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In contemporary distribution networks (DNs), characterized by extensive
integration of distributed energy, the photovoltaic (PV) power output data
from the distribution station areas become crucial for system planning and
operational optimization. Since many PVs are installed behind-the-meter
(BTM), it is difficult to directly obtain PV power data through measurement
devices. Therefore, it is important to estimate the BTM PV power from the
aggregating data that can be directly obtained. However, the existing
estimation methods usually require centralized large-scale data training, which
brings certain privacy leakage risks. In order to solve these problems, we propose
a federated learning-based improved Transformer Neural Network strategy to
estimate BTM PV generation at the community level with data privacy protection.
Initially, enhanced Transformer neural networks, employing a fused-attention
mechanism, are deployed to precisely delineate the solar power generation
pattern. Subsequently, federated learning principles facilitate the sharing of
specific parameters among multiple edge endpoints and a central server. This
model bifurcates into two layers: an individual layer, where parameters are
retained locally, and an exchange layer, where parameters are collectively
shared and conveyed through momentum aggregation. This dual-layer
structure effectively synchronizes the capture of both unique and common
characteristics. The test on the Australian residential load dataset verifies the
effectiveness of the proposed method.
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1 Introduction

As the energy landscape evolves, the adoption of distributed photovoltaics, particularly
on residential and commercial building rooftops, has surged. By the end of 2020,
approximately 2.66 million Australian homes were equipped with rooftop solar systems
(Australian Government, 2020). However, due to budgetary limitations, most of these
installations lack dedicated metering devices, making direct power measurement
challenging. The growing prevalence of such unmonitored distributed PV systems poses
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significant risks to the economic and safe operation of distribution
station areas. These include issues like voltage instability (Rosado
and Khadem, 2019), inaccurate load forecasting (Wang et al., 2017),
and suboptimal fault recovery (Chen et al., 2018). Consequently,
accurately estimating behind-the-meter (BTM) PV power
generation using robust methodologies has become
increasingly crucial.

The methodological core of estimating BTM PV is to establish a
link between other data available and unknown PV data. It can be
divided into two main categories: physical model-based and data-
driven methods.

The physical model-based approaches employ PV array
performance models to represent physical PV arrays. In (Chen
and Irwin, 2017), PV arrays are integrated with a clear-sky
model to estimate customer-level solar power generation.
Reference (Wang et al., 2017) employs a virtual equivalent PV
plant model to represent the collective power generation of
regional behind-the-meter (BTM) PV systems. Reference
(Cheung et al., 2018) introduces an unsupervised consumer
mixture model for PV estimation. In (Kabir et al., 2019; Kabir
et al., 2023), physical PV models and statistical models are
respectively utilized to estimate BTM solar power generation and
local demand. A major drawback of these physical model-based
approaches is the need for detailed PV array parameters or accurate
meteorological data. However, in practice, these parameters are
usually not available to the utility. In addition, obtaining
meteorological data may impose additional costs on utilities. In
(Li et al., 2019a), the net demand under heterogeneous weather
conditions is used to estimate the BTM PV capacity, which is
multiplied with the standard solar power time series to infer the
BTM PV generation. Reference (Sossan et al., 2018) proposed an
estimation method on transformer level PV generation based on the
variation difference of load and solar power.

Data-driven methodologies predominantly utilize artificial
intelligence techniques for deep learning model training. As
detailed in reference (Lin et al., 2022), a method for real-time
energy decomposition is proposed, enabling the segregation of
behind-the-meter (BTM) solar energy from a substation’s total
energy consumption, employing partially labeled aggregated data
for model training. Reference (Shaker et al., 2016) introduces a data-
driven strategy for estimating BTM solar power generation,
encompassing data dimensionality reduction and mapping
functions, and involves selecting a limited number of
representative sites for model training. Since support vector
machine has the ability to learn the complex hidden relationships
in the energy decomposition problem, reference (Li et al., 2019b)
proposed a supervised machine learning model based on multiple
Support Vector Regression (SVR) to regression the solar power
generation on the extracted feature input. However, these methods
fail to make full use of historical data to comprehensively reflect the
features of different resources and mine the intrinsic relationship of
historical data. At the same time, many time-series regression
models with excellent performance are not considered.

In addition, traditional data-driven methods are centralized, and
their performance largely depends on the quality and quantity of
training data. However, this centralized approach may raise a series
of concerns about data privacy, especially in a competitive electricity
market (Li et al., 2023). Reference (Yang et al., 2023) solves the

potential privacy problem by introducing the framework of
federated learning. In literature (Lin et al., 2022), the problem of
privacy protection and the uncertainty of various types of data are
considered, and the Bayesian neural network is used for PV
estimation.

Building on the aforementioned analysis, this study introduces
an enhanced Transformer neural network approach, underpinned
by federated learning, designed to estimate community-level BTM
PV generation. Federated learning mechanism can share training
parameters and private training data, which can not only improve
data quality but also protect user privacy. Considering the successful
application of the self-attention mechanism in the electric power
field in recent years (Azam and Younis, 2021; Wang et al., 2023;
Zhou et al., 2023), a decentralized improved Transformer model is
designed, and the model is further divided into two parts: individual
and center, so as to adapt to the specific needs of each community
(Tzeng et al., 2014; Chen et al., 2020). Furthermore, the study
implements a hierarchical parameter strategy for model updating.
Experimental evaluations demonstrate the efficacy of this method
on real-world datasets.

In summary, this paper makes the following contributions.

1. The refined Transformer model, applied to BTM PV estimation,
incorporates a fused attention mechanism to thoroughly extract
PV-related information from net load data.

2. The federated learning mechanism is used to realize parameter
sharing between different communities while considering
privacy protection, so the receptive field and generalization
ability of the model are improved.

3. A novel hierarchical parameter updatemechanism is introduced
in the enhanced Transformer model, consisting of an exchange
layer and an individual layer. This configuration facilitates the
sharing of exchange layer parameters through momentum
aggregation while retaining individual layer parameters,
thereby augmenting the model’s capacity to address both
individual and common feature challenges.

The remaining structure of the paper is as follows: Section II
introduces the main models involved in this paper; Section III
introduces the data set used and the numerical example
verification. Section IV provides a summary and outlook.

2 Main models

2.1 Community PV estimation model

Since most of the user-level distributed PVs are deployed behind
the meters, only the net load data can be directly observed for most
user. A small number of users can directly obtain the photovoltaic
output information. The net load power value is equal to the
difference between the load and the PV power, as shown in the
following equation:

PNi,t � PLi,t − PGi,t (1)

Where PNi,t is the observed net load of the corresponding user of
the ith community at time t; PLi,t, PGi,t is the corresponding actual
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load value and the BTM PV power generation value. Since there is
no illumination intensity at night, 7–17 h are selected as the
reference in this paper.

Through the above analysis, the data-driven based BTM PV
estimation strategy can be abstracted and modeled as:

PG � h q, PN, S( ) (2)

Where PG is the PV estimated value, h is the transfer function of
the network, q is the network parameter, PN is the available net load
data, S is relevant weather information.

2.2 Federated learning framework

Data-driven BTM PV decomposition strategies rely on large
amounts of data for model training. It is difficult for a community to
collect a large amount of labeled data. On the one hand, only a small
number of users can measure the PV behind the meter. On the other
hand, collecting data from neighboring communities has the risk of
privacy leakage. Centralized data collection and optimization
models are not advantageous in dealing with the BTM PV
estimation problem.

This paper addresses the challenge by employing a federated
learning framework. Federated learning offers a mechanism
enabling multiple entities to collaboratively train and refine a
model, without the need for direct raw data sharing. This
approach not only safeguards data privacy and security but also
facilitates the distributed training of the BTM solar power
generation estimation model across multiple data sources,
thereby enhancing the model’s generalization capability. A
supervised model for photovoltaic estimation is constructed
under the federated learning framework, in the form of Formula 3:

PG,1, PG,2, . . . , PG,n[ ] � H qp1 PN,1, S1( ), qp2 PN,2, S2( ), . . . ,(
qpn PN,n, Sn( )) (3)

Where i is the index of the community, PG,i is the estimated PV
output, H is the global shared parameters, qi

p is the individual
parameter, PN,i is the net load data as input, and Si is the
meteorological information.

It is worth noting that there are differences in the relationship
between net load and solar power generation in different local
communities due to geographical location and weather
conditions. In order to capture this difference, refer to the idea of
reference (Azam and Younis, 2021), the model layer is divided into
individual layer and exchange layer, where:

qi � qpi ; q
c
i[ ] (4)

Where qi is the learnable parameters of the ith community, qi
p is

the individual parameter, qi
c is the exchange parameter.

In the implementation of the federated learning framework, a
momentum aggregation strategy is selectively employed,
particularly suitable for the complex nonlinear dynamics and
potential non-convex optimization challenges inherent in
photovoltaic (PV) estimation. This strategy expedites model
convergence towards an optimal solution by integrating
gradient information from preceding iterations, a critical factor
in handling large-scale, intricate datasets. Additionally, when

processing data from diverse buildings and regions, the model
often faces oscillatory challenges. Momentum aggregation
addresses this by smoothing the model’s update process,
thereby enhancing the stability and reliability of the training
procedure. The parameter update process based on momentum
aggregation is formulated as follows:

Ht+1 � βHt + 1 − β( ) 1
N
∑N

i�1q
c,t+1
i( ) (5)

Where t is the number of iterations index, β is the parameter of
momentum, N is the number of communities.

The specific structure of BTM PV estimation based on the
federated learning framework is shown in Figure 1.

2.3 Improved transformer network

Transformer is a network architecture based on self-attention
mechanism, which inherits the advantages of self-attention
mechanism in dealing with long distance sequences with
volatility. At the same time, it integrates residual network and
other structures to solve the problems of gradient disappearance
caused by depth deepening, so that the model has higher plasticity.
All these advantages enable it to achieve better results in dealing with
long-distance serial regression problems.

The complexity of PV power data, characterized by its time-
series attributes, poses challenges for traditional attention
mechanisms, especially in capturing short-term (e.g., intraday)
and long-term (e.g., seasonal) variations. The integration of local
and global attention mechanisms offers a solution. The local
mechanism concentrates on accurately predicting critical periods,
while the global mechanism discerns long-term trends and impacts,
thereby enriching the overall comprehension of factors influencing
PV output. This dual approach not only bolsters the model’s
capacity to navigate data nonlinearity and variability, thereby
enhancing prediction accuracy and robustness, but also augments
model interpretability by delineating distinct temporal
dependencies. Crucially, this method also elevates computational
efficiency, a vital aspect for processing large-scale PV data. The
expression is as follows:

Ac Q,K,V( ) � λ ·M softmax
QK		
dk

√( )V( )
+ γ · softmax

QK		
dk

√( )V (6)

Where AC is the output of fused self-attention,M is the window
selection function, λ, γ is the weight parameters, respectively. Q, K
and V is the query, key and value, respectively. dk is the
dimension of K.

When training the model, the inputs of the encoder and decoder
are timing data and training labels respectively. Both are mapped to
the high-dimensional space through a linear network, and the high-
dimensional data are endowed with location characteristics by the
location coding function. Then, the input data passes through N
cyclic units composed of multi-head fusion attention structure and
feedforward neural network respectively, and the output is
finally obtained.
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The feedforward neural network is composed of fully connected
layers with the transfer function as follows:

FFN x( ) � max 0, xW1 + b1( )W2 + b2 (7)

Where, FFN(x) is the output of the fully connected layer, W1,b1
andW2, b2 are the parameters of the two fully connected layers, and
non-linear transformation is performed by retaining non-negative
data to improve the network expression ability.

Due to the existence of the residual network structure, the actual
output of each layer in the network is the sum of the theoretical
output and the residual:

Oi � Norm ini + oidea( ) (8)

Where ini is the input of the ith layer structure in the model; oidea
is the theoretical output of this layer. Norm is the layer
normalization operation. oi is the actual output of layer i.

The attention mechanism, by applying attention operations
uniformly across all data, results in an output matrix devoid of
original positional information. This leads to the model’s inability to
learn the data’s order information, necessitating the infusion of
positional features into the input sequence.

The sine and cosine functions with different frequencies are used
to encode the position, so as to give the absolute and relative position
information to the time series data. The position-encoding function
is as follows:

Px,2i � sin
x

100002i/dm
( ) (9)

Px,2i+1 � cos
x

100002i/dm
( ) (10)

FIGURE 1
Federal learning framework for BMT PV estimation.

FIGURE 2
Improved transformer structure.
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Where dm is the dimension of time series data, i is the dimension
index, x is the absolute position, Px is the position encoding.

In the decoder structure, the initial output reaches the same
dimension as the training label through a normalization layer and a
linear layer, and the final output is the estimated result.

The improved Transformer structure is shown in Figure 2:
The enhanced Transformer network serves as both the sub-

network and global network for each community. It undergoes
hierarchical processing and parameter updates in the individual and
exchange layers, aligned with the federated learning architecture.
This culminates in the creation of a cloud-edge collaborative
supervised regression model, where a central server facilitates
interaction, and multiple communities function as distinct
training units. The overall process is shown in Figure 3.

3 Results analysis

3.1 Introduction of the dataset and
description of the experimental platform

The performance of the proposed model is evaluated using the
Ausgrid Solar Home Electric (ASHE) dataset (Ratnam et al., 2017).
Comprising actual smart meter data from households in and around
Sydney, Australia, this publicly accessible dataset encompasses
controlled load consumption for each household, general
consumption over the entire period, and solar power generation
data at 30-min intervals.

After data preprocessing, the data of 300 users in 4 communities
from 1 July 2010 to 30 June 2011 were selected for analysis. The
actual load of a user can be directly determined by the sum of
controlled and general consumption. The corresponding net
demand is calculated by subtracting the solar generation from
the actual load. Subsequently, by aggregating the measurements
from the consumer communities, we can obtain the net load and
BTM solar generation at the community level.

Experimental platform setup: Intel i5-13600k and NVIDIA
GeForce RTX 3070 are used as the core processors, Python 3.7 is
used as the programming language for the algorithm model, and the
network model is built based on the open source machine learning
framework Pytorch.

The hyperparameter Settings of the proposed model are shown
in Table 1.

3.2 Evaluation function

Root Mean Square Error (RMSE), Standardized Root Mean
Square Error (NRMSE), Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) are used as indicators to
measure the prediction results of the model, and the expressions
are as follows:

RMSE �
														
1
n
∑n
i�1

yi tru − yi( )2√
(11)

NRMSE � RMSE

yi tru max − yi tru min
(12)

MAE � 1
n
∑n
i�1

yi tru − yi

∣∣∣∣ ∣∣∣∣ (13)

MAPE � 1
n
∑n
i�1

yi tru − yi

yi tru

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (14)

Where, yi_tru is the real value of photovoltaic power generation
at time i; yi is the predicted value of photovoltaic power generation at
time i; n is the total number of sampled data.

3.3 Error comparison

To assess the decomposition performance of the proposed
model, it is compared with different learning frameworks and
state-of-the-art methods. These include Local Learning (LL),
where communities independently train and evaluate the model
without interaction; Centralized Learning (CL), which involves
aggregating data from all communities for unified model training
by a central server; and Federated Learning (FL), where each
community trains the model individually, exchanges layer
parameters with a central server for updating global model
parameters, and then conducts gradient descent training. We call
the attention-integrated Transformer model FTransformer.

Specifically, FL-FTransformer, FL-BNN, FL-LSTM, FL-
Transformer, LL-FTransformer, and CL-FTransformer are compared.

The historical net load data of the current moment and the same
time of the previous week and the corresponding meteorological

FIGURE 3
PV estimation process.

TABLE 1 Hyperparameter setting.

Hyperparameter description Value

Number of parameter exchanges 20

Number of sub-model training rounds 100

Learning rate 1e-3
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data are selected as the input features of the model. Figure 4
illustrates the correlation between the net load value and solar
radiation at the historical time and the PV power at the current time.

According to the heat map, it can be found that the closer to the
current time, both the net load data and the solar radiation intensity
have a greater impact on the PV power at the current time, which
proves the effectiveness of feature selection.

Figure 5 selects part of community 1 to visually compare the
estimated PVpower output of FL-FTransformer networkwith the real
value. It can be found that even in the case of large data fluctuations,
the proposed model can still achieve accurate estimation of PV power.
Since the visual difference between many models in the comparison
diagram is not large, and it is easy to stack together, it is impossible to
intuitively compare the used model with the real value. Therefore, the
power curve of other models is not added in the comparison diagram,
and the effectiveness of the proposed model is proved through the
comparison of error indicators.

Table 2 shows the error index situation of the proposed FL-
FTransformer model and the comparisonmodel. Under the same FL
framework, the improved FTransformer improves RMSE and
MAPE respectively compared with BNN, LSTM and Transformer
0.87kW, 0.63kW, 0.69kW, 1.65%, 0.86%, and 0.71%. Under the
same improved FTransformer network, FL, compared with LL and
CL, improves 2.1kW, 0.27kW, 4.16% and 0.42%.

In a horizontal analysis, the augmented FTransformer model,
integrated within the federated learning (FL) framework, outperforms
across four key metrics. This superiority is attributed to its combined
attention and parallel processing capabilities, which provide robust
and versatile model for temporal regression tasks like BTM PV
estimation. In a vertical comparison, the FL architecture, also
employing the enhanced FTransformer as its core network,
demonstrates superior performance. This is due to FL’s ability to
expand data scope and enhance model generalization compared to
local learning. Additionally, unlike centralized learning, FL’s two-layer
training mechanism not only emphasizes the unique characteristics of
each community but also safeguards user data privacy while
broadening the data pool.

Table 3 compares the performance of different models in
different seasons, and the FL-FTransformer model achieves the

FIGURE 4
Feature correlation heat map.

FIGURE 5
FL-FTransformer output comparison.

TABLE 2 Error comparison of different models.

RMSE
(kW)

NRMSE
(%)

MAE
(kW)

MAPE
(%)

FL-FTrans 1.52 2.43 4.56 11.72

FL-BNN 2.39 3.37 5.22 13.47

FL-LSTM 2.15 2.88 4.93 12.58

FL-Trans 2.21 2.75 5.04 12.43

LL- FTrans 3.62 5.47 6.52 15.88

CL- FTrans 1.79 2.74 4.88 12.14
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best performance in different seasons. Due to the fluctuation
difference of illumination radiation in different seasons, the
specific error indicators are also different. The incorporation of
the fused attention mechanism enables the enhanced FTransformer
network to adeptly manage varying degrees of PV fluctuations
across different seasons.

The estimated value of PV generation in each community is
compared with the true value from 12:00 to 13:00 when the solar
radiation is sufficient. Since the PV power does not fluctuate much
in the time scale of 1 hour, the PV power at 12:30 is selected as the
average power in this period for the calculation of power generation,
and the summary results are shown in Table 4.

As can be seen from Table 4, the error of PV generation of each
community in the selected period is about 5%, which has a high
accuracy, indicating that the proposed model has the ability to
accurately estimate the regional PV power generation.

Figure 6 illustrates the error comparison for different number of
individual layers. In summary, when the number of individual layers
is 3, the model evaluation effect is the best, and it is used as the final
output model. It shows that the model has a compromise between
focusing on community characteristics and global commonality.

4 Conclusion

This study addresses regional photovoltaic (PV) power estimation
by proposing a deep learning model that leverages an improved
Transformer within a federated learning framework. The model’s
efficacy is validated through experiments, yielding notable findings:

1) The FL-Transformer model effectively utilizes community-
level data in a distributed manner for behind-the-meter (BTM)
PV estimation, enhancing the model’s generalizability,
estimation accuracy, and user privacy protection.

2) The proposed two-layer training mechanism not only pays
attention to the characteristics of a single community data, but
also pays attention to the commonality between multiple
communities, which significantly improves the performance
of the model. The method of updating global parameters by
momentum aggregation improves the robustness and solution
efficiency of the model.

3) Enhancements to the traditional Transformer model,
incorporating both global and local attention mechanisms,
markedly improve the model’s capacity to discern long and
short cycle features, thereby refining decomposition accuracy.
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TABLE 3 Error comparison of different seasons.

Spring Summer Autumn Winter

FL-FTrans 1.55 1.61 1.58 1.65

FL-BNN 2.37 2.44 2.35 2.40

FL-LSTM 2.13 2.32 2.21 2.18

FL-Trans 2.25 2.28 2.64 2.21

LL- FTrans 3.60 3.85 3.69 3.71

CL- FTrans 1.82 1.85 1.71 1.77

TABLE 4 Error Comparison of Different communities.

com1 com2 com3 com4

Estimated value (kW·h) 62.55 70.42 65.84 72.49

True value (kW·h) 65.72 67.49 71.34 70.06

Deviation (kW·h) 3.17 2.93 5.50 2.43

Proportion of deviation (%) 4.82 4.34 7.71 3.47

FIGURE 6
Error comparison of different individual layers.
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