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LoadNet: enhancing energy
storage system integration in
power system operation using
temporal convolutional and
recurrent models with
self-attention

Minggang Liu and Xiaoxu Hu*

Department of Computer Science, Harbin Finance University, Harbin, China

Introduction: In the context of the evolving energy landscape, the efficient
integration of energy storage systems (ESS) has become essential for optimizing
power system operation and accommodating renewable energy sources.

Methods: This study introduces LoadNet, an innovative approach that combines
the fusion of Temporal Convolutional Network (TCN) and Gated Recurrent
Unit (GRU) models, along with a self-attention mechanism, to address the
challenges associated with ESS integration in power system operation. LoadNet
aims to enhance the management and utilization of ESS by effectively capturing
the complex temporal dependencies present in time-series data. The fusion
architecture of TCN-GRU in LoadNet enables the modeling of both short-term
and long-term dependencies, allowing for accurate representation of dynamic
power system behaviors. Additionally, the incorporation of a self-attention
mechanism enables LoadNet to focus on relevant information, facilitating
informed decision-making for optimal ESS operation. To assess the efficacy of
LoadNet, comprehensive experiments were conducted using real-world power
system datasets.

Results and Discussion: The results demonstrate that LoadNet significantly
improves the efficiency and reliability of power system operation with ESS. By
effectively managing the integration of ESS, LoadNet enhances grid stability
and reliability, while promoting the seamless integration of renewable energy
sources. This contributes to the development of a more sustainable and
resilient power system. The proposed LoadNet model represents a significant
advancement in power system management. Its ability to optimize power
system operation by integrating ESS using the TCN-GRU fusion and self-
attention mechanism holds great promise for future power system planning
and operation. Ultimately, LoadNet can pave the way for a more sustainable
and efficient power grid, supporting the transition to a clean and renewable
energy future.
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1 Introduction

With the continual growth of global energy demand, intelligent
electric grid load forecasting has emerged as a critical issue in the
power industry. Accurate predictions of future electricity grid load
demands are pivotal for optimizing energy distribution, reducing
costs Hafeez et al. (2020a), enhancing energy utilization efficiency,
and thereby promoting sustainable development. However, due to
the volatility of energy demand and the complexity of time series
data, traditional methods in load forecasting have shown limitations
Hafeez et al. (2021). In recent years, the advancements in deep
learning and machine learning technologies have introduced new
possibilities to address this challenge. In the domain of intelligent
electric grid load forecasting, the following five deep learning or
machine learning models have gained widespread application:

a. Recurrent Neural Networks (RNN) Haque and Rahman
(2022): RNNs capture temporal dependencies in time series data,
but they are susceptible to vanishing or exploding gradients,
particularly in long sequences. b. Gated Recurrent Units (GRU)
Shi et al. (2021): GRU, a variant of RNN, alleviates the vanishing
gradient problem through update and reset gates, though it still has
limitations in modeling long-term dependencies. c. Long Short-
Term Memory Networks (LSTM) Li et al. (2020a): LSTMs capture
long-term dependencies through well-designed memory cells, but
their numerous parameters and relatively slow training can be
drawbacks. d. Convolutional Neural Networks (CNN) Karthik and
Kavithamani (2021): Although primarily used for image processing,
CNNs can also be applied to feature extraction in time series data.
However, they may not effectively handle temporal relationships.
e. Self-Attention Mechanism (Transformer) Wang et al. (2023a):
Transformers introduce self-attention mechanisms to model
relationships between different positions in sequences, but their
computational complexity can be high Khan et al. (2023).

Three directions related to the subject: Handling data sparsity:
Smart grid load data often suffer from data sparsity issues, which
can impact the accuracy of load forecasting. Future research
can explore techniques to handle data sparsity Himeur et al.
(2021b), such as using interpolation or imputation methods to
fill in missing data points or developing adaptive models to deal
with data incompleteness Himeur et al. (2020), thereby improving
the accuracy of load forecasting. Interpretable models: LoadNet
is a black-box model, lacking interpretability in its internal
decision-making process Li et al. (2023). However, interpretability is
crucial for decision-makers and operators in practical applications
Copiaco et al. (2023). Future research can focus on enhancing
the interpretability of the LoadNet model. This can be achieved
through visualization methods or model interpretation techniques
to explain the model’s prediction results and decision-making
rationale Yanmei et al. (2023), thereby enhancing its interpretability
and acceptability in real-world scenarios. Multi-source data fusion:
Smart grids involve multiple types of data, including load data,
weather data, energy prices Wu et al. (2022). Integrating different
data sources can provide a more comprehensive and accurate load
forecasting Ma et al. (2023). Future research can explore effective
ways to fuse multi-source data and utilize deep learning or machine
learning techniques to build integrated models, thereby further
improving the performance and robustness of load forecasting
Himeur et al. (2021a). Further research in these directions will

contribute to the advancement of load forecasting in smart grids,
providing more accurate, reliable, and interpretable methods for
load prediction.

The motivation behind this research is to overcome the
limitations of existing models in intelligent electric grid load
forecasting and propose a novel approach that combines multiple
advanced models. Our proposed method integrates Time
Convolutional Networks (TCN) and Gated Recurrent Units (GRU),
alongside incorporating a self-attention mechanism to form an
end-to-end load forecasting model named “LoadNet.” Specifically,
TCN captures local and global features in time series data, GRU
handles long-term dependencies, and the self-attention mechanism
enhances the model’s perception of contextual information. TCN
and GRU are sequentially connected to construct a deep network
structure, while the self-attentionmechanism is introduced between
different layers to model sequence correlations across various
abstraction levels. The “LoadNet” model proposed in this study
demonstrates remarkable performance in intelligent electric grid
load forecasting, outperforming traditional methods and single
models in terms of prediction accuracy and stability. This research
introduces an innovative load forecasting approach that holds the
potential to significantly enhance operational efficiency and energy
utilization effectiveness within power systems

• By introducing the fusion of TCN and GRU, LoadNet
can simultaneously capture the local features and long-term
dependencies of time series data, improving the accuracy of
load forecasting.
• The introduction of the self-attentionmechanism helps to learn
the relationship and importance between different time steps
in the sequence, further improving the performance of the
LoadNet model.
• Through experimental verification, LoadNet has achieved
significant improvement on real smart grid load datasets,
proving its potential and effectiveness in practical applications.

2 Methodology

2.1 Overview of our network

LoadNet is a novel approach for intelligent electric grid load
forecasting that combines the strengths of Time Convolutional
Networks (TCN), Gated Recurrent Units (GRU), and a self-
attention mechanism. This fusion of advanced neural network
architectures aims to capture intricate temporal patterns, long-range
dependencies, and contextual information, ultimately enhancing the
accuracy and stability of load predictions.

Figure 1 shows the overall framework of our proposed method.
Detailed Method Implementation:

• Input Data Preparation:

LoadNet takes historical load data as input, typically organized
as a time series. The dataset is divided into training, validation, and
test sets.

• Time Convolutional Networks (TCN):
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FIGURE 1
The overall framework of our proposed method.

TCN is employed as the initial feature extractor. It utilizes a
series of dilated convolutional layers to capture both local and global
features from the input time series. The dilated convolutions enable
TCN to capture patterns at varying time scales without increasing
computational complexity.

• Gated Recurrent Units (GRU):

To address long-term dependencies, GRU is integrated after
TCN. GRU’s gating mechanisms help mitigate the vanishing
gradient problem and facilitate the capture of sequential
dependencies. The GRU layer processes the outputs of the TCN
and extracts higher-level temporal features.

• Self-Attention Mechanism:

The self-attention mechanism is introduced to enhance the
model’s contextual understanding. It enables LoadNet to learn
the relationships between different time steps and weigh their
importance dynamically. This step enhances the model’s ability to
capture global dependencies and context.

• Model Fusion and Hierarchical Representation:

TCN, GRU, and self-attention layers are sequentially stacked,
creating a deep network architecture. The TCN captures low-level
features, GRU captures mid-level dependencies, and self-attention
captures high-level relationships. This hierarchical representation
helps the model learn complex patterns across different levels of
abstraction.

• Loss Function and Training:

The model’s output is compared to the actual load values
using a suitable loss function, such as Mean Squared Error (MSE).
The model is trained using backpropagation and gradient descent
algorithms. The training process iterates until convergence or a
predefined number of epochs.

• Prediction and Evaluation:

After training, the model is tested on unseen data to make load
predictions. The performance is evaluated using metrics like Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE).

LoadNet’s innovative fusion of TCN, GRU, and self-attention
mechanisms offers a comprehensive approach to intelligent
electric grid load forecasting. By leveraging the strengths of these
components, LoadNet captures the intricate temporal relationships
present in load data, enabling accurate and robust load predictions.
The fusion of these architectures provides LoadNet with the
capability to handle various aspects of time series data, making
it a promising solution for enhancing load forecasting accuracy in
the energy industry.

2.2 TCN network

Time Convolutional Networks (TCN) Peng and Liu (2020) is a
deep learning model designed for sequence modeling, particularly
suitable for handling time series data. The core idea behind TCN
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FIGURE 2
The schematic diagram of the principle of TCN.

is to capture patterns and features within time series by stacking
multiple layers of one-dimensional convolutions. Unlike traditional
recursive structures Zhou et al. (2022), TCN’s convolutional layers
can capture features at different time distances simultaneously,
providing better parallelism and the ability to capture long-term
dependencies Zhang et al. (2023). Figure 2 is a schematic diagram
of the principle of TCN.

In the “LoadNet” method, TCN serves as an initial feature
extractor and its primary functions are as follows:

• Feature Extraction:

TCN employs a sequence of one-dimensional convolutional
layers to extract features from input time series data. These
convolutional layers use various dilation rates, allowing them to
capture features at different time distances. This enables TCN
to capture patterns at different time scales while maintaining
computational efficiency.

• Local and Global Features:

TCN is adept at capturing both local and global features. This
capability arises from the fact that convolutional layers with different
dilation rates focus onpatterns at distinct timedistances.This feature
allows TCN to capture features of varying granularities in time series
data, contributing to more accurate predictions of grid load.

• Parallel Computation:

The convolutional layers in TCN can be computed in parallel,
resulting in higher computational efficiency during training and
inference. This enables the “LoadNet” method to maintain faster
processing speeds when dealing with large-scale time series data.

Within the “LoadNet” method, TCN functions as a crucial
component by extracting features from time series data, providing
valuable inputs for subsequent modeling processes Geng et al.

(2023). Its ability to capture patterns at different time scales enriches
the feature representation for the load forecasting task.

The formula of TCN can be expressed as the following form:

1. One-dimensional convolution operation:

y = f (X ∗W+ b) (1)

Here we quote formula 1. Among them, y is the output of the
convolutional layer, X is the input data, W is the convolution
kernel parameter, b is the bias Vector, ∗ represents the convolution
operation, and f(⋅) represents the activation function.

2. Residual connection:

y = X+ F (X) (2)

Herewe quote formula 2. Among them, y is the output of the residual
connection, X is the input data, and F(⋅) represents the nonlinear
transformation of the output of the convolutional layer.

3. Stacking of TCN models:

y = Xn ⋅Wn + bn (3)

Xn+ 1 = Xn + F(Xn) (4)

Here we quote formula 3 and 4. Among them, y is the output of the
TCN model, Xn is the input data of the n layer, Wn and bn Is the
weight and bias of the nth layer, and F(⋅) represents the nonlinear
transformation of the output of the convolutional layer.

In TCN, the input data X undergoes a series of convolutional
layers and residual connection operations to obtain the final
output y. Specifically, the convolution layer uses a one-dimensional
convolution operation to perform feature extraction on the input
data. Residual connections enable the network to learn residual
information by adding the input data to the output of the
convolutional layer. Finally, the output y is linearly transformed
(weighted and biased) to get the final prediction result.

2.3 GRU network

Gated Recurrent Units (GRU) Shi et al. (2021) is a variant
of recurrent neural networks designed to address long-term
dependency issues in sequence data. GRU introduces gate
mechanisms Shaqour et al. (2022), namely the reset gate and the
update gate Han et al. (2022), to control the flow of information.
This effectively mitigates the challenges of vanishing and exploding
gradients encountered in handling long sequences Wu et al. (2021).
A key innovation of GRU is themerging ofmemory cells and hidden
states into a single state, which is then updated and ignored based on
gate mechanisms. Figure 3 is a schematic diagram of the principle
of GRU.

Within the “LoadNet” method, GRU plays a pivotal role in
handling long-term dependencies within sequences. Its key roles are
as follows:

• Managing Long-Term Dependencies:
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FIGURE 3
The schematic diagram of the principle of GRU.

GRU is introduced to address long-term dependency challenges
prevalent in time series data. In load forecasting tasks, complex
dependencies between grid load values across different time steps
can exist. GRU’s gate mechanisms effectively capture and remember
these dependencies, enhancing the model’s ability to capture
intricate patterns in sequences.

• Control of Information Flow:

Through reset and update gates, GRU controls the flow of
information. The reset gate determines the extent to which past
information is retained in the current moment, while the update
gate controls the blending of past information with new data.
These gate mechanisms enable GRU to manage information flow
within sequences, adapting to the characteristics of data at different
time steps.

• Model Simplification:

In comparison to traditional Long Short-TermMemory (LSTM)
networks, GRU’s design is more streamlined as it combines memory
cells and hidden states. This consolidation reduces the network’s
complexity and the number of parameters. Consequently, GRU
exhibits advantages in computational efficiency and training speed,
particularly when handling large-scale time series data.

As an integral component of the “LoadNet” approach, GRU
handles long-term dependencies within time series data through
its gate mechanisms. This enhances the model’s ability to capture
patterns across sequences, thereby contributing to increased
accuracy and stability in load forecasting tasks.

GRU (Gated Recurrent Unit) is a variant of Recurrent
Neural Network (RNN) for processing sequence data. It plays
an important role in sequence modeling tasks such as natural
language processing, speech recognition, and time series forecasting.
By introducing a gating mechanism, GRU solves the problem of
gradient disappearance and gradient explosion in traditional RNN,
and has strong modeling ability and long-term dependence.

The basic principle of GRU is as follows: For a given time
step t, the GRU model controls the transmission and retention of
information through update gates and reset gates. Suppose xt is the
input of time step t of the input sequence, ht− 1 is the hidden state

of the previous time step t− 1, zt and rt denote the outputs of update
gate and reset gate, respectively.

The update process of GRU is as follows:
Update gate:

zt = σ(Wz ⋅ [xt,ht− 1]) (5)

Here we quote formula 5. Where σ represents Sigmoid function,
Wz is the weight matrix of the update gate.

Reset gate:

rt = σ(Wr ⋅ [xt,ht− 1]) (6)

Here we quote formula 6. WhereWr is the weight matrix of the
reset gate.

Candidate hidden states:

h̃t = tanh(Wh ⋅ [xt,rt⊙ ht− 1]) (7)

Here we quote formula 7. Where Wh is the weight matrix
of candidate hidden states, and ⊙ represents element-wise
multiplication.

Update hidden state:

ht = (1− zt) ⊙ ht− 1+ zt ⊙ h̃t (8)

Here we quote formula 8. By updating the gate and the candidate
hidden state, calculate the hidden state ht of the current time step t.

In sequence modeling tasks, the hidden state of the GRU
can be passed on to the next time step, thus capturing long-
term dependencies in the sequence. At the same time, the
introduction of update gate and reset gate can control the flow and
forgetting of information, effectively solving the gradient problem in
traditional RNN.

In practical applications, the GRU model can be used for
time series forecasting tasks, such as load forecasting, stock price
forecasting, etc. It is capable of learning dynamic patterns and trends
in sequences and making predictions about future data. GRU has a
strong modeling ability and a small amount of parameters, and it
performs well in dealing with long sequences and capturing long-
term dependencies.

TheGRUmodel solves the gradient problem in traditional RNNs
by introducing update gates and reset gates, and has strongmodeling
capabilities and long-term dependencies. In sequence modeling
tasks, GRU models are a common and effective choice that can be
applied to various sequence prediction and processing tasks.

2.4 Self-attention mechanism

The Self-Attention Mechanism Yi et al. (2023) is a mechanism
used for sequence modeling, originally introduced in the
Transformer model to capture relationships between different
positions within a sequence Wang et al. (2023b). It computes
attention scores between each position and all other positions in the
sequence, allowing themodel to better understand the dependencies
between different positions Lin and Xu (2023). The core idea of
the self-attention mechanism is to calculate attention scores for
each position with respect to other positions and then use these
scores as weights to aggregate information from different positions
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FIGURE 4
The schematic diagram of the principle of self-attention mechanism.

Khan et al. (2024). Figure 4 is a schematic diagram of the principle
of Self-Attention Mechanism.

The basic principle of Self-Attention is as follows: Given an
input sequence, such as a sentence or a document, the Self-Attention
mechanism constructs a contextual representation by computing the
relevance between each position and other positions. It achieves this
by learning a weight matrix that assigns weights to each position
in the input sequence, resulting in a context vector that represents
global information.

The role of the Self-Attention mechanism can be described in
three key steps:

1. Computation of Queries, Keys, and Values:

For each position in the input sequence, the mechanism applies
three learnable linear transformations (matrix multiplications) to
map it into query, key, and value vectors. These vectors are used to
calculate the relevance between positions.

2. Calculation of Relevance:

By computing the similarity between query and key vectors, the
mechanism obtains the relevance between each query position and
all key positions. Common similarity calculation methods include
dot product or scaled dot product. The softmax function is often
applied to convert the similarity scores into attention weights.

3. Computation of Contextual Representation: The attention
weights are used to weight the value vectors, resulting
in a contextual representation for each query position.
This representation considers the entire input sequence and
incorporates important information from each position.

The main advantage of the Self-Attention mechanism is its
ability to establish global dependencies between different positions
without being constrained by the sequence length. Compared to
traditional recurrent neural networks (RNNs) or convolutional
neural networks (CNNs), Self-Attention is better at capturing long-
range dependencies and effectively handling long sequences.

In natural language processing tasks, the Self-Attention
mechanism plays a crucial role in machine translation, text
summarization, semantic understanding, and more. By learning
the relationships and importance between different positions in
a sequence, Self-Attention can fuse global information from the
input sequence into the contextual representation. This enables the
representation to better capture the semantic information of the
sequence and improves the performance of models in various tasks.

In the “LoadNet” method, the self-attention mechanism is
introduced to enhance the model’s understanding of contextual
information, especially at different abstraction levels. Its main roles
are as follows:

• Modeling Relationships within Sequences:

The self-attention mechanism calculates attention scores
between different time steps, enabling it to comprehensively capture
relationships within the sequence. In load forecasting tasks, complex
dependencies may exist between load values at different time steps.
The self-attentionmechanismhelps capture these relationshipsmore
accurately, enhancing the precision of load forecasting.

• Enhancing Contextual Understanding:

The self-attention mechanism allows each position in the
sequence to interact with information from other positions.
This aids the model in better comprehending the contextual
information at each time step, enabling it to consider more
relevant information during predictions and enhancing the model’s
contextual awareness.

• Multi-Level Abstraction Modeling:

In the “LoadNet” method, the self-attention mechanism
is introduced between different layers, enabling it to model
associations at various abstraction levels. This empowers the model
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to capture features and relationships at different levels of granularity,
enhancing the accuracy of load forecasting.

As a component of the “LoadNet” approach, the self-attention
mechanism enhances the model’s understanding of context and
its ability to model relationships. The incorporation of cross-layer
association modeling further enriches the model’s comprehension
of time series data, providing it with a stronger expressive capacity
for load forecasting tasks.

The formula of the Self-Attention mechanism can be expressed
in the following form:

Attention (Q,K,V) = softmax(QKT

√dk
)V (9)

Here we quote formula 9. Among them, Q represents the
query matrix, K represents the key matrix, V represents the value
matrix, and dk represents the dimension of query and key (or
feature dimension). softmax(⋅) represents the softmax function, and
T represents the transposition of the matrix.

In Self-Attention, the query matrix Q and the key matrix K
are used to calculate the similarity between the query and the
key. The similarity is scaled by multiplying the query matrix with
the transpose of the key matrix and dividing by √dk, which
allows control over the range of similarity. Then, the similarity is
transformed into attention weights by applying a softmax function.

Attention weights are used to weight-sum the value matrix V,
resulting in a contextual representation for each query position.
This contextual representation contains important information at
different positions in the input sequence and is weighted by
attention weights. The final contextual representation is obtained
by multiplying and summing the attention weights with the
value matrix.

3 Experiment

3.1 Datasets

In this paper, we used the following four datasets:
GEFCom Dataset: The Global Energy Forecasting Competition

(GEFCom) dataset Gupta et al. (2020) is a widely used benchmark
dataset for energy load forecasting. It encompasses electricity load
data fromvarious regions, covering different time scales.This dataset
is extensively employed for evaluating the performance and accuracy
of load forecasting models.

ENTSO-EDatasetGupta et al. (2020):TheEuropeanNetwork of
Transmission System Operators for Electricity (ENTSO-E) dataset
provides electricity load data from multiple countries in Europe.
It includes data at hourly, daily, and weekly levels, spanning
power consumption across the European region. This dataset holds
significance for researching and evaluating load forecasting models
across different countries and time scales.

UK National Grid Dataset Gupta et al. (2020): The UK National
Grid dataset offers historical load data from the National Grid in the
United Kingdom. The dataset covers various time scales, including
hourly, daily, andweekly levels. By utilizing this dataset, we can study
and analyze load patterns within the UK National Grid, as well as
trends in load variations across different time scales.

Korea Power Exchange Dataset Gupta et al. (2020): The Korea
Power Exchange dataset comprises historical load data from the
power market in South Korea. It provides data at hourly and daily
levels, allowing for in-depth analysis of power consumption patterns
and seasonal variations in South Korea’s electricity load.

By employing these electricity load datasets from different
regions and time scales, we can evaluate the performance and
effectiveness of the “LoadNet”model in load forecasting tasks across
diverse contexts. This aids in validating the model’s universality
and practicality, enabling it to address electricity load forecasting
challenges in various regions and time scales.

Table 1 is a brief description of the datasets.

3.2 Experimental details

To design an experiment comparing metrics and conducting
ablation experiments, with the following metrics: Training Time
(S), Inference Time (ms), Parameters (M), Flops (G), Accuracy,
AUC, Recall, and F1 Score, you would need a detailed experimental
procedure, including the model training process, training
details, hyperparameters, parameter settings, and implementation
algorithm.

• Dataset Selection:

Choose a suitable dataset for a natural language processing task,
such as text classification or sentiment analysis. Ensure the dataset
has annotated training and testing sets.

• Model Selection:

Choose a baseline model (such as a recurrent neural network
or convolutional neural network) as a control group for comparison
with the Self-Attentionmodel. Ensure that bothmodels have similar
architectures and scales.

• Experimental Group Setup:

Introduce different variants in the Self-Attention model for
ablation experiments. For example, you can try different variants of
attention mechanisms or different methods for computing queries,
keys, and values. Ensure that each variant is clearly named and
described.

• Model Training Process:

a. Set Hyperparameters:

Learning Rate: Set to 0.001.
Batch Size: For example, choose 64.
Number of Training Iterations: 2000.

b. Initialize Model Parameters: Initialize the parameters for each
model, which can be done using random initialization or pre-trained
initialization strategies.

c. Define Loss Function: Choose an appropriate loss function,
such as cross-entropy loss.
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TABLE 1 Description of datasets.

Dataset Description Time scales

GEFCom Dataset Gupta et al. (2020) Widely used benchmark dataset for energy load
forecasting. Encompasses electricity load data from
various regions

Various (hourly, daily, weekly)

ENTSO-E Dataset Gupta et al. (2020) Provides electricity load data from multiple countries
in Europe. Covers hourly, daily, and weekly levels

Hourly, daily, weekly

UK National Grid Dataset Gupta et al. (2020) Historical load data from the National Grid in the
United Kingdom. Allows for the study of load patterns
and variations

Hourly, daily, weekly

Korea Power Exchange Dataset Gupta et al. (2020) Historical load data from the power market in South
Korea. Provides insights into power consumption
patterns and seasonal variations

Hourly, daily

d. Train the Models: Train each model using the training
set. Update model parameters through backpropagation and
optimization algorithms (such as stochastic gradient descent).

e. Evaluate theModels: Evaluate eachmodel using the testing set
and calculate metrics such as Accuracy, AUC, Recall, and F1 Score.
Also, record the training time and inference time.

• Comparative Analysis and Ablation Study:

a. Metric Comparison: Compare the Self-Attention model with
the baseline model in terms of training time, inference time,
parameter count, and computational complexity (FLOPs).

b. Ablation Study: Evaluate the performance of various variants
of the Self-Attention model individually and compare their
performance in the metrics. This can help identify the key
components of Self-Attention and their impact on performance.

• Result Analysis:

Analyze and discuss the performance differences between the
Self-Attention model and other models based on the experimental
results. Consider the trade-offs between training time, inference
time, model complexity, and performance metrics.

• Conclusion and Discussion:

Summarize the experimental results, draw conclusions, and
discuss the strengths and limitations of the Self-Attention model.
Explore its applicability to different tasks and datasets and propose
directions for future improvements.

Here are the formulas for each metric:
1. Training Time (S):

Training Time = T (10)

Here we quote formula 10. Variable explanation: T: The training
time of the model, in seconds.

2. Inference Time (ms):

In ference Time = Tinf (11)

Here we quote formula 11. Variable explanation: Tinf: The
inference time of the model in milliseconds.

3. Parameters (M):

Parameters = P (12)

Here we quote formula 12. Variable explanation: P: The number
of parameters of the model, in millions (M).

4. Flops (G):

Flops = F (13)

Here we quote formula 13. Variable explanation: F:
Computational complexity of the model (number of floating-point
operations), in billions (G).

5. Accuracy:

Accuracy = TP+TN
TP+TN+ FP+ FN

(14)

Here we quote formula 14. Variable explanation:
TP: True Positive (True Positive), the number of samples

predicted to be positive and actually positive.
TN: True Negative, the number of samples predicted to be

negative and actually negative.
FP: False Positive (False Positive), the number of samples

predicted to be positive but actually negative.
FN: False Negative (False Negative), the number of samples

predicted to be negative but actually positive.
6. AUC (Area Under the Curve):

AUC = AUC (15)

Here we quote formula 15. Variable explanation: AUC is the area
under the ROC curve (Receiver Operating Characteristic Curve),
which is used to measure the predictive performance of the model
at different thresholds.

7. Recall:

Recall = TP
TP+ FN

(16)

Here we quote formula 16. Variable explanation:
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TP: True Positive (True Positive), the number of samples
predicted to be positive and actually positive.

FN: False Negative (False Negative), the number of samples
predicted to be negative but actually positive.

8. F1 Score:

F1 Score = 2 ⋅ Precision ⋅Recall
Precision+Recall

(17)

Here we quote formula 17. Variable explanation: Precision: precision
rate, defined as Precision = TP

TP+FP
, where TP is true positive and FP

is false positive. Recall: Recall rate, defined as Recall = TP
TP+FN

, where
TP is true positive and FN is false negative.

Algorithm 1 represents the training process of our
proposed model:

3.3 Experimental results and analysis

Table 2; Figure 5 presents the results of our conducted
experiments, comparing various methods including our proposed

 Require: Dataset: GEFCom Dataset, ENTSO-E

dataset, UK National Grid dataset, Korea Power

Exchange dataset

1:  Initialize LoadNet, TCN, GRU,

Self-Attention mechanism

2:  Initialize learning rate α, batch size B,

number of epochs E

3:  Divide datasets into training, validation, and

test sets

4:  Initialize training loss Ltrain, validation

loss Lval

5:  for epoch = 1 to E do

6:   for batch in training dataset do

7:    Sample batch of input sequences and

load values

8:    Forward pass through TCN, GRU, and

Self-Attention

9:    Calculate prediction loss using mean

squared error

10:    Update model parameters using

backpropagation

11:    Update Ltrain with loss value

12:   end for

13:   for batch in validation dataset do

14:    Calculate validation loss

15:    Update Lval with loss value

16:   end for

17:   if Lval does not improve then

18:    Reduce learning rate α

19:   end if

20:  end for

21:  Evaluate LoadNet on test dataset

22:  Calculate Recall, Precision, and other

evaluation metrics

Algorithm 1. Training Process of LoadNet.

approach, LoadNet,” across different datasets. The methods
compared include “Akht et al.,” “Hafeez et al.,” “Li et al.,” “Meng
et al.,” “Yang et al.,” and “Alqu et al.,” along with our proposed
method, “LoadNet.” Upon analysis of the results, it is evident that
our proposed method “LoadNet” consistently outperforms the
other methods across all datasets and evaluation metrics. Notably,
“LoadNet” achieves the highest accuracy, recall, F1 score, and
AUC values compared to the other methods. This indicates that
our approach excels in correctly predicting instances, capturing
positive instances, balancing precision and recall, and effectively
distinguishing between classes.The success of our proposedmethod
can be attributed to its integration of Time Convolutional Networks
(TCN), Gated Recurrent Units (GRU), and the Self-Attention
mechanism, as discussed earlier. TCN allows for capturing both
local and global features from time series data, GRU handles long-
term dependencies effectively, and the Self-Attention mechanism
enhances context understanding across different layers. Ourmethod
“LoadNet” demonstrates superior performance across multiple
datasets and evaluation metrics. Its ability to effectively capture
patterns, dependencies, and context in time series data makes it
well-suited for the load forecasting task. The integration of TCN,
GRU, and Self-Attention provides a robust foundation for accurate
and reliable load predictions. Our experimental results validate the
effectiveness of our proposed method in addressing the challenges
of load forecasting in the energy sector.

Table 3; Figure 6 presents the outcomes of our experimental
endeavors, juxtaposing our proposed “LoadNet” alongside various
other methods, all evaluated on diverse datasets. The comparison
hinges on crucial parameters, each briefly elucidated below:
Parameters (M): This signifies the count of learnable parameters,
expressed in millions. Flops (G): Representing the volume of
floating-point operations, measured in billions. Inference Time
(ms): This metric quantifies the duration the model requires to
generate predictions for a single data point during the inference
phase. Training Time (s):The temporal extent themodel necessitates
to complete the training process.

Our comparative analysis encompasses methods such as “Akht
et al.,” “Hafeez et al.,” “Li et al.,” “Meng et al.,” “Yang et al.,” and
“Alqu et al.,” all evaluated in conjunction with our proposed
“LoadNet.” Upon meticulous examination, a recurring pattern
emerges: “LoadNet” consistently exhibits superior performance
across a diverse spectrum of datasets and parameters. Notably,
“LoadNet” boasts the most parsimonious values in terms of
parameters, Flops, inference time, and training time, in stark
contrast to its counterparts. This phenomenon underscores the
remarkable computational efficiency that “LoadNet” affords,
all the while maintaining its prowess in predictive capabilities.
The ascendancy of “LoadNet” can be attributed to its adept
fusion of Time Convolutional Networks (TCN), Gated Recurrent
Units (GRU), and Self-Attention mechanisms. This harmonious
integration empowers “LoadNet” to capture intricate temporal
intricacies, dependencies, and contextual nuances resident in the
data. Our model “LoadNet” emerges as a formidable contender,
excelling across varied datasets and parameters. Its potent
amalgamation of advanced techniques—TCN, GRU, and Self-
Attention—forges a robust foundation, underpinning accurate and
resource-efficient load forecasting. The results garnered from our
meticulous experimentation reverberate the resounding supremacy
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FIGURE 5
Index comparison of different models on different data.

FIGURE 6
Index comparison of different models on different data.

of “LoadNet” in adroitly navigating the intricate landscape of load
prediction within the dynamic energy sector.

In Table 4; Figure 7, we present the outcomes of our ablation
experiments conducted using the GRU model. Diverse datasets
were employed, and key metrics such as Accuracy, Recall, F1
Score, and AUC were compared. Furthermore, our approach

was juxtaposed against other comparative methods, with the
underlying principles expounded upon. Drawing insights from
the comparative results, the following conclusions can be drawn.
Firstly, across the GEFCom dataset, the TCN model exhibits
superior performance, achieving the highest values in Accuracy,
Recall, F1 Score, and AUC. The ResNet50 model follows closely
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2 with commendable performance. In contrast, the CNN and RNN

models lag slightly behind. For the ENTSO-E dataset, the TCN
model once again secures the top position, showcasing remarkable
performance. The RNN model follows suit, while the CNN
and ResNet50 models exhibit relatively diminished performance.
With regards to the UK National Grid dataset, the TCN model
remains the optimal choice, displaying high Accuracy and AUC
values. The ResNet50 model also performs well on this dataset,
whereas the CNN and RNN models exhibit comparatively lower
performance. Lastly, on the Korea Power Exchange dataset, the
TCN model yet again demonstrates outstanding performance,
clinching the top spot. The ResNet50 and CNN models follow
closely, while the RNN model lags behind in performance. By
comparing the outcomes of various models across diverse datasets,
it becomes evident that the TCN model consistently shines,
boasting high Accuracy, Recall, F1 Score, and AUC values across
multiple datasets. This underscores the TCN model’s proficiency
in handling time series data, capturing essential temporal nuances
effectively. Additionally, the ResNet50 model performs impressively
on specific datasets, particularly the UK National Grid dataset.
Comparing our method to other benchmark techniques, our
approach stands out, achieving robust performance across most
scenarios. Rooted in the GRU model, our method leverages its
strong memory and sequential modeling capabilities to capture
pivotal features within time series data. Through meticulous
network design and optimization of the training process, our
method excels in predicting and classifying time series data.
Our ablation experiments validate the efficacy and superiority of
our proposed GRU-based method in tackling time series data.
Across multiple datasets, our approach consistently attains high
performance, outperforming comparative methods in prediction
and classification. These findings serve as valuable reference and
inspiration for future research and advancements within the realm
of time series data analysis.

In Table 5; Figure 8, we present the results obtained from our
ablation experiments utilizing the TCN model. Different datasets
were employed, and metrics such as Parameters, Flops (Floating-
Point Operations), Inference Time, and Training Time were
compared. Additionally, we conducted a comparative analysis of
our method against other benchmark approaches, while elucidating
the underlying principles of our method. Drawing insights from
the comparative outcomes, the following conclusions can be drawn.
Firstly, across the GEFCom dataset, the TCN model demonstrates
the lowest Parameters and Flops, resulting in relatively shorter
Inference and Training Times. In contrast, the CNN and ResNet50
models exhibit higher Parameters and Flops, leading to longer
Inference and Training Times. The RNN model lies between
TCN and CNN/ResNet50 in terms of Parameters and Flops. For
the ENTSO-E dataset, the TCN model maintains its edge with
the lowest Parameters and Flops, accompanied by the shortest
Inference and Training Times. The RNN model approaches the
TCNmodel in Parameters and Flops, but its Inference and Training
Times are longer. The CNN and ResNet50 models show relatively
diminished performance on this dataset. In the case of the UK
National Grid dataset, the TCN model continues to excel with
the lowest Parameters and Flops, resulting in shorter Inference
and Training Times. The ResNet50 model’s Parameters and Flops
are close to those of the TCN model, but its Inference and
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FIGURE 7
Ablation experiment of TCN module.

FIGURE 8
Ablation experiment of TCN module.

Training Times are longer. The CNN and RNN models exhibit
comparatively lower performance on this dataset. Lastly, on the
Korea Power Exchange dataset, the TCN model maintains its
advantage with the lowest Parameters and Flops, translating into
the shortest Inference and Training Times. While the ResNet50
and CNN models have Parameters and Flops comparable to the

TCN model, their Inference and Training Times are longer. The
RNN model performs poorly on this dataset. Comparing the
outcomes of different models across distinct datasets, it becomes
evident that the TCN model consistently possesses the smallest
Parameters and Flops, resulting in shorter Inference and Training
Times across multiple datasets. This signifies the TCN model’s

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1346398
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Liu and Hu 10.3389/fenrg.2024.1346398

T
A
B
LE

5
A
b
la
ti
o
n
ex

p
er
im

en
t
o
f
T
C
N
m
o
d
u
le
.

M
e
th
o
d

D
at
as
e
t

G
E
FC

o
m

D
at
as
e
t

E
N
T
SO

-E
D
at
as
e
t

U
K
N
at
io
n
al

G
ri
d

D
at
as
e
t

K
o
re
a
P
o
w
e
r
E
xc

h
an

g
e

D
at
as
e
t

P
ar
am

e
te
rs

(M
)

Fl
o
p
s
(G

)
In
fe
re
n
ce

T
im

e
(m

s)
Tr
ai
n
n
in
g

T
im

e
(s
)

P
ar
am

e
te
rs

(M
)

Fl
o
p
s
(G

)
In
fe
re
n
ce

T
im

e
(m

s)
Tr
ai
n
n
in
g

T
im

e
(s
)

P
ar
am

e
te
rs

(M
)

Fl
o
p
s
(G

)
In
fe
re
n
ce

T
im

e
(m

s)
Tr
ai
n
n
in
g

T
im

e
(s
)

P
ar
am

e
te
rs

(M
)

Fl
o
p
s
(G

)
In
fe
re
n
ce

T
im

e
(m

s)
Tr
ai
n
n
in
g

T
im

e
(s
)

C
N
N

38
3.
05

28
4.
42

39
8.
78

28
3.
32

25
6.
56

25
2.
06

25
0.
03

24
7.
08

28
8.
22

30
7.
58

25
1.
12

35
2.
08

21
6.
11

26
4.
92

37
0.
10

27
5.
12

RN
N

26
3.
83

33
7.
53

23
3.
83

36
6.
89

29
6.
26

31
3.
61

21
2.
46

29
5.
59

20
4.
01

28
0.
18

20
4.
72

33
3.
91

29
4.
81

39
5.
68

39
7.
72

27
9.
64

Re
sN

et
50

23
5.
88

27
7.
13

33
8.
65

31
8.
34

29
3.
30

29
9.
40

38
1.
43

36
0.
74

28
0.
33

26
6.
05

28
9.
40

24
8.
38

35
9.
08

29
8.
41

24
6.
31

27
8.
98

TC
N

12
7.
29

15
7.
94

19
8.
54

17
6.
42

10
9.
84

11
4.
83

11
4.
78

13
0.
30

17
3.
80

15
8.
60

14
7.
66

13
0.
84

14
6.
84

18
9.
50

11
3.
41

10
0.
65

efficiency in terms of model architecture and computational
attributes, makingx it well-suited for processing time series data.
Additionally, the ResNet50 model exhibits good performance on
specific datasets. In comparison with other benchmark methods,
our approach typically boasts smaller Parameters and Flops,
accompanied by shorter Inference and Training Times. Rooted
in the TCN model, our approach capitalizes on its convolutional
structure and parallel computation advantages for time series data
processing. Through methodical model design and optimization
of the training process, our approach attains performance while
reducing Parameters, Flops, and time consumption. Through the
analysis of ablation experiments, we validate the efficacy and
superiority of our proposed TCN-based method in efficiently
handling time series data. Across multiple datasets, our approach
consistently demonstrates smaller Parameters and Flops, leading
to shorter Inference and Training Times. In comparison to other
benchmarkmethods, our approach showcases heightened efficiency
and performance in the realm of time series data analysis. These
findings serve as valuable reference and inspiration for future
research and advancements within the domain of time series
data analysis.

4 Summary and discussion

This study proposes an innovative approach named LoadNet
for integrating Energy Storage Systems (ESS) in the operation
of power systems. LoadNet combines the fusion of Temporal
Convolutional Networks (TCN) and Gated Recurrent Units
(GRU) models, along with the introduction of self-attention
mechanism, to address the challenges in ESS integration.
Through comprehensive experimental evaluations on real power
system datasets, LoadNet demonstrates significant improvements
in enhancing the efficiency and reliability of power system
operations. In this study, we utilized multiple power system
datasets including GEFCom, ENTSO-E, UK National Grid,
and Korea Power Exchange datasets. These datasets cover
load data at different geographical regions and time scales to
evaluate the performance of the LoadNet model in various
environments. Traditional power systems face challenges in
integrating renewable energy sources and energy storage systems.
LoadNet aims to enhance ESS management and utilization by
accurately modeling the dynamic behavior of power systems
through capturing complex temporal dependencies in time series
data. LoadNet provides an effective approach to address ESS
integration issues by integrating TCN and GRU models and
introducing self-attention mechanism. The fusion of TCN-GRU
models better captures short-term and long-term dependencies,
while the self-attention mechanism helps the model focus
on key information, supporting optimized ESS operational
decisions. We conducted experimental evaluations on multiple
real power system datasets. Through the LoadNet model, we could
more accurately predict load and renewable energy generation,
and optimize energy storage system charging and discharging
schedules. Experimental results demonstrate that LoadNet
significantly improves the efficiency and reliability of power
system operations, facilitating seamless integration of renewable
energy sources.
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Despite achieving significant improvements in ESS integration,
LoadNet still has some limitations and areas for improvement.
Model Complexity: LoadNet combines multiple models and
mechanisms, leading to increased complexity. Future research can
explore methods to simplify the model structure and parameters to
enhance its practicality and interpretability. Dataset Limitations:The
datasets used in this study cover multiple regions and time scales
but still have certain limitations. Further research could consider
using more diverse and extensive datasets to more comprehensively
evaluate LoadNet’s performance in different environments. LoadNet
represents a significant advancement in the field of power system
management. Future research can further improve the LoadNet
model and apply it to larger-scale and more complex power
systems. Additionally, exploring the extension of LoadNet to other
related areas such as power market operations and grid planning
can support the transition towards a sustainable and renewable
energy future.

In conclusion, LoadNet enhances the efficiency and reliability
of power system operations by integrating multiple models and
mechanisms. Despite some areas for improvement, LoadNet
provides a robust solution for power system management and
renewable energy integration, laying a solid foundation for
future research.
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