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As the scale of the power grid expands and distributed energy sources are
integrated, along with the emergence of random loads, topological control of
distribution networks has become a novel means of control. Therefore, data-
driven power flow calculations must be capable of rapidly and accurately
computing power flow results even when there are changes in the network’s
topology. In this paper, a data-driven power flow calculation method is proposed
to take topological changes into account. Based on initial loop data, we employ
an undirected-graph delooping-backtracking method to generate a set of
feasible topological samples. Using the Monte Carlo method on this basis, we
generate feasible samples for the network’s topology and power injection,
thereby establishing a training dataset. By training a deep neural network on
these samples and adjusting network parameters, we effectively address power
flow calculations in the presence of topological changes. Case study results
demonstrate that the data-driven power flow calculation method, considering
topological changes, can rapidly and accurately compute power flow results
when topology alterations occur.
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1 Introduction

Power flow calculation in electric power systems is the process of determining voltage,
current, and power distribution throughout the entire system based on given operational
conditions and network structure. It is a fundamental technique that underpins various
aspects of electric power systems, including system planning, dispatch, stability analysis,
and power market operations, playing a crucial role in ensuring the stability, reliability, and
efficient operation of the power grid.

Traditional power flow calculation methods, including the Gauss-Seidel method,
Newton’s method, and the Fast Decoupled method, are widely used. However, these
methods are all model-based approaches. On the one hand, these methods rely on complex
mathematical models and detailed network parameter information, which can be difficult to
obtain and prone to errors. On the other hand, these methods require iterative calculation
for solving nonlinear power equations, posing challenges to computational speed in large-
scale systems.

With the advancement of machine learning technology, data-driven power flow
calculation has garnered significant attention from scholars. In comparison to
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traditional power flow calculation methods, data-driven
approaches offer notable advantages. On one hand, data-
driven power flow calculation does not require an in-depth
understanding of network parameters, thus improving its
applicability and accuracy. On the other hand, it does not
necessitate complex iterative computations and can rapidly
provide results using pre-trained models, making it more
suitable for real-time scheduling and emergency response in
power systems.

In recent years, scholars have conducted extensive research
around data-driven power flow calculation.

In reference (Tan et al., 2020), a hybrid physical model-
driven and data-driven approach for linearizing power flow
model is proposed. It can retain the useful inherent
information from the physical model and utilize the ability of
data analysis to extract the inexplicit linear relationship. A data-
driven linearization approach of PF equations is proposed in
(Liu et al., 2019). Both partial least squares and Bayesian linear
regression based algorithms are introduced to address the
collinearity. In (Cui et al., 2020), a data-driven slow dynamic
characteristic extraction and state estimation method are
proposed to overcome the shortcomings of the computational
burden caused by the Jacobian matrix inversion of the
traditional method. A data-driven chance-constrained
optimal gas-power flow (OGPF) calculation method without
any prior assumption on the distribution of uncertainties of
wind power generation is proposed in reference (Wang et al.,
2021). Chen J et al. (2022) proposes a data-driven power flow
(PF) linearization approach for three-phase SPF calculation. An
approach with high adaptability to the nonlinearity of power
flow is proposed in 6, which can significantly improve the
calculation accuracy. Reference (Xing et al., 2022; Xing et al.,
2022) respectively introduce a single bus data-driven power
estimation based on modified linear power flow model and a
modified data-driven power flow model for power estimation
with incomplete bus data. The models proposed in these
references exhibit higher accuracy compared to the linear
power flow model. In (Crozier and Baker, 2022), a data-
driven method for determining constraints that may be
excluded from the formulation is proposed. A novel machine
learning (ML) based data-driven risk assessment model for
early-warning of power system transmission congestion is
proposed in (Zhang et al., 2022). Chen Y et al. (2022)
presents a novel data-driven power flow (DDPF)calculation
method based on exact linear regression equations (ELREs),
which offers higher computation efficiency. Liu et al. (2022a)
and Chen et al. (2020) introduce a data-driven-aided linear
three-phase power flow model for distribution power systems
(DPSs), which offers higher accuracy and robustness. In (Liu
et al., 2022b), a robust data-driven linear power flow (RD-LPF)
model is constructed, which can significantly reduce average
errors and unacceptable worst-case linearization errors.
Reference (Li et al., 2023) introduces a data-driven linear
power flow calculation model that incorporates the
Kirchhoff’s Current Law(KCL). This model can be embedded
in optimal power flow for distribution networks. A regression
approach combining the principal component analysis (PCA),
support vector regression (SVR) and ridge regression (RR) is

developed, which improves the accuracy of PF calculation
especially in the presence of bad data. A novel multi energy
flow analysis method for integrated energy systems is proposed
in (Zhu and Zhou, 2023) to learn the mapping relationship
between the given variable and the demanded variable from the
historical operation data. In (Shao et al., 2023), a physical-
model-aided data-driven linear power flow (PD-LPF) model is
proposed as a solution for addressing the issue of insufficient
training data. It introduces physical model parameters to
assist the data-driven training process, demonstrating
excellent accuracy and robustness under severe missing-data
conditions.

However, the data-driven power flow calculation problems
addressed in the aforementioned studies assume that the
topology of the electrical grid remains fixed. This allows for
accurate power flow calculations in networks with a static
structure. However, for distribution networks where topology
changes due to network reconfiguration operations are possible,
this can result in inaccurate power flow calculation results. This
paper focuses on data-driven power flow calculations that take
into account topological changes. To obtain a set of topological
samples for training, we employ an undirected-graph
delooping-backtracking method. To establish a more accurate
relationship between topology and voltage/power, we utilize
deep neural networks to learn from these samples, effectively
addressing power flow calculation challenges posed by
topological changes. The overall framework of the proposed
data-driven power flow calculation method is presented
in Figure 1.

The contributions of this paper are as follows:

1) A feasible topological sample generation method based on
undirected-graph delooping-backtracking is proposed, and
feasible topological samples are established through loop
data initialization, loop breaking and loop backtracking
operations.

2) A data-driven power flow calculation method considering
topological changes is proposed, and a power flow
calculation model considering topological changes is
obtained by encoding the topological data and integrating it
into the input of the data-driven model, and using DBN
for training.

The structure of this paper is as follows: Section 2 introduces
the method for generating topological samples based on
undirected-graph delooping-backtracking. Section 3 presents
the data-driven power flow calculation model. Section 4
provides the case studies conducted in this paper.
Finally, Section 5 offers the conclusions drawn from
the research.

2 Topological samples generating
based on undirected-graph delooping-
backtracking

Radiation constraints are fundamental constraints in the
operation of distribution networks. Neglecting radiation
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constraints during the process of generating topological samples can
result in a large number of infeasible topological samples being
incorporated into the data-driven model. This section employs the
undirected-graph delooping-backtracking method to generate a
feasible set of network topologies. Based on this, topological
samples for training neural networks are generated through
Monte Carlo simulations, ensuring that each topological sample
satisfies radiation constraints.

The undirected-graph delooping-backtracking method involves
obtaining a feasible set of topologies by breaking loops and
backtracking on the complete network graph. The specific
process includes three main steps: loop data initialization, loop
breaking, and loop backtracking.

2.1 Loop data initialization

The first step is loop data initialization, and the algorithm is
given in Algorithm 1. Initially, identify all fundamental loops in the
network, denoted as Li, and find a total of NL fundamental loops.
Assuming that the network branches are represented as
B � b1, b2, . . . , bNB{ }, the algorithm involves determining which
branches are included in each fundamental loop Li. If a branch
bm belongs to Li, it is added to the fundamental loop Li. Additionally,
shared branches among the fundamental loops should be identified,
and be denoted asCij. If bm belongs to both Li and Lj, then it is added
to the shared branches set Cij. In the end, the loop data for the
network can be obtained as Li � li,1, li,2, . . . , li ,Nli{ }, and

FIGURE 1
The overall framework of the proposed data-driven power flow calculation method.
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Cij � {cij,1, cij,2, . . . , cij,Ncij
}. Here, Nli represents the number of

branches in Li, and Ncij represents the number of branches in Cij.

Input: Branch data of the network B � b1 ,b2, . . . ,bNB{ }
Output: Loop data of the network

Li � li ,1,li ,2, . . . ,li ,Nli{ }, Cij � cij ,1,cij ,2, . . . ,cij ,Ncij
{ }

Find NL fundamental loops of the network

For m from 1 to NB
For i from 1 to NL

If bm belongs to Li (bm∈Li)

Add bm into Li:

End if

For j from i+1 to Nli
If bm belongs to Cij (bm∈Li & bm∈Lj)

Add bm into Cij:

End if

End for

End for

End for

Output loop data

Li � li ,1,li ,2, . . . ,li ,Nli{ }, Cij � cij ,1,cij ,2, . . . ,cij ,Ncij
{ }

Algorithm 1. Loop Data Initialization.

2.2 Loop breaking

After obtaining the set of branches for each fundamental loop,
the next step is to break the loops, and the algorithm is presented in
Algorithm 2. For each fundamental loop, we iteratively disconnect
one branch at a time. Assuming that the branches disconnected from
each fundamental loop are respectively l1,k1, l1,k2, . . . , lNL,kNL

, the set
sn � l1,k1, l1,k2, . . . , lNL,kNL

{ } represents a potential loop-breaking
strategy. By identifying all potential loop-breaking strategies,
denoted as sap={s1, s2, . . ., sNs}, sap can be used to represent
potential topological sets.

Input: Loop data of the network Li � li ,1,li ,2, . . . ,li ,Nli{ }
Output: Potential open branches sap
n=1

For k1 from 1 to Nl1
For k2 from 1 to Nl2

. . .

For kNL from 1 to NlNL
sn � l1,k1 ,l1,k2

, . . . ,lNL ,kNL
{ }

n=n+1

End for

. . .

End for

End for

Output sap={s1, s2, . . ., sNs}

Algorithm 2. Loop Breaking.

2.3 Loop backtracking

The potential topological sets obtained through loop breaking may
still contain islands that need to be further eliminated using loop

backtracking, as given in Algorithm 3. Assuming sap*represents the
final feasible topology, start by initializing s*to be equal to sap. Then,
iterate through each element sn in sap*. If sn contains more than two
elements from Cij, it inevitably indicates the presence of islands, so sn
needs to be removed from sap* (Condition 1). Additionally, if sn
contains elements from Cij, Cik, and Cjk simultaneously, and the
fundamental loops Li, Lj and Lk share nodes, their shared nodes will
become islands as well, and sn should also be removed from sap*
(Condition 2). After backtracking and eliminating infeasible topologies,
sap* represents the final set of feasible topologies obtained.

To illustrate the undirected-graph delooping-backtracking
method proposed in this paper, a simple 5-node example system
is considered. First, the fundamental loops and the shared branch
sets between loops are determined, as shown in Figure 2. The
network contains a total of 3 fundamental loops and 3 shared
branch sets between loops, of which details are given in Table 1.

Input: Potential open branches sap, Loop data of the

network Li � li ,1,li ,2, . . . ,li ,Nli{ }, Cij � {cij ,1,cij ,2, . . . ,cij ,Ncij
}

Output: Reduced potential open branches sap*

Initialize sap*=sap
For n from 1 to Ns

For i from 1 to NL
For j from i+1 to NL

If sn satisfies Condition 1

Delete sn from sap*

End if

For k from j+1 to NL
If sn satisfies Condition 2

Delete sn from sap*

End if

End for

End for

End for

End for

Output sap*

Condition 1: sn contain more than one elements of Cij.

Condition 2: sn contain element in Cij, Cik and Cjk and Li Lj

and Lk share common nodes.

Algorithm 3. Loop Backtrack.

By breaking loops in the network as shown in Figure 2, all potential
topological sets, denoted as sap, can be obtain. Through loop
backtracking, the final feasible topological set can be established, and
denoted as sap*. During the loop backtracking process, an example of
feasible topology (that satisfy neither Condition 1 nor Condition 2) is
illustrated in Figure 3A. Infeasible topologies satisfying Condition 1 are
depicted in Figure 3B, and those satisfying Condition 2 are shown in
Figure 3C. From Figure 3B, it is apparent that due to the simultaneous
disconnection of two branches in the shared branch set C12, Node
2 becomes an island, rendering the topology infeasible. From Figure 3C,
it can be seen that the simultaneous disconnection of branches in the
shared branch setsC12,C13, andC23 results in Node 3, a common node
among L1, L2, and L3, becoming an island, making the topology
infeasible. However, topologies that exclude both Condition 1 and
Condition 2 can satisfy radiation constraints and prevent islands
from forming.
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3 Data-driven power flow calculation
model incorporating topological
changes

This section develops the entire data-driven power flow
calculation model based on the feasible topological set sap*
established in the previous section.

3.1 The establishment of the overall model

A typical power flow calculation problem involves computing
the voltage magnitudes and phase angles at various nodes under the
condition of known injected power at each node. Assuming the set
of active power injections at each node is denoted as P={P1, P2, . . .,
PN}, the set of reactive power injections as Q = {Q1, Q2, . . ., QN}, the
topological vector as S, the set of voltage magnitudes as U = {U1, U2,
. . ., UN}, and the set of voltage phase angles as δ = {δ1, δ2, . . ., δN}
(where N is the number of nodes in the network), the inputs and
outputs of the data-driven power flow calculation model can be
defined as Eqs (1) and (2):

I � P,Q, S{ } (1)
O � U, δ{ } (2)

where I represents the set of input vectors for the data-driven
model, O represents the set of output vectors for the data-
driven model.

Unlike the potential loop-breaking strategy sn, the topological
vector S records the switch states of each branch using a
0–1 representation, providing a more accurate reflection of the
impact of branch switch states on power flow. Since the
dimensions of the sets P, Q, U, and δ are all N, while the
dimension of S is NB, the dimensions of the input vectors I and
output vectors O are 2N + NB and 2N, respectively.

Based upon the definition of input and output variables, the
entire data-driven power flow calculation model is further
constructed using Deep Belief Networks (DBN) (Zhang et al.,
2018). DBN, as a form of deep learning, consists of multiple
layers of Restricted Boltzmann Machines (RBM) (Zhang et al.,
2018; Tao et al., 2020; Wang et al., 2022). In this network
architecture, there are connections between layers, but units
within each layer are not interconnected. After training the
neural network parameters layer by layer, DBNs are effective in
fitting a large number of data samples, enabling estimation and
prediction tasks (Wang et al., 2022).

The data-driven power flow calculation model based on DBN is
shown in Figure 4. It can be seen that the input variables (I) pass
through the Input Layer, hidden layers, and output layer to
ultimately yield the required power flow calculation results (O).

3.2 The training of the model

The data-driven power flow calculation model depicted in
Figure 4 requires training before it can conduct rapid power flow
calculations. Training samples play a crucial role in the accuracy
of the power flow calculation model. In practical applications,
training samples for the data-driven power flow calculation
model can be sourced from actual measurements of power and
voltage data in the electrical grid. However, on one hand,
measured data samples are limited in quantity and may lack
diversity, making it challenging to cover fewer common
scenarios. On the other hand, from a model validation
perspective, it is not easy to design a comprehensive
validation method to verify the effectiveness of the model for
various scenarios. In this paper, Monte Carlo simulations are
employed to generate training samples.

Assuming that the rated active and reactive powers of the nodes
in the network are represented as Pr = {Pr,1, Pr,2, . . .,Pr,N} and Qr =
{Qr,1, Qr,2, . . ., Qr,N}, respectively, the active and reactive power
values for the kth node in the ith training sample can be obtained by
adding noise to Pr,k and Qr,k as follows:

Ptrain,i,k � Pr,k + εP,k (3)
Qtrain,i,k � Qr,k + εQ,k (4)

where εP,k and εQ,k represent the noise added to the active and
reactive powers, respectively, and they follow a normal
distribution:

TABLE 1 The fundamental loops and shared branch sets for the 5-node
system.

Loops Branches

Fundamental Loops L1 b1, b2, b3, b5

L2 b1, b2, b4, b6

L3 b3, b4, b7

Inter-loop shared branches C12 b1, b2

C13 b3

C23 b4

FIGURE 2
5 Node example system.
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εP,k ~ N 0, σ2P,k( ) (5)
εQ,k ~ N 0, σ2Q,k( ) (6)

where σP,k and σQ,k are the standard deviations of the noise. Through
Eqs 3, 4, the sets of active and reactive powers for the ith training
sample can be obtained as Ptrain,i = {Ptrain,i,1, Ptrain,i,2, . . ., Ptrain,i,N}
and Qtrain,i = {Qtrain,i,1, Qtrain,i,2, . . ., Qtrain,i,N}.

Topology set Strain,i is obtained by sampling from the feasible
topological set sap* and can be represented by the formula:

Strain ,i ~ sap* (7)

Thus, the input variables for the ith training sample can be
obtained as follows:

Itrain,i � Ptrain,i,Qtrain,i , Strain,i{ } (8)

Using Itrain,i and the network’s own parameters,
traditional power flow calculations can be performed. In this

case, the Newton-Raphson method is adopted to calculate
the power flow for Itrain,i, resulting in: Utrain,i = {Utrain,i,1,
Utrain,i,2, . . ., Utrain,i,N}, δtrain,i = {δtrain,i,1, δtrain,i,2, . . .,
δtrain,i,N}, which can be served as the output variables for the
ith training sample in the data-driven power flow
calculation model:

Otrain,i � Utrain,i, δtrain,i{ } (9)

By repeatedly perform Formulas 3ormulas –Formulas 9, a large
number of training samples can be generated. Eventually, a training
sample set can be obtained as: Itrain = {Itrain,1, Itrain,2, . . ., Itrain,Ntr},
Otrain = {Otrain,1, Otrain,2, . . ., Otrain,Ntr}. Where Ntr is the number of
training samples.

Using these training samples, the DBN can be trained, ultimately
creating a data-driven power flow calculation model that takes into
account topological changes and can rapidly compute power flow results.

4 Case study

The case study involves an IEEE 33-node distribution network
system, as shown in Figure 5. This system comprises 33 nodes,
37 normally closed branches, and 10 branches equipped with
controllable switches, denoted as b4, b7, b18, b23, b27, b33, b34, b35,
b36, b37. The controllable branches allow for changes in the network
topology while ensuring that the entire distribution network adheres
to radiation constraints.

4.1 Topology sample set generation

From Figure 5, it can be observed that the IEEE 33-node system
consists of a total of 5 fundamental loops. Since normally closed
branches do not affect the network topology, only the branches
equipped with controllable switches are listed in the loop data
initialization. The results of loop data initialization are as shown in
Table 2. Performing loop-breaking operations on the loop data yields a
set of potential topologies, denoted as sap, which contains a total of

FIGURE 3
The three possible scenarios of feasible topologies obtained by loop breaking. (A) Feasible topology that satisfy neither Condition 1 nor Condition 2.
(B) Infeasible topologies satisfying Condition 1. (C) Infeasible topologies satisfying Condition 2.

FIGURE 4
DBN-based data-driven power flow calculation model.
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1024 potential topologies. Based on this set, loop backtracking
operations are conducted to obtain the feasible topology set, denoted
as sap*, which includes a total of 63 feasible topologies.

4.2 The power-flow calculation in the IEEE
33-node system with topology changes

The case study involves the validation of the data-driven power
flow calculation method proposed in this paper for four different

topological scenarios, as shown in the left column of Figure 6. To
facilitate comparative analysis, the case study considers the
following four methods:

1) Regression Method

Without considering the network’s topology, a linear regression
model is employed to establish the relationship between active
power, reactive power, voltage magnitude, and phase angles.

2) Traditional DRB Method

Without considering the network’s topology, a Deep Belief
Network (DBN) is used to establish the relationship between
active power, reactive power, voltage magnitude, and phase angles.

3) Topology-based Regression Method

Considering the network’s topology, a linear regression model is
employed to establish the relationship between active power,
reactive power, voltage magnitude, and phase angles while
accounting for the network’s topology.

4) Topology-based DRB Method (The proposed method)

The feasible topological sample set is generated using the
undirected-graph delooping-backtracking method, and the DBN is
used to establish the relationships between active power, reactive
power, voltage magnitude, and phase angles while considering the

FIGURE 5
IEEE 33-node system.

TABLE 2 The basic loops and shared branches in the IEEE 33-node system
(only listing branches equipped with controllable switches).

Loops Branches

Fundamental Loops L1 b4, b23, b27, b37

L2 b7, b27, b34, b36

L3 b34

L4 b18, b20, b33

L5 b33, b35

Inter-loop shared branches C12 b27

C14 b4

C23 b34

C24 b3

C45 b33
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network’s topology. Due to the IEEE 33-node system comprising a
total of 33 nodes and 10 controllable switches, according to the
model described in Section 3.1, the dimensions of the input and
output layers for the DBN are 76 and 66, respectively. In addition
to the input and output layers, the DBN includes two hidden
layers, each containing 500 neurons and the activation function
chosen is the sigmoid function.

The comparison between the node voltages obtained from the
four data-driven power flow calculation methods and the actual
node voltages is shown in the right column of Figure 6. It can be seen
that the RegressionMethod and the Traditional DRBMethod do not
consider the impact of topology changes on power flow, resulting in
significant errors in the power flow calculation results. Topology-
based Regression Method takes topology into account in its input

FIGURE 6
The results of power flow calculations using various methods in multiple topology scenarios.
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variables, leading to a noticeable reduction in node voltage errors
compared to the regression method. However, due to limitations in
fitting nonlinear power equations, errors are still non-negligible. The
Topology-based DRB Method (The proposed method), which
combines variable topology and deep learning, output node
voltage calculation results that are very close to the actual
node voltages.

To further numerically compare the effectiveness of different
data-driven power flow calculation methods, the Mean Absolute
Error (MAE) is used to calculate the errors. The formula for
calculating MAE is as Eq. (10):

MAE �
∑N
k�1

Utest,k − Uk

∣∣∣∣ ∣∣∣∣
N

(10)

The bar chart in Figure 7 and the statistical results in Table 3
depict the MAE for power flow calculation results using different

methods across various topological scenarios. It is evident
from Figure 7 and Table 3 that the MAE for node voltages
obtained using the Topology-Based DRB Method (the
proposed method) is significantly lower than that of the other
three methods. This demonstrates that the proposed data-driven
power flow calculation method proposed offers higher precision
and is more suitable for scenarios involving network
topology changes.

5 Conclusion

This paper introduces a data-driven power flow calculationmethod
based on undirected-graph delooping-backtracking. It utilizes the
undirected-graph delooping-backtracking technique to generate a
feasible set of topological samples based on the initialization of loop
data. Furthermore, it establishes a data-driven power flow calculation

FIGURE 7
MAE statistical results of different methods in multiple topology scenarios.

TABLE 3 MAE statistics table with different methods.

Methods MAE (p.u.)

Topology
scenario 1

Topology
scenario 2

Topology
scenario 3

Topology
scenario 4

Regression method 0.0581 0.0433 0.0607 0.0324

Traditional DRB method 0.0350 0.0414 0.1168 0.0746

Topology-based regression method 0.0207 0.0231 0.0293 0.0234

Topology-based DRB method (The proposed
method)

0.0005 0.0006 0.0014 0.0008
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model based on Deep Belief Networks (DBN). This approach enables
accurate power flow calculations even in scenarios with changing
network topologies. From the analysis results of the test case, we
draw the following conclusions:

1) Through operations such as loop data initialization, loop-
breaking, and loop backtracking, it is possible to effectively
eliminate infeasible topologies and obtain feasible topologies
on the basis of generating all potential topologies for the
distribution network. For the 33-node testing system, by
screening out infeasible topologies, the number of potential
topologies is reduced from 1024 to 63, significantly reducing
the computational complexity for training the data-driven
power calculation model.

2) By incorporating topology information into the DBN-based
numerical-driven power flow calculation model, it becomes
possible to consider changes in the topology during the power
flow calculation process. This allows the data-driven power flow
calculation model to have an advantage over models that do not
take topology information into account. Moreover, due to its
excellent ability to learn complex features and handle large
amounts of training data, the DBN achieves more accurate
power flow calculation results compared to traditional
neural networks.

The future work will focus on applying the proposed data-driven
power flow calculation method to various aspects of power grid
operations, including economic dispatch, topology optimization,
and operational control, etc.
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