whereas FC instruments are a suitable
complement.

FC has garnered the interest of numerous academicians due
to its applicability in a vast array of scientific disciplines,
including engineering, computer mathematics, and
computational physics. FC is an extension of integer-order
calculus, accomplishing what the latter could not. As a natural
extension of integer (or classical) derivatives, fractional
derivatives are a suitable method for describing the memory
and inherited properties of processes.

There are several alternative approaches for representing the
notion of fractional-order derivatives (Sabatier et al., 2007;
Teodoro et al., 2019). Using the Grünwald–Letnikov theory
for fractional-order derivatives, it is possible to derive the FC-
based mathematical equations for MFO. We consider any
random signal s(t) for which the Grünwald–Letnikov
fractional-order derivative is given in the following equation
(Couceiro et al., 2012b):

Dδ s t( )( ) � Lim
h→0

1
hδ
∑∞
k�0

−1( )kΓ δ + 1( )s t − kh( )
Γ δ − k + 1( )Γ k + 1( )⎡⎣ ⎤⎦. (27)

Although an integer-order derivative only implies a finite series,
a fractional-order derivative necessitates an infinite number of
terms. Derivatives of integers are, hence, “local” operators. In
contrast, fractional derivatives inherently “remember” all prior
events. Nevertheless, the influence of prior events diminishes
over time. The discrete time calculation is inspired by the
following expression:

Dδ s t[ ][ ] � 1
Tδ

∑r
k�0

−1( )kΓ δ + 1( )s t − kT( )
Γ δ − k + 1( )Γ k + 1( )⎡⎣ ⎤⎦, (28)

where ‘T’ is the sampling period and ‘r’ is the order of truncation.
[s(t)] is a discrete variable, and for a special case, where δ is equal to
one, the equation is transformed to an integer-order or ordinary
first-order derivative and can be expressed as follows:

D1 s t( )[ ] � s t + 1( ) − s t( ). (29)
In order to use the previously described definition of FC to

enhance the classical MFO’s local search capabilities, the position of
each moth is updated based on its velocity, as shown in the
following equation:

Mn
p t( ) � Mn

p t − 1( ) +Mn
v t( ). (30)

Moths exhibit PSO motion, with the local optima
representing the moth’s associated flame (LB. Fpos) and the
global optima being the best flame (GB. Fpos). The position of
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each moth is updated at each iteration depending on its current
velocity and position. Both initial velocity and the cognition and
social behavioral patterns of moths are consistent with the
revised velocity. In contrast, the mathematical model of
cognitive behavior is the distance between the greatest local
flames and their current location.

Mn
v t( ) � Mn

v t − 1( ) + C1*r1* LB.Fkp t − 1( ) −Mn
p t − 1( )( ) ...

+ C2*r2* GB.Fkp t − 1( ) −Mn
p t − 1( )( ), (31)

whereMn
v(t) is the velocity associated with the nth particle at the

current iteration t, Mn
v(t − 1) is the velocity at the prior iteration

t-1, LB.Fkp(t − 1) is the local best position at time t-1, and
(GB.Fkp(t − 1) is the global best position at time t-1. C1 and
C2 are constant parameters that represent the cognitive and
social behavior of particles for the local and global optimal
locations of particles, respectively. r1 and r2 are random
integers ranging from 0 to 1 that are used to determine the
optimal placement of particles. The formula for Eq. 29 is given
as follows:

Mn
v t( ) −Mn

v t − 1( ) � C1*r1* LB.Fkp t − 1( ) −Mn
p t − 1( )( ) ...

+ C2*r2* GB.Fkp t − 1( ) −Mn
p t − 1( )( ). (32)

Here, Mn
v(t) −Mn

v(t − 1) reflects the integer first-
order difference where the fractional-order derivative is
taken as 1, making it a classical integer-order
derivative. By putting T = 1 using Eq. 28, the following
equation is obtained:

Dδ Mn
v t( )[ ] � C1*r1* LB.Fkp t − 1( ) −Mn

p t − 1( )( ) ...
+C2*r2* GB.Fkp t − 1( ) −Mn

p t − 1( )( ). (33)

The order of a velocity derivative can indeed be
generalized to something like a real number ranging from
0 to 1, resulting in a smoother fluctuation and a prolonged
memory effect, based on the FC notion. Considering the
discrete-time fractional differential, Eq. 30 can be rewritten
as follows:

Mn
v t( ) � − ∑r

k�0

−1( )kΓ δ + 1( )s t − kT( )
Γ δ − k + 1( )Γ k + 1( )⎡⎣ ⎤⎦

+ C1*r1* LB.Fkp t − 1( ) −Mn
p t − 1( )( ) + C2*r2*(GB.Fkp t − 1( )[

−Mn
p t − 1( )]. (34)

The expression of the fractional velocity for the nth moth
particle with the rth term is as follows: tr = 1, 2, 3, r.

Mn
v t( ) � δMn

v t − 1( ) + 1
2
δ 1 − δ( )Mn

v t − 2( )

+ 1
Γ k + 1( ) δ 1 − δ( )... k − 1 − δ( )( )Mn

v t − k( )
+ C1*r1* LB.Fkp t − 1( ) −Mn

p t − 1( )( )
+ C2*r2* GB.Fkp t − 1( ) −Mn

p t − 1( )( ). (35)

Considering only four terms, Eq. 33 can be rewritten as follows:

Mn
v t( ) � δMn

v t − 1( ) + 1
2
δ 1 − δ( )Mn

v t − 2( )

+ 1
6
δ 1 − δ( ) 2 − δ( )Mn

v t − 3( )

+ 1
24

δ 1 − δ( ) 2 − δ( ) 3 − δ( )Mn
v t − 4( )

+ C1*r1* LB.Fkp t − 1( ) −Mn
p t − 1( )( )

+ C2*r2* GB.Fkp t − 1( ) −Mn
p t − 1( )( ). (36)

The operating idea of the proposed FMFO algorithm is
shown in Figure 2, while the pseudocode for FMFO is given
in Algorithm 1.

INPUT: Standard test data for 13 generating units,

Taiwan 40 generating units, and Korean 140 generating

units are loaded.

OUTPUT: Fuel generation cost optimum outcomes because of

fitness assessment for objective function as stated in

the system mathematical model.

FOMFO Algorithm

Random initialization of the search agent’s (moths)

population: n search agents are randomly introduced

whose dimensions correlate to the task’s controllable

variables into the ’M’ population of moths.

Fitness evaluation: The evaluation of the fitness value

of each search agent is conducted by subjecting it to the

requisite objective function pertaining to fuel

generation cost minimization.

Sorting initial search agent population: The collective

number of search agents is primarily sorted based on

their distinctive fitness function scores and then

allocated to the flame population ’F’ in conjunction

with their individual fitness function values ’OF’.

Updating the position of search agents: A logarithmic

spiral function is used to adjust the position of a moth

relative to the optimal flame.

Velocity calculation of each search agent based on the

fractional-order strategy: The velocity for every nth

moth is calculated through fractional order “varying

from 0.1 to 0.9 as defined inEq. 36.

Fractional-order velocity strategy adopted to further

update position: Each moth’s location is updated using

the following equation, which considers the moth’s

fractional velocity with respect to its prior position.

Mn
p(t) � Mn

p(t − 1) + Mn
v(t)

Stopping criteria: The FOMFO algorithm’s halting

criterion is based on a predetermined number of

iterations.

Storage of results: The minimal fuel generation cost

determines the ELD problem’s control variables, which

are predicated on the global best outcome of moths/

search agents.

Statistical analysis: One hundred independent trials

are analyzed statistically using boxplot and CDF-

based analysis.

Algorithm 1. FMFO.
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4.1 Integration of FMFO into a blockchain
smart contract

Integrating ELD into a blockchain smart contract involves
combining traditional power system optimization techniques with
blockchain technology (Górski, 2022). ELD is a crucial aspect of
power system management that aims to minimize the cost of
generating electricity while satisfying various operational
constraints. The proposed work uses FMFO to solve the ELD
problem and integrates it into a blockchain smart contract. The
flowchart outlining a high-level framework for this integration is
shown in Figure 3. The integrating framework is designed by
considering the runtime reconfigurability and the reusability of
the various constructs of the smart contract (Kirli et al., 2022).

The flowchart in Figure 3 outlines the steps involved in
integrating ELD into an Ethereum smart contract. It starts with
defining the contract and state variables, setting the administrator’s
address in the constructor, adding a generator to the contract state,
updating the generator load, performing the ELD algorithm, and
finally, updating the total cost and emitting an event. In case, if any
of the generators fails to fulfill the unit commitment or if there is any
change in the load demand, a request is sent back to update the
generator’s load in the smart contract. The flowchart emphasizes the
sequential nature of the integration process. The information related
to the Ethereum interactions, error handling, and security features is
not considered for this work.

The pseudocode focuses on the core logic of the FMFO
optimizer in the blockchain contract. The data-gathering step
fetches demand, power plant, and grid constraint data from
appropriate sources. This is followed by the ELD calculations
using the FMFO optimizer. The optimized results are then stored
on the blockchain platform and communicated to the power plants
through off-chain mechanisms. The grid state (both the load and the
generator side) is continuously monitored and triggers re-
optimization if deviations occur. It should also be noted that the
proposed framework also follows an auction-based approach, and
the time taken by the bidding window depends upon the
convergence time taken by the FMFO optimizer to get the most
optimal results. This research mainly focuses on cost optimization;
however, the time optimization of the FMFO is an interesting
dimension to consider in future works.

5 Simulation results

The effectiveness and applicability of the proposed FMFO for
active power planning are evaluated using three test systems based
on 13 generating units, practical Taiwan 40 generating units, and a
Korean large-scale test system of 140 generating units. Determining
a solution that minimizes the number of financial resources spent on
generation is one of the most important factors that the intended
function takes into consideration. The numerical values of the
primary controlling parameter are used as the basis for
determining how successful the proposed algorithms are when it
comes to managing the system. Even a little shift in the proportions
of these elements has the potential to bring about early saturation,
which will lead to a result that is less than ideal. The parameters of
the FMFO, including the number of particles, swarm size, fractional

order of the moth’s velocity, social and cognitive acceleration
vectors, maximum iterations, and independent variables, are
determined through experimentation and thorough analysis of
an optimization problem. The basic parameters that need to be
adjusted to increase the overall effectiveness of the recommended
algorithms are shown in Table 1. To optimize the efficiency of the
suggested approach, the algorithms are conducted using varying
percentages of fractional orders, depending on the specific case
being analyzed. Ten fractional-order values that range from 0.1 to
0.9 have been assessed. Typically, a stochastic method is used to
determine the optimal fractional order for fractional evolutionary
or swarming techniques. Nevertheless, choosing a fractional
order that has a clear physical rationale is always challenging,
and Monte Carlo statistics is used to determine the best sequence
to follow. To ascertain the robustness of the FMFO’s
optimization, a statistical analysis of 100 trials through all test
cases is conducted.

5.1 Case study A: the 13-generating-unit
test system

This case study incorporates a collection of 13 thermal power-
generating units. The coefficients for the generation fuel costs were
sourced from the work of Raja et al. (2019). The power demand under
consideration for this analysis is 2420MW. The incorporation of the
VPLE was undertaken to account for the accurate representation of
power system dynamics. A total of 10 distinct variants of the FMFO
method, denoted as FMFO-I to FMFO-IX, were used in the analysis of
case study A. These variants included a range of fractional-order

PSEUDOCODE FOR INTEGRATING ELD INTO A BLOCKCHAIN SMART
CONTRACT//
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derivatives, spanning from 0.1 to 0.9. The stochastic variability of the
optimized simulation results of the FMFO method cannot be
disregarded. To rigorously monitor the frequency of variations in
optimized outcomes, 100 independent trials were conducted for each
form of the FMFO algorithm, using 300 iterations. Table 2 presents the
simulation results of the fuel cost value in $/hr. for each fractional-order
derivative values of the FMFO algorithm over 100 separate trials, while
the values for determining variables in relation to the output of active
power production in megawatts for the FMFO variants are also
presented in Table 2. Among the 10 different variants of the FMFO
algorithm, it has been observed that FMFO-I exhibits themost favorable
simulation outcomes in relation to the least fuel cost, which amounts to
23938.71 $/hr. The efficacy of the approach, as shown in Figure 4, over
best fractional-order values that range from 0.1 to 0.9 has been assessed,
all of which are necessary to get the optimal alpha value. The minimal
fuel cost outlined by FMFO and their state-of-the-art equivalents from
the literature, including GA-SQP, FA, PSO, CSA, and FO-FA (Raja
et al., 2019), are summarized in Table 3. The percentage fuel cost
includes 3.21% for GA-SQP, 0.76% for FA, 2% for PSO, 2.6% for CSA,
and 2.3% for FO-FA, while the proposed FMFO is 27.06%, as illustrated
in Figure 5.

5.2 Case study B: the Taiwan 40-generating-
unit test system

In the present case, a revised examination of the ELD problem in
Taiwan’s 40-unit test system is undertaken. The study involves the
substitution of the final three thermal power-generating units,
namely, units 38, 39, and 40, with wind power-generating units.
The use of a system model in the formulation of Eq. 5 enables the
integration of SW into the ELD-VPLE. The data pertaining to
thermal generators were extracted from the work of Morshed
and Asgharpour (2014b). The data pertaining to wind power
units were sourced from the work of Morshed and Asgharpour
(2014b) and are shown in Table 4. The load demand for case study B
remains constant at 10500 MW.

Nine distinct variants of the FMFO algorithm, namely, FMFO-I
to FMFO-IX, including fractional-order derivatives within the range
of 0.1–0.9, were used in the analysis of case study B. A total of
100 separate trials were conducted for each variant of the FMFO
algorithm, with each trial consisting of 1,000 iterations. Table 5
presents the tabulated results of the optimal total cost value in $/hr.
and its corresponding fuel cost value for each variant of the FMFO
algorithm over 100 separate trials. The values for determining
variables in relation to the output of active power generation in
megawatts for the FMFO variations are also provided in Table 5. Out
of the nine distinct variants of the FMFO algorithm, it was found
that FMFO-IX demonstrates the most favorable simulation results
in terms of the lowest total cost, which is recorded at 135440.17 $/hr.
The effectiveness of the methodology is seen in Figure 6 over several
fractional alpha order intervals (ranging from 0.1 to 0.9), all of which
are essential for determining the ideal alpha value. Theminimal total
cost outlined by FMFO and their state-of-the-art equivalents from
the literature, including HIC-SQP (Morshed and Asgharpour,
2014b), PWTED1 (Morshed and Asgharpour, 2014b), DWTED1
(Morshed and Asgharpour, 2014b), GA-SQP, PSO, and COOT
(Mehmood et al., 2023), are summarized in Table 6. The

percentage total cost reduction includes 5% for HIC-SQP, 3.9%
for PWTED1, 4.45% for DWTED1, 4.8% for GA-SQP, and 3.19% for
PSO and COOT, while the proposed FMFO is 5.67%, as illustrated
in Figure 7.

5.3 Case study C: the Korean 140-
generating-unit test system

The test system comprises a fully operational power plant
located in Korea. The system is comprised of a total of 140 units,
which can be classified into the following categories: there are a total
of 40 thermal generating units, 51 gas units, 20 nuclear units, and
29 oil units. In addition, it is worth noting that there are six heat
units, four gas units, and two oil units that exhibit non-convex fuel
cost functions (Zhang et al., 2019). The analysis of case study C
included the use of nine variations of the FMFOmethod, specifically
denoted as FMFO-I to FMFO-IX. One hundred trials were
undertaken for each variation of the FMFO algorithm, with each
trial including 100 iterations. The tabulated findings of the ideal fuel
cost value in $/hr. for each variation of the FMFO algorithm across
100 independent trials for all case studies are shown in Table 7.
Among the nine various forms of the FMFO algorithm, it has been
observed that FMFO-VII exhibits the most favorable simulation
outcomes in relation to the lowest overall cost, which has been
documented as 1405421.20 $/hr. The efficacy of the technique is
shown in Figure 8 over many fractional alpha-order intervals
(ranging from 0.1 to 0.9), all of which are crucial for ascertaining
the optimal alpha value. Table 8 provides a summary of the
minimum total cost as presented by FMFO and other
contemporary approaches in the literature, such as GA-SQP, FA,
PSO, CSA, COOT, and FO-FA (Mehmood et al., 2023). The overall
cost reduction percentage comprises many components, including
11.8% for GA-SQP, 11.5% for FA, 8.9% for CSA, 7.3% for COOT,
and 11.84% for FO-FA. Additionally, the suggested FMFO shows a
cost reduction of 19.22%, as illustrated in Figure 9.

6 Statistical analysis

The stability, accuracy, and robustness of the proposed scheme
are evaluated by 100 independent trials for each variation in
fractional order inside the FMFO algorithm for all three test
systems of the ILD problem. The statistical results for ILD case
study A are shown in Figures 10A,D, while the results for ILD case
study B can be found in Figures 10B,E. Similarly, the statistical
results for ILD case study C are displayed in Figures 10C,F. The
accuracy of the suggested scheme is confirmed by examining
empirical cumulative distribution function plots of the planned
technique for optimal values in fractional-order magnitudes,
which demonstrate a probability of independent trials above 0.8.
Additionally, to further validate the robustness of the suggested
approach, boxplots are generated. The results of this study illustrate
the efficacy of the scheme by examining the central tendencies of box
plots, which are free from any extreme values and reveal median
values that closely align with the mean. Each of these illustrations
provides evidence supporting the appropriateness of the envisioned
solution to the ILD issue.
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7 Discussion and limitations

The implementation of the FMFO algorithm in blockchain smart
contracts exemplifies the convergence of sophisticated optimization
techniques in a synergistic manner. The fractal-order dynamics that are
intrinsic to FMFO provide improved capabilities for exploration and
exploitation, thereby facilitating more efficient optimization of the ELD
problem. The integration of FMFO into blockchain smart contracts
enhances the transparency, immutability, and decentralization of the
optimization process. This promotes stakeholder confidence and
guarantees the security and integrity of the optimization results.
Furthermore, the use of blockchain smart contracts brings about
enhanced levels of transparency, traceability, and responsibility to
the process of optimizing energy load dispatch. The unchangeable
and resistant to tampering characteristics of blockchain technology
improve the ability to confirm optimization outcomes, reducing
concerns about the integrity of data and faith in centralized
optimization authority. Smart contracts enable the automatic
implementation and enforcement of optimization criteria,
simplifying the energy dispatch processes and decreasing operating
costs. Moreover, the use of FOPSO in blockchain smart contracts shows
potential for promoting innovations in energy market processes and
grid management techniques. Smart contracts enabled by FMFO
provide real-time optimization and dynamic modification of energy
loads, resulting in enhanced resource utilization, decreased energy
expenses, and enhanced grid stability. Blockchain technology’s
decentralized nature enables peer-to-peer energy trading,
decentralized energy marketplaces, and demand-side management
programs. This empowers consumers and prosumers to actively
engage in the energy ecosystem.

The FMFO performance is highly influenced by parameter
configurations, such as fractional-order settings, inertial weights,
and accelerating coefficients. Inadequate parameter settings might
result in early convergence, lack of progress, or fluctuating behavior,
requiring meticulous adjustment and optimization. Blockchain
technology has intrinsic advantages when it comes to
transparency and security, but it also brings about additional
costs in regards to processing, storage, and communication.
Storing and running smart contracts on the blockchain results in
resource expenses and needs agreement among network members,
thereby impacting the scalability and cost-efficiency of the
optimization solution. Blockchain smart contracts function on a
clear and unchangeable record, which gives rise to worries about the
privacy and confidentiality of data, especially in sensitive areas like
energy management. It is crucial to include privacy-preserving
methods in smart contracts while also maintaining openness and
auditability in order to solve these issues.

8 Conclusion

A novel optimization approach called the FMFO is proposed to
address the challenges of economic load dispatch problems including
stochastic wind power generation and inequity generator capacity
constraints, while ensuring power balance. Using a hybrid system
with thermal and wind power plans, FMFO’s ability to identify the
lowest possible generating cost was investigated. Three separate test
systems including 13 generating units, Taiwan 40 generating units, and

Korean 140 generating unit test systems were optimized to reduce fuel
generation cost as the objective function using the proposed
optimization approach. FMFO was compared to various
optimization algorithms that have been used in the past for the
same issue, both in terms of its rate of convergence and the final
optimized value it supplied. The tests on three different systems,
including a large-scale Korean electricity network, all revealed that
FMFO performed best. In case study A, the fuel cost calculated by
FMFO is 3.6% lower than that in the base case. In contrast, the solvers
GA-SQP, FA, PSO, CSA, and FO-FA achieve fuel cost reductions of
3.21%, 0.76%, 2%, 2.6%, and 2.3%, respectively. In case study B,
specifically the Taiwan 40-generating-unit test system, the fuel cost
calculated by FMFO is 5.67% lower than that in the base case. In
comparison, other solvers such as HIC-SQP, PWTED1, DWTED1,
GA-SQP, PSO, and COOT achieve fuel cost reductions of 5%, 3.9%,
4.45%, 4.8%, 3.19%, and 3.2%, respectively. In case study C, which
involves a test system with 140 generating units, the fuel cost calculated
using FMFO is $1,405,421.20 per hour. This represents a reduction of
19.22% compared to the base case. In contrast, other solvers such as
GA-SQP, FA, CSA, COOT, and FO-FA achieve fuel cost reductions of
11.8%, 11.5%, 8.9%, 7.3%, and 11.84%, respectively. The consistency
and stability of the FMFO are confirmed by statistical analysis, which
involves examining the minimum values for fitness over 100 separate
trials. Additionally, empirical CDF and box-plotting depictions are used
to quantify the variance and central tendency of the lowest fitness values
for solving ELD issues. The statistical data analysis of various situations
of ELD demonstrates that FMFO is a dependable and efficient
alternative optimization strategy in the energy sector as it exhibits
stability, robustness, and consistency.

Fractional swarming, an evolutionary computing paradigm, may
soon replace traditional simulations for multi-model, non-linear
optimization problems such as rigorous wind speed forecasting,
multi-objective routing problems, parameter estimation for
photovoltaic cells, and active noise control over distributed
networks. Further exploration into the efficacy of the power system
requires including the future renewable energy generating (REG)
components and using them in both steady and dynamic modes.
The selection of an appropriate fractional order in FMFO with
respect to the underlying rationale of the physics seems to hold
promise for further exploration into a novel optimization problem.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

BK: writing–original draft, visualization, validation, writing–review
and editing, methodology, and conceptualization. AQ: visualization,
validation, supervision, investigation, funding acquisition, and
writing–review and editing. AW: writing–review and editing,
methodology, conceptualization, visualization, and validation. KA:
writing–review and editing, resources, investigation, formal analysis,
and data curation. AA-S: writing–review and editing, resources, project
administration, investigation, and data curation.

Frontiers in Energy Research frontiersin.org18

Khan et al. 10.3389/fenrg.2024.1350076

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1350076


Funding

The authors declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported and funded by the Deanship of Scientific Research at
Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant
number IMSIURG23022).

Acknowledgments

The authors appreciate the Deanship of Scientific Research at
Imam Mohammad Ibn Saud Islamic University (IMSIU) for
supporting and supervising this project.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abbassi, R., Abbassi, A., Heidari, A. A., and Mirjalili, S. (2019). An efficient salp
swarm-inspired algorithm for parameters identification of photovoltaic cell models.
Energy Convers. Manag. 179, 362–372. doi:10.1016/j.enconman.2018.10.069

AlSkaif, T., andVan Leeuwen, G. (2019). “Decentralized optimal power flow in distribution
networks using blockchain,” in 2019 International Conference on Smart Energy Systems and
Technologies (SEST), Porto, Portugal, September, 2019 (IEEE), 1–6.

Alzubi, Q. M., Anbar, M., Alqattan, Z. N., Al-Betar, M. A., and Abdullah, R. (2020).
Intrusion detection system based on a modified binary grey wolf optimisation. Neural
Comput. Appl. 32, 6125–6137. doi:10.1007/s00521-019-04103-1

Aoki, K., Fan, M., and Nishikori, A. (1988). Optimal VAR planning by approximation
method for recursive mixed-integer linear programming. IEEE Trans. power Syst. 3 (4),
1741–1747. doi:10.1109/59.192990

Ates, A., Alagoz, B. B., Kavuran, G., and Yeroglu, C. (2017). Implementation of
fractional order filters discretized bymodified fractional order darwinian particle swarm
optimization. Measurement 107, 153–164. doi:10.1016/j.measurement.2017.05.017

Ates, A., Kavuran, G., Alagoz, B. B., and Yeroglu, C. (2016). “Improvement of IIR filter
discretization for fractional order filter by discrete stochastic optimization,” in 2016
39th International Conference on Telecommunications and Signal Processing (TSP),
Vienna, Austria, June, 2016, 583–586.

Azar, A. T., and Serrano, F. E. (2018). “Fractional order sliding mode PID controller/
observer for continuous nonlinear switched systems with PSO parameter tuning,” in
International conference on advanced machine learning technologies and applications,
Cairo, Egypt, January, 2018, 13–22.

Balamurugan, K., Muralisachithnndam, R., and Krishnan, S. R. (2014). Differential
evolution based solution for combined economic and emission power dispatch with
valve loading effect. Int. J. Electr. Eng. Inf. 6 (1), 74–92. doi:10.15676/ijeei.2014.6.1.6

Chantar, H., Mafarja, M., Alsawalqah, H., Heidari, A. A., Aljarah, I., and Faris, H. (2020).
Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text
classification. Neural Comput. Appl. 32, 12201–12220. doi:10.1007/s00521-019-04368-6

Chopra, L., and Kaur, R. (2012a). Economic load dispatch using simple and refined
genetic algorithm. Int. J. Adv. Eng. Technol. 5 (1), 584–590.

Chopra, L., and Kaur, R. (2012b). Economic load dispatch using simple and refined
genetic algorithm. Int. J. Adv. Eng. Technol. 5 (1), 584–590.

Couceiro, M. S., Rocha, R. P., Ferreira, N. F., and Machado, J. T. (2012a). Introducing
the fractional-order darwinian PSO. Signal, Image Video Process. 6 (3), 343–350. doi:10.
1007/s11760-012-0316-2

Couceiro, M. S., Rocha, R. P., Ferreira, N. F., and Machado, J. T. (2012b). Introducing
the fractional-order darwinian PSO. Signal, Image Video Process. 6 (3), 343–350. doi:10.
1007/s11760-012-0316-2

Decker, G. L., and Brooks, A. D. (1958). Valve point loading of turbines. Trans. Am. Inst.
Electr. Eng. Part III Power Apparatus Syst. 77 (3), 501–484. doi:10.1109/ee.1958.6445133

Deeb, N. I., and Shahidehpour, S. M. (1988). An efficient technique for reactive power
dispatch using a revised linear programming approach. Electr. power Syst. Res. 15 (2),
121–134. doi:10.1016/0378-7796(88)90016-8

Dehghani, M., Riahi-Madvar, H., Hooshyaripor, F., Mosavi, A., Shamshirband, S.,
Zavadskas, E. K., et al. (2019). Prediction of hydropower generation using grey wolf
optimization adaptive neuro-fuzzy inference system. Energies 12 (2), 289. doi:10.3390/
en12020289

Durairaj, S., Kannan, P. S., and Devaraj, D. (2005). Application of genetic algorithm to
optimal reactive power dispatch including voltage stability constraint. J. Energy &
Environ. 4 (63), 7.

El-Fergany, A. A., Hasanien, H. M., and Agwa, A.M. (2019). Semi-empirical PEM fuel
cells model using whale optimization algorithm. Energy Convers. Manag. 201, 112197.
doi:10.1016/j.enconman.2019.112197

Fahad, M., Aadil, F., Khan, S., Shah, P. A., Muhammad, K., Lloret, J., et al.
(2018). Grey wolf optimization based clustering algorithm for vehicular ad-hoc
networks. Comput. Electr. Eng. 70, 853–870. doi:10.1016/j.compeleceng.2018.
01.002

Faris, H., Aljarah, I., Al-Betar, M. A., and Mirjalili, S. (2018). Grey wolf optimizer: a
review of recent variants and applications. Neural Comput. Appl. 30, 413–435. doi:10.
1007/s00521-017-3272-5

Fathy, A. (2020). Butterfly optimization algorithm based methodology for enhancing
the shaded photovoltaic array extracted power via reconfiguration process. Energy
Convers. Manag. 220, 113115. doi:10.1016/j.enconman.2020.113115

Ghamisi, P., Couceiro, M. S., and Benediktsson, J. A. (2013a), Classification of
hyperspectral images with binary fractional order Darwinian PSO and random
forests, Image signal Process. remote Sens. XIX, 8892, 215–222.

Ghamisi, P., Couceiro, M. S., and Benediktsson, J. A. (2014). A novel feature selection
approach based on FODPSO and SVM. IEEE Trans. Geoscience Remote Sens. 53 (5),
2935–2947. doi:10.1109/tgrs.2014.2367010

Ghamisi, P., Couceiro, M. S., Martins, F. M., and Benediktsson, J. A. (2013b).
Multilevel image segmentation based on fractional-order Darwinian particle swarm
optimization. IEEE Trans. Geoscience Remote Sens. 52 (5), 2382–2394. doi:10.1109/tgrs.
2013.2260552

Górski, T. (2022). Reconfigurable smart contracts for renewable energy exchange with
Re-use of verification rules. Appl. Sci. 12 (11), 5339. doi:10.3390/app12115339

Granville, S. (1994). Optimal reactive dispatch through interior point methods. IEEE
Trans. power Syst. 9 (1), 136–146. doi:10.1109/59.317548

Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E. W. T., and Liu, M. (2015). Application of
evolutionary computation for rule discovery in stock algorithmic trading: a literature
review. Appl. Soft Comput. 36, 534–551. doi:10.1016/j.asoc.2015.07.008

Jangir, P., Manoharan, P., Pandya, S., and Sowmya, R. (2023). MaOTLBO: many-
objective teaching-learning-based optimizer for control and monitoring the optimal
power flow of modern power systems. Int. J. Industrial Eng. Comput. 14 (2), 293–308.
doi:10.5267/j.ijiec.2023.1.003

Jeddi, B., and Vahidinasab, V. (2014). A modified harmony search method for
environmental/economic load dispatch of real-world power systems. Energy Convers.
Manag. 78, 661–675. doi:10.1016/j.enconman.2013.11.027

Jiang, S., Ji, Z., and Wang, Y. (2015). A novel gravitational acceleration enhanced
particle swarm optimization algorithm for wind–thermal economic emission dispatch
problem considering wind power availability. Int. J. Electr. Power & Energy Syst. 73,
1035–1050. doi:10.1016/j.ijepes.2015.06.014

Kabolia, S. H. A. (2023). A rain-fall inspired optimization algorithm for optimal load
dispatch in power system. United States: Nova Science Publishers.

Katal, N., and Narayan, S. (2017). Design of robust fractional order PID controllers
for coupled tank systems using multi-objective particle swarm optimisation. Int. J. Syst.
Control Commun. 8 (3), 250–267. doi:10.1504/ijscc.2017.10006533

Khan, B. S., Raja, M. A. Z., Qamar, A., and Chaudhary, N. I. (2021). Design of moth
flame optimization heuristics for integrated power plant system containing stochastic
wind. Appl. Soft Comput. 104, 107193. doi:10.1016/j.asoc.2021.107193

Kirli, D., Couraud, B., Robu, V., Salgado-Bravo, M., Norbu, S., Andoni, M., et al.
(2022). Smart contracts in energy systems: a systematic review of fundamental

Frontiers in Energy Research frontiersin.org19

Khan et al. 10.3389/fenrg.2024.1350076

https://doi.org/10.1016/j.enconman.2018.10.069
https://doi.org/10.1007/s00521-019-04103-1
https://doi.org/10.1109/59.192990
https://doi.org/10.1016/j.measurement.2017.05.017
https://doi.org/10.15676/ijeei.2014.6.1.6
https://doi.org/10.1007/s00521-019-04368-6
https://doi.org/10.1007/s11760-012-0316-2
https://doi.org/10.1007/s11760-012-0316-2
https://doi.org/10.1007/s11760-012-0316-2
https://doi.org/10.1007/s11760-012-0316-2
https://doi.org/10.1109/ee.1958.6445133
https://doi.org/10.1016/0378-7796(88)90016-8
https://doi.org/10.3390/en12020289
https://doi.org/10.3390/en12020289
https://doi.org/10.1016/j.enconman.2019.112197
https://doi.org/10.1016/j.compeleceng.2018.01.002
https://doi.org/10.1016/j.compeleceng.2018.01.002
https://doi.org/10.1007/s00521-017-3272-5
https://doi.org/10.1007/s00521-017-3272-5
https://doi.org/10.1016/j.enconman.2020.113115
https://doi.org/10.1109/tgrs.2014.2367010
https://doi.org/10.1109/tgrs.2013.2260552
https://doi.org/10.1109/tgrs.2013.2260552
https://doi.org/10.3390/app12115339
https://doi.org/10.1109/59.317548
https://doi.org/10.1016/j.asoc.2015.07.008
https://doi.org/10.5267/j.ijiec.2023.1.003
https://doi.org/10.1016/j.enconman.2013.11.027
https://doi.org/10.1016/j.ijepes.2015.06.014
https://doi.org/10.1504/ijscc.2017.10006533
https://doi.org/10.1016/j.asoc.2021.107193
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1350076


approaches and implementations. Renew. Sustain. Energy Rev. 158, 112013. doi:10.
1016/j.rser.2021.112013

Kosari, M., and Teshnehlab, M. (2018). Non-linear fractional-order chaotic
systems identification with approximated fractional-order derivative based on a
hybrid particle swarm optimization-genetic algorithm method. J. AI Data Min. 6
(2), 365–373.

Kuttomparambil Abdulkhader, H., Jacob, J., and Mathew, A. T. (2018). Fractional-
order lead-lag compensator-based multi-band power system stabiliser design using a
hybrid dynamic GA-PSO algorithm. IET Generation, Transm. Distribution 12 (13),
3248–3260. doi:10.1049/iet-gtd.2017.1087

Łegowski, A., and Niezabitowski, M. (2016). “Robot path control based on PSO with
fractional-order velocity,” in 2016 International Conference on Robotics and
Automation Engineering (ICRAE), Jeju, Korea (South), August, 2016, 21–25.

Li, X., Wang, Y., Li, N., Han, M., Tang, Y., and Liu, F. (2017). Optimal fractional order
PID controller design for automatic voltage regulator system based on reference model
using particle swarm optimization. Int. J. Mach. Learn. Cybern. 8, 1595–1605. doi:10.
1007/s13042-016-0530-2

Liu, T., Xiong, G., Mohamed, A. W., and Suganthan, P. N. (2022). Opposition-mutual
learning differential evolution with hybrid mutation strategy for large-scale economic
load dispatch problems with valve-point effects and multi-fuel options. Inf. Sci. 609,
1721–1745. doi:10.1016/j.ins.2022.07.148

Liu, X., and Xu, W. (2010). Minimum emission dispatch constrained by stochastic
wind power availability and cost. IEEE Trans. Power Syst. 25 (3), 1705–1713. doi:10.
1109/tpwrs.2010.2042085

Lo, K. L., and Zhu, S. P. (1991). A decoupled quadratic programming approach for
optimal power dispatch. Electr. power Syst. Res. 22 (1), 47–60. doi:10.1016/0378-
7796(91)90079-3

Machado, J. T., and Kiryakova, V. (2017). The chronicles of fractional calculus. Fract.
Calc. Appl. Analysis 20 (2), 307–336. doi:10.1515/fca-2017-0017

Mehmood, A., Raja, M. A. Z., and Jalili, M. (2023). Optimization of integrated load
dispatch in multi-fueled renewable rich power systems using fractal firefly algorithm.
Energy 278, 127792. doi:10.1016/j.energy.2023.127792

Mirjalili, S. (2015). Moth-flame optimization algorithm: a novel nature-inspired
heuristic paradigm. Knowledge-based Syst. 89, 228–249. doi:10.1016/j.knosys.2015.
07.006

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer. Adv. Eng.
Softw. 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007

Mohseni, S., Brent, A. C., and Burmester, D. (2019). A demand response-centred
approach to the long-term equipment capacity planning of grid-independent micro-
grids optimized by the moth-flame optimization algorithm. Energy Convers. Manag.
200, 112105. doi:10.1016/j.enconman.2019.112105

Morshed, M. J., and Asgharpour, A. (2014a). Hybrid imperialist competitive-
sequential quadratic programming (HIC-SQP) algorithm for solving economic load
dispatch with incorporating stochastic wind power: a comparative study on heuristic
optimization techniques. Energy Convers. Manag. 84, 30–40. doi:10.1016/j.enconman.
2014.04.006

Morshed, M. J., and Asgharpour, A. (2014b). Hybrid imperialist competitive-
sequential quadratic programming (HIC-SQP) algorithm for solving economic load
dispatch with incorporating stochastic wind power: a comparative study on heuristic
optimization techniques. Energy Convers. Manag. 84, 30–40. doi:10.1016/j.enconman.
2014.04.006

Naderi, E., Azizivahed, A., Narimani, H., Fathi, M., and Narimani, M. R. (2017). A
comprehensive study of practical economic dispatch problems by a new hybrid
evolutionary algorithm. Appl. Soft Comput. 61, 1186–1206. doi:10.1016/j.asoc.2017.
06.041

Nappu, M. B., Arief, A., and Ajami, W. A. (2023). Energy efficiency in modern power
systems utilizing advanced incremental particle swarm optimization–based OPF.
Energies 16 (4), 1706. doi:10.3390/en16041706

Neto, J. X. V., Reynoso-Meza, G., Ruppel, T. H., Mariani, V. C., and dos Santos
Coelho, L. (2017). Solving non-smooth economic dispatch by a new combination of
continuous GRASP algorithm and differential evolution. Int. J. Electr. Power & Energy
Syst. 84, 13–24. doi:10.1016/j.ijepes.2016.04.012

Nimma, K. S., Al-Falahi, M. D., Nguyen, H. D., Jayasinghe, S. D. G., Mahmoud, T. S.,
and Negnevitsky, M. (2018). Grey wolf optimization-based optimum energy-
management and battery-sizing method for grid-connected microgrids. Energies 11
(4), 847. doi:10.3390/en11040847

Paliwal, K. K., Singh, S., and Gaba, P. (2017). “Feature selection approach of
hyperspectral image using GSA-FODPSO-SVM,” in 2017 International Conference
on Computing, Communication and Automation (ICCCA), Greater Noida, India, May,
2017 (IEEE), 1070–1075.

Pandey, V. C., Jadoun, V. K., Gupta, N., Niazi, K. R., and Swarnkar, A. (2018).
Improved fireworks algorithm with chaotic sequence operator for large-scale non-
convex economic load dispatch problem. Arabian J. Sci. Eng. 43, 2919–2929. doi:10.
1007/s13369-017-2956-6

Pandit, M., Chaudhary, V., Dubey, H. M., and Panigrahi, B. K. (2015). Multi-period
wind integrated optimal dispatch using series PSO-DE with time-varying Gaussian
membership function based fuzzy selection. Int. J. Electr. power & energy Syst. 73,
259–272. doi:10.1016/j.ijepes.2015.05.017

Raja, M. A. Z., Ahmed, U., Zameer, A., Kiani, A. K., and Chaudhary, N. I. (2019). Bio-
inspired heuristics hybrid with sequential quadratic programming and interior-point
methods for reliable treatment of economic load dispatch problem. Neural Comput.
Appl. 31, 447–475. doi:10.1007/s00521-017-3019-3

Sabatier, J. A. T. M. J., Agrawal, O. P., and Machado, J. T. (2007). Advances in
fractional calculus. Dordrecht: Springer.

Salgotra, R., Singh, U., and Sharma, S. (2020). On the improvement in grey wolf
optimization. Neural Comput. Appl. 32, 3709–3748. doi:10.1007/s00521-019-04456-7

Sattar, M. K., Ahmad, A., Fayyaz, S., Ul Haq, S. S., and Saddique, M. S. (2020). Ramp
rate handling strategies in dynamic economic load dispatch (DELD) problem using grey
wolf optimizer (GWO). J. Chin. Inst. Eng. 43 (2), 200–213. doi:10.1080/02533839.2019.
1694446

Shahri, E. S. A., Alfi, A., and Machado, J. T. (2019). Fractional fixed-structure H∞
controller design using augmented Lagrangian particle swarm optimization with
fractional order velocity. Appl. Soft Comput. 77, 688–695. doi:10.1016/j.asoc.2019.
01.037

Shakarami, M. R., and Davoudkhani, I. F. (2016). Wide-area power system stabilizer
design based on grey wolf optimization algorithm considering the time delay. Electr.
Power Syst. Res. 133, 149–159. doi:10.1016/j.epsr.2015.12.019

Teodoro, G. S., Machado, J. T., and De Oliveira, E. C. (2019). A review of definitions of
fractional derivatives and other operators. J. Comput. Phys. 388, 195–208. doi:10.1016/j.
jcp.2019.03.008

Ullah, Z., Wang, S., Wu, G., Hasanien, H. M., Jabbar, M. W., Qazi, H. S., et al. (2022).
Advanced studies for probabilistic optimal power flow in active distribution networks: a
scientometric review. IET Generation, Transm. Distribution 16 (18), 3579–3604. doi:10.
1049/gtd2.12555

Wang, Y. Y., Peng, W. X., Qiu, C. H., Jiang, J., and Xia, S. R. (2019). Fractional-
order Darwinian PSO-based feature selection for media-adventitia border
detection in intravascular ultrasound images. Ultrasonics 92, 1–7. doi:10.
1016/j.ultras.2018.06.012

Wang, Y. Y., Zhang, H., Qiu, C. H., and Xia, S. R. (2018). A novel feature selection
method based on extreme learning machine and fractional-order Darwinian PSO.
Comput. Intell. Neurosci. 2018, 1–8. doi:10.1155/2018/5078268

Yang, B., Wang, J., Zhang, X., Yu, T., Yao, W., Shu, H., et al. (2020). Comprehensive
overview of meta-heuristic algorithm applications on PV cell parameter identification.
Energy Convers. Manag. 208, 112595. doi:10.1016/j.enconman.2020.112595

Yokoya, N., and Ghamisi, P. (2016). “Land-cover monitoring using time-series
hyperspectral data via fractional-order darwinian particle swarm optimization
segmentation,” in 2016 8th Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, USA,
August, 2016 (IEEE), 1–5.

Younesi, A., Shayeghi, H., Wang, Z., Siano, P., Mehrizi-Sani, A., and Safari, A. (2022).
Trends in modern power systems resilience: state-of-the-art review. Renew. Sustain.
Energy Rev. 162, 112397. doi:10.1016/j.rser.2022.112397

Zhang, H., Heidari, A. A., Wang, M., Zhang, L., Chen, H., and Li, C. (2020). Orthogonal
Nelder-Mead moth flame method for parameters identification of photovoltaic modules.
Energy Convers. Manag. 211, 112764. doi:10.1016/j.enconman.2020.112764

Zhang, J., Wu, Y., Guo, Y., Wang, B., Wang, H., and Liu, H. (2016). A hybrid harmony
search algorithm with differential evolution for day-ahead scheduling problem of a
microgrid with consideration of power flow constraints. Appl. energy 183, 791–804.
doi:10.1016/j.apenergy.2016.09.035

Zhang, Q., Zou, D., Duan, N., and Shen, X. (2019). An adaptive differential
evolutionary algorithm incorporating multiple mutation strategies for the
economic load dispatch problem. Appl. Soft Comput. 78, 641–669. doi:10.
1016/j.asoc.2019.03.019

Zhu, Q., Yuan, M., Liu, Y. L., Chen, W. D., Chen, Y., and Wang, H. R. (2014a). Research
and application on fractional-orderDarwinian PSObased adaptive extendedKalman filtering
algorithm. IAES Int. J. Robotics Automation 3 (4), 245. doi:10.11591/ijra.v3i4.6014

Zhu, Q., Yuan, M., Liu, Y. L., Chen, W. D., Chen, Y., and Wang, H. R. (2014b).
Research and application on fractional-order Darwinian PSO based adaptive extended
Kalman filtering algorithm. IAES Int. J. Robotics Automation 3 (4), 245. doi:10.11591/
ijra.v3i4.6014

Frontiers in Energy Research frontiersin.org20

Khan et al. 10.3389/fenrg.2024.1350076

https://doi.org/10.1016/j.rser.2021.112013
https://doi.org/10.1016/j.rser.2021.112013
https://doi.org/10.1049/iet-gtd.2017.1087
https://doi.org/10.1007/s13042-016-0530-2
https://doi.org/10.1007/s13042-016-0530-2
https://doi.org/10.1016/j.ins.2022.07.148
https://doi.org/10.1109/tpwrs.2010.2042085
https://doi.org/10.1109/tpwrs.2010.2042085
https://doi.org/10.1016/0378-7796(91)90079-3
https://doi.org/10.1016/0378-7796(91)90079-3
https://doi.org/10.1515/fca-2017-0017
https://doi.org/10.1016/j.energy.2023.127792
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.enconman.2019.112105
https://doi.org/10.1016/j.enconman.2014.04.006
https://doi.org/10.1016/j.enconman.2014.04.006
https://doi.org/10.1016/j.enconman.2014.04.006
https://doi.org/10.1016/j.enconman.2014.04.006
https://doi.org/10.1016/j.asoc.2017.06.041
https://doi.org/10.1016/j.asoc.2017.06.041
https://doi.org/10.3390/en16041706
https://doi.org/10.1016/j.ijepes.2016.04.012
https://doi.org/10.3390/en11040847
https://doi.org/10.1007/s13369-017-2956-6
https://doi.org/10.1007/s13369-017-2956-6
https://doi.org/10.1016/j.ijepes.2015.05.017
https://doi.org/10.1007/s00521-017-3019-3
https://doi.org/10.1007/s00521-019-04456-7
https://doi.org/10.1080/02533839.2019.1694446
https://doi.org/10.1080/02533839.2019.1694446
https://doi.org/10.1016/j.asoc.2019.01.037
https://doi.org/10.1016/j.asoc.2019.01.037
https://doi.org/10.1016/j.epsr.2015.12.019
https://doi.org/10.1016/j.jcp.2019.03.008
https://doi.org/10.1016/j.jcp.2019.03.008
https://doi.org/10.1049/gtd2.12555
https://doi.org/10.1049/gtd2.12555
https://doi.org/10.1016/j.ultras.2018.06.012
https://doi.org/10.1016/j.ultras.2018.06.012
https://doi.org/10.1155/2018/5078268
https://doi.org/10.1016/j.enconman.2020.112595
https://doi.org/10.1016/j.rser.2022.112397
https://doi.org/10.1016/j.enconman.2020.112764
https://doi.org/10.1016/j.apenergy.2016.09.035
https://doi.org/10.1016/j.asoc.2019.03.019
https://doi.org/10.1016/j.asoc.2019.03.019
https://doi.org/10.11591/ijra.v3i4.6014
https://doi.org/10.11591/ijra.v3i4.6014
https://doi.org/10.11591/ijra.v3i4.6014
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1350076

	Integrating economic load dispatch information into the blockchain smart contracts based on the fractional-order swarming o ...
	1 Introduction
	2 Literature review
	3 System mathematical model
	3.1 Convex fuel cost function formulation
	3.2 Non-convex fuel cost function
	3.3 Convex cost function involving multiple fuel options
	3.4 Non-convex cost function involving multiple fuel options
	3.5 Wind power cost function formulation
	3.6 Total generation fuel cost function
	3.7 Operational constraints
	3.7.1 Load demand constraint
	3.7.2 Generation constraint

	3.8 Penalty function method to incorporate the violation of control variables

	4 Design methodology
	4.1 Integration of FMFO into a blockchain smart contract

	5 Simulation results
	5.1 Case study A: the 13-generating-unit test system
	5.2 Case study B: the Taiwan 40-generating-unit test system
	5.3 Case study C: the Korean 140-generating-unit test system

	6 Statistical analysis
	7 Discussion and limitations
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


