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Wire icing seriously threatens the safety and reliability of power systems.
Strengthening the simulation study of icing thickness is crucial for disaster
prevention and mitigation, as well as the adjustment of power system
operation strategies. The meteorological elements, including air temperature,
precipitation andwind speed, are the key factors affecting wire icing. In this study,
the meteorological elements related to icing thickness are obtained by numerical
models, and the relationship between these elements and icing thickness
observations is established to develop a model for simulating icing thickness.
The model is applied to study typical icing in Yunnan Province, China. The results
indicate that the deviation of the simulated icing thickness is about 2 mm, smaller
than that from the traditional model. Batch experiments demonstrate that the
new model developed in this research is applicable to the vast majority of
238 observation stations in Yunnan Province for icing thickness simulation,
and the method can yield lower simulation deviations.
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1 Introduction

With economic and social development, power transmission lines have become more
and more vital in infrastructure (He et al., 2021; Zhang et al., 2022). However, severe
weather conditions pose a threat to normal power transmission. Wire icing and ice
shedding may lead to wire breakage and short circuits, seriously affecting the safe
operation of wires and the reliability of power supply (Michal and Bogdan, 2013;
Bretterklieber et al., 2016). Carrying out simulation research on wire icing can deepen
our understanding of the formation, development and influence of wire icing and can
provide a reference for icing disaster prevention and mitigation.

Among various factors affecting wire icing, meteorological elements (Savadjiev and
Farzaneh, 1998; Zhang et al., 2021) such as air temperature, relative humidity, wind speed
and precipitation are critical. Generally, icing tends to be formed in the environment with
low enough air temperature and abundant water vapor (Wu et al., 2014). In addition, the
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material and properties of wires can also affect the adhesion and
stripping properties of ice (Janjua, 2017). Previous study (Huang
and Zhou, 2015) have also revealed that wire icing is more likely to
appear in special terrain, such as wind gaps and the bulge of
mountains. The prediction research on wire icing will help
improve disaster prevention and reduction capabilities, and
reduce the impact of icing weather.

Therefore, the research on icing simulation is quite challenging
due tomany factors contributing to icing. Currently, most studies on
wire icing simulation are based on methods such as modeling based
on meteorological data (Savadjiev and Farzaneh, 2004) and ice-
water (Yukino and Yamaguchi, 2002) phase, machine learning
(Ogretim et al., 2006; Ma et al., 2012) and physical experiments.
Wang (Wang, 2012) used the Normalized Radial Basis Function
neural network to predict the ice thickness of transmission lines. In
the work of Xu et al. (Xu et al., 2023), a fluid based dynamic model
was proposed to simulate the icing process. And all of these methods
rely on meteorological data. Among them, the Makkonen
(Makkonen, 1998) method has been proposed and widely applied
in ice cover research, which is considered to have practical
application value. It is also the recommended icing model
according to the Atmospheric icing of structures (ISO 12494:

2017), which is one of the critical methods in the icing research
of power systems. The model takes into account various
meteorological factors (Davalos et al., 2023), including air
temperature, precipitation, air pressure, and wind speed, which
are key factors influencing wire icing. In addition, the model also
considers the phase transition of water to ice. In low-temperature
environments, water freezes and adheres to the conductors, resulting
in ice formation. Previous studies have shown that the Makkonen
icing model exhibits accuracy, usability, and adjustability in
predicting icing. It accurately simulates the process of icing,
contributing to a better understanding of icing phenomena and
providing reliable references for preventing and mitigating icing
disasters. Therefore, it has become an essential tool in icing research
and power system design. In this study, a new model applicable to
wire icing simulation is developed based on the Makkonen model.
The results can provide a guarantee for improving the safety and
reliability of wires and offer a reference for relevant technical
support and policy-making for the power industry.

The remainder of this paper is organized as follows. Section 2
introduces the data and methods used in this research. Section 3
shows the results of icing thickness simulations. Conclusions and
discussion are presented in Section 4.

FIGURE 1
Distribution of observation points and their ice thickness of transmission lines in Yunnan Province.

Frontiers in Energy Research frontiersin.org02

Zhou et al. 10.3389/fenrg.2024.1346480

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1346480


2 Data and methods

2.1 Data

In this study, the observed icing thickness data from the Yunnan
power network during 8–11 January 2021 are used. After accounting
for and excluding missing values, a total of 37,084 valid records were
retained out of the 53,015 total data entries, including
238 observation stations. Figure 1 presents the spatial distribution
of the icing thickness on January 8. The results indicate that the wire
icing mainly appears in eastern Yunnan, and the overall icing
thickness is lower than 10 mm. The meteorological element data
used are from the numerical simulation results of the Weather
Research and Forecasting Model, including the conventional
quantities such as surface wind speed, air temperature, air
pressure and relative humidity. The model domain covers the
whole region of Yunnan. The meteorological element values at
each observation station are obtained by interpolating the
simulation results to the observation stations.

2.2 Makkonen model

The Makkonen model (Makkonen et al., 2001) is the
recommended icing model in the Atmospheric icing of structures
(ISO 12494:2017). Based on atmospheric dynamics and
thermodynamic principles, this model obtains icing thickness by
calculating parameters such as air temperature, humidity and wind
speed. The model also has high application value in icing simulation
under freezing fog weather conditions. The model can be expressed
as Eq. 1.

dM

dt
� α1α2α3wAv (1)

where M denotes the ice weight per unit length. α1 indicates the
collision efficiency, which is related to wind speed. a2 represents the
viscosity, which is nonlinearly correlated with wind speed
(α2 � 1/v (v≥ 1); α2 � 1 (v< 1)). a3 denotes the freezing rate
related to temperature. w is the liquid water content per unit
volume, which is considered to be a function of relative
humidity. A represents the cross-sectional area of the icing body,
which is considered constant for wires. V indicates the wind speed
that is perpendicular to icing bodies. For macro meteorological
factors, the air temperature, humidity and wind speed are the main
factors affecting icing, and water bodies, windward/leeward slopes
and mountain ridges can affect these meteorological factors. Based
on this model, two simulation methods for icing thickness can
be proposed.

2.3 Techniques for simulating wire
icing thickness

2.3.1 A new method considering the weights of
meteorological elements

Considering the relationships of icing thickness with air
temperature, wind speed and water vapor in the Makkonen
model, a regression model is established Eq. 2.

Y � Xβ + ε (2)
where Y = [y1, y2, . . ., yn]

T, and yi (i = 1, 2, . . ., n) indciates the icing
thickness at different moments (n). X denotes different variables, as
shown in Eq. 3 (m is the number of variables).

X �
x11 x12 / x1m

x21 x22 / x2m

..

. ..
. ..

.

xn1 xn2 / xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, β �

β1
β2
..
.

βm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ε �

ε1
ε2
..
.

εn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where xi,1 denotes the square of wind speed, xi,2 the viscosity
parameter (Eq. 4), xi,3 air temperature and xi,4 relative humidity.
In order to further consider the impact of temperature on icing
thickness, dew point temperature xi,5 is introduced as an additional
variable to simulate icing thickness.

α2 � 1
v
, v≥ 1m/s

α2 � 1, v< 1m/s
⎧⎪⎨⎪⎩ (4)

In the solution process, coefficient β is obtained by the weighted
least-squares (WLS) method (Yan et al., 2012), which can effectively
eliminate the influence of outlier data. The specific formula is shown
in Eq. 5. Note that the residual of the equation is set as Q.

∂Q
∂β

� ∂∑iε
2
i

∂β
� ∂ Y − βX( )T Y − βX( )

∂β

� −YTX +XTβTX � 0

(5)

Therefore, β � (XTX)−1XTY, and ε � Y − βX. As the weights of
each moment are equal during the regression and the data is
automatically collected by electronic instruments, there is a large
uncertainty in the icing observations. It is necessary to consider the
influence of outliers. Thus, the weighted least squares method is
adopted to determine the weight at each moment, and the weight
values are obtained by ωi � 1/ε2i . Eq. 5 can be rewritten as Eq. 6.

∂Q
∂β

� ∂∑iωiε′2i
∂β

� ∂ Y − βX( )T Y − βX( )
∂β

� −YTWX +XTβTWX � 0

(6)

The coefficient β and covariance can be obtained by β �
(XTWX)−1XTWY and σ2 � (XTWX)−1, respectively. In the
actual simulation process, the simulation data from the
numerical model are adopted as the independent variable values,
and thus, the obtained parameter β is regarded as consistent with the
observation, which does not change in a short term. Hence, β can be
iterated to the next step in the icing simulation. The results of the
simulated icing thickness by this method are marked as P1.

2.3.2 Directmethod based on theMakkonenmodel
In the Makkonen model, the product of parameters, such as

viscosity, air temperature and relative humidity, is proportional to
icing thickness. Therefore, a model is established, as presented in Eq. 7.

yi,j � ∏m
j�1

xi,j (7)

The independent variable xi,j is the same as that in Eq. 3. The result
of the simulated icing thickness by this method is marked as P2.
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2.3.3 AVT correction method
Based on the above icing thickness simulations, the AVT

method (Zhang et al., 2019) is used to further eliminate
deviations. The AVT method is considered to perform well in
eliminating deviations. yr and ys represent the observed and
simulated values, respectively, which are first de-trended
separately by Eq. 8.

y′
r � yr − i · hr

y′
s � yr − i · hr{ (8)

where hr and hs represent the trends of the observations and
simulations, respectively, and the trends of the sequences are
obtained by the least square method. y’r and y’s indicate the
sequences after detrending. The averages and variances of the
new sequences are further calculated and corrected by Eq. 9, and
the corrected simulations y″

s have the same average and variance
values as those of the observation sequence. In Eq. 9, a and σ denote
the average and variance of corresponding sequences, respectively.

y″
s � y′

s − ay′s + ay′r( ) σy′r
σy′s

+ i · hr (9)

The observed values are unknown when the simulation is carried
out. Therefore, these parameters can be determined by historical
data and be iterated into new simulated results to achieve icing
thickness simulations.

3 Results of icing thickness simulations

3.1 Simulations of icing thickness at single
observation stations

The four-day icing process from January 8 to 11, 2021 is
simulated by the two methods above according to different
terrain patterns. In view of the simulations of different icing

thicknesses grades, Figure 2 displays the icing simulations at an
observation station (103.85°E, 27.89°N). The results indicate that the
icing thickness values from January 8 to 11 are 3.12 mm, 3.41 mm,
3.42 mm, and 4.14 mm, respectively, suggesting that the icing
thickness increases gradually. The icing thickness values of P1 are
2.90 mm, 3.62 mm, 3.62 mm, and 3.93 mm, with a mean absolute
error (MAE) of 0.21 mm from the observations. However, the icing
thickness values of P2 are 3.19 mm, 3.28 mm, 3.47 mm, and
4.15 mm, respectively, with a MAEs of 0.07 mm from the
observations, and the Root Mean Square Error (RMSEs) are
0.21 and 0.08 respectively. Figure 3 shows the simulation results
of icing at another observation station (103.69°E, 27.49°N). It can be
seen that the icing thickness values at this station are similar to the
results in Figure 2, but there are still simulation MAEs. From
January 8 to 11, the observed icing thickness values were

FIGURE 2
Observed and simulated ice thickness of the station
(103.81°E, 27.81°N).

FIGURE 3
Same as Figure 2 but for the station (103.69°E, 27.49°N).

FIGURE 4
Same as Figure 2 but for the station (103.84°E, 27.67°N).
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3.39 mm, 4.32 mm, 4.40 mm, and 3.47 mm, respectively, the
simulations of P1 are 3.96 mm, 3.37 mm, 4.62 mm, and 3.65 mm,
respectively, and those of P2 are 4.22 mm, 3.64 mm, 3.27 mm, and
4.45 mm, respectively. The MAEs of the P1 and P2 simulations are
0.48 mm and 0.90 mm, respectively, and the RMSEs are 0.57 and
0.92 respectively. Therefore, the simulations of P1 are better than
those of P2 when the thickness is between 0 mm and 5 mm.

For the simulations of the 5–10 mm icing thickness, Figure 4
exhibits the simulation results at an observation station (103.84°E,
27.67°N). The observed icing thickness from January 8 to 11 was
4.40 mm, 5.76 mm, 5.72 mm and 4.45 mm, respectively, the
simulations of P1 are 4.37 mm, 6.13 mm, 5.08 mm and 4.75 mm,
respectively, and those of P2 are 5.75 mm, 4.35 mm, 4.51 mm, and
5.73 mm, respectively. The MAEs of the P1 and P2 simulations are
0.34 mm and 1.31 mm, respectively, and the RMSEs are 0.40 and
1.31 respectively. Figure 5 displays the results at the observation
station located at 103.15°E, 24.12°N. The observed icing thickness
values from January 8 to 11 are 4.17 mm, 4.46 mm, 6.12 mm, and
6.41 mm, respectively, the simulations of P1 are 4.32 mm, 4.35 mm,
5.88 mm and 6.60 mm, and those of P2 are 4.29 mm, 4.67 mm,
5.31 mm, and 6.88 mm. The MAEs of the P1 and P2 simulations
from the observations are 0.17 mm and 0.41 mm, respectively, and
the RMSEs are 0.18 and 0.48 respectively. It is illustrated that the
simulations of P1 are better than those of P2 for the icing thickness
between 5 mm and 10 mm.

In terms of the icing thickness of 10–20 mm, the observed icing
thickness values from January 8 to 11 at the observation station
located at 103.70°E, 27.48°N (Figure 6) are 16.30 mm, 7.43 mm,
9.81 mm and 13.94 mm, respectively. The icing thickness values of
P1 are 16.30 mm, 7.44 mm, 9.80 mm, and 13.95 mm, respectively,
and those of P2 are 16.27 mm, 7.62 mm, 9.51 mm, and 14.08 mm,
respectively. The simulation MAEs from the two methods from the
observation are 0.01 mm (P1) and 0.16 mm (P2), and the RMSEs are
0.01 and 0.19 respectively. It can be concluded that both the MAE
and RMSEs of the P1 simulations are also lower than that of the
P2 simulations for the icing thickness between 10 mm and 20 mm.

In the following, we further analyze the simulation MAEs
from the two methods. Figure 7 presents the simulation results of
icing thickness at an observation station (101.01°E, 27.17°N). The
observed icing thickness values from January 8 to 11 at this
station were 34.72 mm, 33.64 mm, 34.23 mm, and 32.57 mm,
respectively, basically reaching the maximum icing thickness
(40 mm) of this process. The icing thickness values of P1 are
34.37 mm, 34.19 mm, 34.20 mm, and 32.41 mm, respectively,
and the results of P2 are 34.18 mm, 34.83 mm, 33.49 mm, and
32.67 mm, respectively, which are almost consistent with the
observations. The simulation MAEs from the two methods are
0.28 mm (P1) and 0.64 mm (P2), and the RMSEs are 0.34 and
0.75 respectively, indicating the P1 simulations are still better in
the case of icing thickness more than 20 mm.

FIGURE 5
Same as Figure 2 but for the station (103.15°E, 24.12°N).

FIGURE 6
Same as Figure 2 but for the station (103.70°E, 27.48°N).

FIGURE 7
Same as Figure 2 but for the station (101.01°E, 27.17°N).
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The icing thickness simulations at observation stations with
different icing thickness grades Indicate that the simulation MAEs
from the two methods are both approximately 2 mm, but the
simulation MAE of P1 is smaller than that of P2. We simulate in
bulk the icing data at 238 observation stations during this icing process,
and analyze the simulation results of the two methods. The icing on
January 8 is taken as an example (Figure 8). The results reveal that the
two methods perform well in simulating the icing thicknesses at most
observation stations (Figure 8A). In terms of the simulation MAEs
(Figure 8B), the simulation MAEs of P1 are below 1mm at most
observation stations (84.46%), and only three observation station have
simulation MAEs of more than 5 mm. The P2 simulations suggest that
59.66% of the observation stations show MAEs of less than 1 mm,
35.71% of the stations have MAEs between 1 mm and 2 mm, and there
are 11 stations with MAEs of more than 5 mm. The MAE of icing
thickness is 0.59 mm for P1 and 1.37 mm for P2, and the RMSEs are
1.79 and 4.10 respectively. A similar conclusion can be found in the
icing case on January 9, 10, and 11 (figure omitted). Therefore, the
simulation MAE of icing thickness from the new method considering
the weights of meteorological elements is lower than that from the
method that directly uses meteorological element products.

3.2 Spatial differences of simulations

The spatial differences of the simulated icing thickness in this
icing process indicate that the icing thickness simulated by the two
methods is consistent with the observations at different stations, and
the simulation MAEs are generally smaller (Figure 9). Specifically,
the P1 simulation MAEs appear at the stations in northern and

eastern Yunnan, and there are only 12 stations with MAEs of more
than 1 mm. The P2 simulation MAEs mainly appear in the center of
Yunnan, with 21 stations having MAEs of more than 1 mm and
3 stations showing MAEs of up to 5 mm.

On January 9, the overall icing thickness increases, especially in
northeastern Yunnan, and the simulations are still close to the
observations. However, with the increase of icing thickness, the
number of stations with large MAEs also increases, and the MAEs of
the P1 and P2 simulations are mainly concentrated in northeastern
Yunnan, while the stations with larger P2 MAEs (1-2 mm) are more
than those of larger P1 MAEs. That is, the stations with simulation
MAEs of more than 1 mm are 31 for P1 and 69 for P2. Additionally,
there are few stations with simulation MAEs exceeding 10 mm. On
January 10, the number of stations with simulation MAEs also
increases with icing thickness. However, the overall MAEs are still
smaller, and the simulation MAEs at most stations are between
1 mm and 2 mm. The stations with larger P1 and P2 MAEs are still
located in eastern Yunnan. Specifically, the number of stations with
simulationMAEs above 1 mm is 25 for P1 and 78 for P2. On January
11, the icing process tended to end, the icing thickness decreased,
and the MAEs of simulations gradually reduce. Moreover, the
number of stations with large MAEs also decreases. Among
them, the stations with larger P1 simulation MAEs are
sporadically distributed in eastern and northern Yunnan, with
26 stations having simulation MAEs exceeding 1 mm. The
stations with larger P2 simulation MAEs are mainly located in
the central region of Yunnan, with 41 stations showing simulation
MAEs exceeding 1 mm. Therefore, in terms of the number of
stations with simulation MAEs, there are more stations with
lower MAEs from P1 simulations.

FIGURE 8
Ice thickness (A) and bias (B) at different stations.
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4 Conclusion and discussion

According to the Makkonen model, an icing model
recommended by Atmospheric icing of structures (ISO 12494:
2017), a new ice thickness prediction model has been proposed
to simulate icing thickness in Yunnan based on the simulation
data from a mesoscale numerical model (Weather Research and
Forecasting Model). The effectiveness of this method is verified
by comparing the simulation results with observations. For the
simulations of different icing thicknesses, the MAE (Table 1)
from the proposed new model based on weighted coefficients is
lower, which is about 2 mm (smaller than that from the
traditional model). The spatial distribution of simulation
MAEs also shows that this method is applicable in the vast
majority of stations, and the simulation MAEs are lower.

It is worth noting that the simulation of icing thickness in
this study relies on the model results and the icing thickness
observations. The inherent MAEs in simulating meteorological
elements, such as precipitation, wind speed, temperature, and
pressure, can affect the prediction of ice cover thickness. The ice
cover thickness observations used in this study are mainly
obtained through sensor inversion, which often have certain
MAEs. This introduces uncertainties when using observational
data to correct the predicted results. By improving the quality of
observational data, it can help improve the forecast results.
Furthermore, sudden reductions in ice cover caused by
human activities, animal activities, wildfires, and other factors
are difficult to consider in the models, which also lead to
inaccuracies in the predicted results. Therefore, in practical
research on overhead wire icing, it is necessary to conduct
comprehensive analysis and evaluation of these factors.
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FIGURE 9
Ice thickness bias of different stations with P1 (A–D) and P2 (E–H) on January 8 (A,E), 9 (B,F),10 (C,G), and 11 (D,H).

TABLE 1 MAEs and RMSEs of different observation stations.

Station positions P1 P2

MAE RMSE MAE RMSE

103.81°E, 27.81°N 0.48 0.57 0.90 0.92

103.69°E, 27.49°N 0.09 0.10 1.19 1.20

103.84°E, 27.67°N 0.34 0.40 1.31 1.31

103.15°E, 24.12°N 0.17 0.18 0.41 0.48

103.70°E, 27.48°N 0.01 0.01 0.16 0.19

101.01°E, 27.17°N 0.28 0.34 0.64 0.75
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