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Accurate wind power forecasting is essential for both optimal grid scheduling
and the massive absorption of wind power into the grid. However, the
continuous changes in the contribution of various meteorological features
to the forecasting of wind power output under different time or weather
conditions, and the overlapping of wind power sequence cycles, make
forecasting challenging. To address these problems, a short-term wind power
forecasting model is established that integrates a gated recurrent unit (GRU)
network with a dual attention mechanism (DAM). To compute the contributions
of different features in real time, historical wind power data and meteorological
information are first extracted using a feature attention mechanism (FAM). The
feature sequences collected by the FAM are then used by the GRU network for
preliminary forecasting. Subsequently, one-dimensional convolution employing
several distinct convolution kernels is used to filter the GRU outputs. In addition,
a multi-head time attention mechanism (MHTAM) is proposed and a Gaussian
bias is introduced to assign different weights to different time steps of each
modality. The final forecast results are produced by combining the outputs of the
MHTAM. The results of the simulation experiment show that for 5-h, 10-h, and
20-h short-term wind power forecasting, the establishedÂ DAM-GRU model
performs better than comparative models on the basis of Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), R-squared (R2), Square sum error (SSE),
Mean absolute percentile error (MAPE), and Relative root mean square error
(RRMSE) index.

KEYWORDS

wind power forecasting, feature attention mechanism, one-dimensional convolution,
multi-head temporal attention mechanism, GRU

1 Introduction

The development and adoption of clean energy have a positive impact on
protecting the environment, maintaining ecological balance, and reducing dependence
on finite natural resources (Giebel and Kariniotakis 2017; Wang et al., 2021). Wind
power, as a clean energy source, is steadily gaining prominence in the power grid.
To meet the growing demand for electricity and achieve renewable energy goals,
an increasing number of wind power projects worldwide are being connected
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to the electrical grid (Wang et al., 2022). However, the high
unpredictability and volatility of wind energy can cause fluctuations
in the frequency and voltage of the power system, which can be
detrimental to the stability and quality of power.This simultaneously
creates serious difficulties in scheduling and optimizing the grid
(Duan et al., 2021).

The medium and long-term wind power forecasting is mainly
to predict the annual and monthly power generation of wind
farms to formulate power generation expectations and maintenance
plans. Generally speaking, the results of short-term wind power
forecasting have higher credibility than those of medium and
long-term forecasting, so they can provide a good basis for
grid scheduling, thus improving the ability of clean energy
consumption. Therefore, improving the accuracy of wind power
forecasting can provide an effective basis for grid scheduling, which
is of great importance for the integration of large-scale wind
power into the grid (Altan et al., 2021; Couto and Estanqueiro
2022).

There are two main approaches to wind power forecasting:
statistical methods and methods based on physical principles.
Physical methods use atmospheric science principles and
meteorological data to estimate wind energy (Tian 2020). These
physical methods are often employed for medium to long-term
wind power forecasting, but short-term wind power forecasting
heavily relies on conventional statistical approaches, such as
exponential smoothing and time series analysis methods like the
ARIMA model. These techniques generate short-term forecasts
by analysing statistical features found in historical wind power
data. However, wind power fluctuates a lot, and conventional
models have a hard time explaining these intricate patterns
(Liu et al., 2022). AI technologies, with deep learning as a prominent
example, possess strong pattern recognition and data processing
capabilities. Large-scale meteorological data and historical wind
power generation data can be easily handled by them, improving
the precision and dependability of power forecasting (Yang et al.,
2021; Santhosh et al., 2018). Currently, ANN (Zhang et al., 2020),
RNN Huang et al., 2021), and SVM (Tian and Chen, 2021a)
are widely applied in time series forecasting tasks. Improved
versions of RNN models are LSTM and GRU. They have achieved
higher forecasting accuracy by addressing the issues of vanishing
gradients and exploding gradients (Tian and Chen 2021b). LSTM
is suitable for handling long-term dependencies but has a larger
number of parameters, while GRU models are easier to train and
achieve similar forecasting performance with fewer parameters
(Liu et al., 2021; Saini et al., 2020). Therefore, in recent years,
there has been an increasing amount of research on topics related
to wind power forecasting using the GRU neural network as a
basic model.

In Lin et al. (2021), gray correlation analysis was employed to
select similar days. Subsequently, the data was inputted into a GRU
model for wind power forecasting. This approach, compared to
models like Autoregressive Integrated Moving Average (ARIMA),
enhances forecasting accuracy. However, the method ignores the
contribution of meteorological features in the historical data to the
wind power output for the time period to be forecasted. In Xiao et al.
(2023), the authors initially employWeighted Principal Component
Analysis (WPCA) with feature-weighted coefficients to reduce
the dimensionality of wind power features. Subsequently, a GRU

network optimized using the PSO algorithm is used for forecasting.
The study considered the contribution of meteorological features to
forecasts, but the contribution of individual meteorological features
to forecasts varied over time and under different meteorological
conditions. This shortcoming is remedied by Huang et al. (2023),
the authors consider the spatiotemporal correlation among adjacent
wind turbines. They initially reconstructed wind power data from
24 surrounding wind turbines and organized it into a three-
dimensional matrix. They then use a combination of three-
dimensional CNN and GRU models for forecasting. Pre-processing
meteorological information and using historical power data to train
the GRU network can improve forecasting accuracy by optimising
the model to better capture the relationship between power and
meteorology (Farah et al., 2022; Sun et al., 2023). In addition to the
processing and extracting of meteorological features, it is equally
important to consider sequence autocorrelation from the time series
perspective. There are also related scholars conducting research in
this area.

Attentional mechanisms have breathed new life into the field
of natural language processing and have been widely used in
time series forecasting tasks, where they have been shown to
help forecasting models extract key information (Zhang et al.
2021). In Yang and Zhang (2021), the authors first use a Deep
Attention Convolutional Recurrent Network (DACRN) to extract
the features, then reconstruct the features using the developed
auto-update memory module, then pattern cluster the feature
reconstruction results using the K-shape clustering algorithm, and
finally use the final prediction layer to predict the wind speed
and experimentally validate the sophistication of the developed
model. In Chi and Yang (2023), the authors utilized Wavelet
Transform (WT) to eliminate noise from the sample data.
Subsequently, they employed a combination of Temporal Attention
Mechanism and Bidirectional Gated Recurrent Units (BiGRU) to
model the data. Finally, the model’s performance was improved
by utilizing a Time Convolutional Neural Network (TCN) to
extract high-level temporal data. Trials have shown that this
strategy improves forecasting accuracy. It is worth noting that the
above two studies optimise and refine the baseline forecasting
model in terms of meteorological features and time-series features
respectively. However, the authors neglected the following three
issues: first, the feature processing of both meteorological and
time-series aspects are not well combined; second, the softmax
function in the attention mechanism can achieve this effect well,
but the original attention mechanism lacks the distinction of
the relative position of the data in the time-series, which may
require us to improve it when we use it for time-series feature
extraction; Thirdly, it is possible that a single model could face
some problems in extracting complex sequences directly, but data
decomposition strategies were not considered for inclusion in
the model.

Wind power data exhibits strong volatility, and achieving
satisfactory accuracy through direct forecasting can be challenging.
Therefore, decomposing wind power data and modeling forecasts
separately for each component can effectively address this issue
(Sun and Zhao 2020). In He and Wang (2021), the authors
employ EEMD to decompose wind power time series into easily
analyzable subseries. The LASSO-QRNN model is then used for
forecasting. Finally, researchers use the Kernel Density Estimation
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(KDE) method for post-processing to obtain more accurate short-
term wind power forecasting. In Abdoos (2016), the authors used
Variable Modal Decomposition (VMD) to decompose the wind
power series into differentmodes, and selected features usingGram-
Schmidt Orthogonalisation (GSO), then used Extreme Learning
Machine (ELM) to forecast the power of each mode, and finally
superimposed the forecast results of each mode to obtain the final
forecasting results. The data decomposition strategy can reduce the
volatility of the time series and reduce the difficulty of forecasting
for each model (Tian et al., 2020). However, in this strategy, the
frequency of each modality is different, and it is difficult for
the model to effectively integrate the meteorological features and
better balance the importance of meteorological features and time
series features.

Based on the above research results, this paper combines the
advantages of the attention mechanism and the GRU network
and improves them for the temporal attention mechanism, while
using the idea of time series decomposition to better combine
the two, and proposes a novel short-term wind power forecasting
method which integrates the dual attention mechanism and GRU
network. This method selects features in actual time by inputting
power data and historical weather information into a feature
attention layer. A GRU network is then used to make an initial
forecasting. The output of the GRU network is then filtered using a
number of one-dimensional convolutions with different kernel sizes.
Ultimately, a MHTAM is used to assign weights to different time
steps of each mode in a differential manner, and then the outputs
are overlaid corresponding to the time steps to obtain the final
forecast results.

In detail, the main contributions of the DAM-GRU model
proposed in this paper to the study of short-term wind power
forecasting are as follows:

1. Introduction of a feature attention mechanism that uses
attention mechanisms to selectively extract historical
meteorological or power features with higher contributions
to the target forecasting time, while suppressing
irrelevant features.

2. The model can better understand the characteristics and
patterns of the wind power generation sequence by breaking
it down and using one-dimensional convolution filtering
with varying kernel sizes. This reduces the complexity of
the sequence.

3. Introduction of a multi-head temporal attention mechanism
to allocate varying weights to data at different time
steps from multiple channels. This mechanism allows
the model to simultaneously process information from
different perspectives, rather than being confined to a single
viewpoint, enabling the model to have a more comprehensive
understanding of the temporal sequence structure.

The remaining portions of the paper are arranged as follows.The
GRUmodel, the FAM, and theMHTAMare introduced in Section 2.
The suggested integrated structure, the specific procedure, and the
assessment metrics are all provided in Section 3. Comparing the
merged model with other models and the model parameter settings,
Section 4 examines the experimental outcomes. The study is finally
summarized in Section 5.

2 Methods

2.1 Feature attention mechanism

Feature selection in wind power forecasting is a crucial step
for improving model performance Meng et al. (2022). Correlation
analysis methods like Pearson correlation coefficient can assist in
selecting meteorological features to enhance forecasting accuracy
(Liu et al., 2017). However, the Pearson correlation coefficient
method overlooks the changing contributions of meteorological
features to forecasts over time.The presence of the softmax function
gives the attention mechanism excellent time selection capabilities.
We introduce a feature attention mechanism to extract crucial
features at different time points in real-time, while suppressing
irrelevant features. This improves the adaptability and accuracy
of the model. Figure 1 depicts the basic idea behind the feature
attention method used in this investigation.

The feature attention mechanism first calculates the similarity
between wind power and meteorological features at the same time
point to obtain attention scores for each element. Taking time step t
as an example, the calculation of its attention score is shown in Eq. 1.

et = ve tanh(weut + be) (1)

where ut = [u
(1)
t ,u
(2)
t ,u
(3)
t ,u
(4)
t ,u
(5)
t ]

T
represents the feature input

vector at time step t, which includes five features for that moment:
power, wind speed, wind direction, temperature, and air density; ve
and we is the weight. be is the bias term, and et encapsulates the
attention score information for the five features at time step t.

FIGURE 1
The feature attention mechanism schematic diagram.
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Eq. 2 displays the probability distribution for the corresponding
attention scores that are calculated using the softmax function.

βmt =
exp(emt )
5

∑
i=1

exp(eit)

(2)

where βmt contains the importance degree corresponding to the m-
th feature at the moment t. Finally, based on this importance degree
and the input features, the feature attention output st is obtained, as
shown in Eq. 3.

st =
5

∑
i=1

βit (wsu
i
t) (3)

2.2 Multi-head temporal attention
mechanism

The influence of historical data with different values and
positions on the forecasting point varies. Attention mechanisms
can capture these relationships. However, standard self-attention
mechanisms lack control over the positional relationships in
time series data. This results in assigning similar importance
to historical data with different relative positions (Shih et al.,
2019). To address these issues, this paper adopts the method
proposed in reference (Yang et al., 2018) with some modifications.
One of the modifications includes incorporating a Gaussian
bias into the attention mechanism. This modification ensures
that varying weights are assigned to data for each time steps.
The Gaussian bias assigns different weights to attention scores
for different positions, following a Gaussian distribution. The
center position of the Gaussian function is automatically
adjusted during parameter learning to focus on the region that
is highly influenced by historical information for the current
forecasting value.

The temporal attention mechanism is illustrated in Figure 2,
with the input being the one-dimensional convolutional output
sequence h′ = [h′1. ⋅ ⋅⋅,h

′
t−1,h
′
t ]
T. The calculation of attention scores

in the temporal attention layer is described in Eq. 4.

c = Vc tanh(Wch
′ + bc) (4)

where Vc and Wc are weight matrices; bc represents the bias term,
and the attention score c = [c1,⋯ct−1,ct]T.

To achieve differential weight allocation across different time
steps, Gaussian bias and attention scores are jointly input into the
softmax function to compute attention probabilities αt, as shown in
Eq. 5.

αt = so ftmax(wαct +Gt) (5)

where wα represents a weight factor; αt represents the probability
of the attention score at time step t, and Gt represents the Gaussian
bias at time step t. Gt reflects the degree of closeness between
the current moment and the central position moment, and its
calculation method is as follows:

Gt = −
(t−Qt)

2

2σ2
(6)

FIGURE 2
The temporal attention mechanism schematic diagram.

[

[

Qt

D
]

]
= I ⋅ sigmoid([

[

qt
z
]

]
) (7)

qt = vq tanh(wqut) (8)

z = vz tanh(wzK̄) (9)

whereQt represents the center position at time step t, and its value is
ultimately determined based on the parameter ut, which is learned
based on the value of t; σ is set to D

2
, where D is the window size for

this mode, each mode has a separate window to define its window
range, with a larger value indicating a longer sequence related to
the current time step; I is a real number that ranges from 0 to the
input sequence’s length; vq, vz,wq andwz are weight coefficients, and
z is the scalar factor for selecting the window for this mode; K̄ in
the original reference represents the key-value relationship between
semantics. Here, it is set to be the same as the kernel size k of the
one-dimensional convolution. The underlying idea is that if a mode
has a larger convolution kernel, its windowwill be larger.This allows
different sequences to have different linear characteristics, aiding the
model in capturing trend components of time series data.

Eq. 10 illustrates how the output of the temporal attention layer
is finally calculated based on the probability αi of the temporal
attention scores.

yt
′ =∑

i=1

tαi (wy′hi
′) (10)

A single temporal attention mechanism is responsible for
capturing the temporal weights of a single channel, while the
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FIGURE 3
Architecture of multi-head temporal attention mechanism.

multi-head temporal attention mechanism simply combines them.
Applying one-dimensional convolutions with multiple diverse
kernels to filter the GRU network’s output is necessary to
guarantee that each temporal attention mechanism can extract
distinct patterns of temporal information. When the length of the
convolution kernel is k, the convolution formula is as shown in
Eq. 11.

hi
′ = ReLu( ∑

l∈MH

wlhil + bl) (11)

where h′i represents the ith element of the feature map; ReLu (⋅)
represents the activation function. MH represents the spatial extent
of the convolution kernel; wl is the corresponding weight; hil
represents the lth element in the input data with i as the center;
bl is the bias of the convolution kernel. After the convolution
output undergoes feature extraction through the temporal attention
mechanism, the results are summed up with step-wise weighting, as
shown in Eq. 12.

pt =
H

∑
i=1

wpy
′
i(t) (12)

where the projected output of the model at time step t is denoted
by pt; The output of the ith temporal attention head at time step t is
denoted by y′i(t); wp corresponds to the weight associated with it. H
represents the total number of attention heads.

Figure 3 shows the details of the implementation of the multi-
head temporal attention mechanism.

2.3 GRU

Compared to the complex LSTM, the GRU has a simpler
structure and higher computational efficiency. In this paper, the

FIGURE 4
Internal structure of GRU unit.

GRU network is chosen as the main component to construct the
model. The feature selection and forgetting functions of GRU are
implemented by only reset gates and update gates. GRU is relatively
more efficient in terms of computational efficiency and number of
parameters due to its simple structure. The update gate determines
how much of the past information is retained, and the parameter
values of the update gate are learned through training thus allowing
the GRU unit to dynamically capture long-term dependencies in the
sequence.The reset gate controls the inflow of historical information
into the candidate hidden state and thus determines whether to
disregard past information (van Heerden et al., 2022). Its internal
structure is depicted in Figure 4.

Takingmoment t as an example, the inputs to the gated loop unit
are st and the hidden state ht−1 from the previousmoment. Inputs are
processed to calculate the outputs of the update gate and reset gate,
which are represented by Eqs 13, 14.

rt = σ(wsrst +whrht−1) (13)

zt = σ(wszst +whzht−1) (14)

where wsr, whr, wszand whz represent weight terms; rt is the output of
the reset gate, and zt is the output of the update gate; σ represents the
sigmoid function.

The reset gate is used to determine the significance of the output
from the previous time step. It combines this information with the
current input to calculate the current hidden state, as shown in
Eq. 15.

̃ht = tanh(wshst +whhht−1 ⊗ rt) (15)

where wsh and whh represent the weight terms for the importance at
time step t and time step t− 1, respectively. ̃ht signifies the hidden
state at time step t, and ⊗ denotes the Hadamard product.

Eq. 16 is the final calculation used to determine the output of the
GRU at the current time.

ht = ̃ht ⊗ zt + ht−1 ⊗ (1− zt) (16)
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FIGURE 5
DAM-GRU model architecture.

According to Eq. 16, when the update gate output zt approaches
0, the output of the GRU unit is mainly determined by the output
of the previous time step. Conversely, when zt approaches 1, it is
primarily determined by the hidden state of the current time step
(Liu et al., 2023).

3 Model design

3.1 DAM-GRU model calculation process

Wind power is subject to weather conditions that are highly
random and volatile. In order to decompose and predict wind power
generation while considering climate features comprehensively and
avoiding situations where historical information is insufficiently
learned, such as forecasting lag, we establish a forecastingmodel that
combines feature-based temporal dual attention mechanisms with

TABLE 1 Influence of the number of temporal attention heads on error.

Number of
temporal
attention
heads (H)

2 3 4 5 6

RMSE 1.2124 0.9891 0.6809 0.9023 0.9201

MAE 0.8789 0.7212 0.4866 0.6187 0.6512

R2 0.9893 0.9919 0.9939 0.9935 0.9927

GRU networks. The complete structure of the model is depicted in
Figure 5.

The DAM-GRU model-based short-term wind power
forecasting procedure is as follows:
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FIGURE 6
5-h, 10-h and 20-h forecast curves and box plots for 5 models including GRU, GRU-TAM, FAM-GRU, GRU-MHTAM, and DAM-GRU.

1) Normalize the power, wind speed, temperature, and air
density features using Eq. 17.

unorm =
u− umin

umax − umin
(17)

where unorm represents the normalized result. The text represents

the values of the four mentioned feature sequences. The
maximum and minimum values in the raw data are denoted
by umax and umin, respectively. Normalize the wind direction
feature using Eq. 18.

u(3)norm = sin(u(3)) (18)
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TABLE 2 Comparison of predictive performance with different attention mechanisms.

Forecasting horizon Model Evaluation metrics

RMSE MAE R2 SSE MAPE RRMSE

20 Steps (5 h)

GRU 2.2720 1.8029 0.9313 103.2357 25.2024 0.3378

GRU-TAM 1.6755 1.4691 0.9626 56.1443 20.3853 0.2546

FAM-GRU 1.4586 1.2191 0.9717 42.5488 16.8418 0.2235

GRU-MHTAM 0.7880 0.6408 0.9919 12.4186 9.4291 0.1201

DAM-GRU 0.6809 0.4866 0.9939 9.2734 5.5039 0.0774

40 Steps (10 h)

GRU 3.2978 2.5479 0.8973 435.0079 16.3893 0.2072

GRU-TAM 2.4142 1.9265 0.9450 233.1439 12.3113 0.1529

FAM-GRU 2.0030 1.6310 0.9621 160.4805 11.2943 0.1503

GRU-MHTAM 1.1418 0.9254 0.9877 52.1516 7.4974 0.1030

DAM-GRU 0.8822 0.6644 0.9926 31.1283 6.7024 0.0856

80 Steps (20 h)

GRU 4.1980 3.2628 0.8140 1409.8770 21.7050 0.3153

GRU-TAM 3.1024 2.4259 0.8984 769.9804 14.0641 0.1870

FAM-GRU 2.7326 2.1432 0.9212 597.3869 12.1121 0.1557

GRU-MHTAM 1.8812 1.4849 0.9626 283.1256 8.8778 0.1149

DAM-GRU 1.2521 1.0003 0.9835 125.4133 7.5521 0.1062

where u(3)norm represents the normalized result of the wind direction
feature, and u(3) represents the wind direction feature sequence.

2) The FAM assigns different weights to meteorological features
based on different weather conditions. This allows it to dynamically
extract key features in real time, improving the forecasting process.

3) Making initial predictions using a two-layer GRU model
based on the extracted features.

4) One-dimensional convolutionalmodels withH convolutional
kernels of different sizes are used to apply convolutional
filtering operations to the initial forecasting results of the GRU
model. This is done to extract the timing patterns of wind
power for different time series and reduce the complexity of
individual timings.

5) In order to avoid forecasting lag, assign temporal feature
weights to the H distinct periodic patterns independently using a
multi-head temporal attention technique.

6) Combine the predictions of each sub-sequence by performing
a weighted summation. Reverse the normalization process to obtain
the final forecast result.

3.2 Evaluation metrics

In order to statistically assess the accuracy of the wind power
forecasting model, we compare RMSE, MAE, R2 SSE, MAPE, and

RRMSE using the following formulas:

RMSE = √ 1
n

n

∑
i=1
(p̂i − pi)

2 (19)

MAE = 1
n

n

∑
i=1
|p̂i − pi| (20)

R2 = 1−

n

∑
i=1
(p̂i − pi)

2

n

∑
i=1
(p̂i − p̄)

2
(21)

SSE =
n

∑
i=1
(p̂i − pi)

2 (22)

MAPE = 1
n

n

∑
i=1
|
p̂i − pi
p̂i
| × 100% (23)

RRMSE = √ 1
n

n

∑
i=1
(
p̂i − pi
p̂i
)
2

(24)

where p̄ denotes the average value of the actual value sequence,
n represents the number of forecast steps, pi and p̂i represent the
predicted and actual values for the ith sample point, respectively.
Smaller RMSE,MAE SSE,MAPE, andRRMSE indicate bettermodel
performance, while an R2 closer to 1 indicates higher accuracy (Tian
2021; Tian et al. 2021).
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TABLE 3 Comparison of training time and forecasting time with
different attention mechanisms.

Forecasting
horizon

Model Training
time (s)

Forecast
time (ms)

20 Steps (5 h)

GRU 120 16

GRU-TAM 135 31

FAM-GRU 187 84

GRU-MHTAM 248 199

DAM-GRU 304 262

40 Steps (10 h)

GRU 122 17

GRU-TAM 146 34

FAM-GRU 199 83

GRU-MHTAM 253 223

DAM-GRU 329 264

80 Steps (20 h)

GRU 127 22

GRU-TAM 171 42

FAM-GRU 206 97

GRU-MHTAM 289 251

DAM-GRU 368 277

4 Case study

The experiment was conducted on a hardware platform
consisting of a GeForce GTX 1050Ti GPU with 2× 8 GB DDR4
memory. The programming language used was Python 3.7, and
the model was constructed using the TensorFlow 2.1 deep
learning framework.

In order to validate the performance of the proposed model,
power andmeteorological data collected fromawind farm located in
Inner Mongolia, China, were used for the experiments. The dataset
covers the time range from January 1 to 30 June 2020, and the
data is sampled every 15 min, resulting in a total of 17,568 data
points. Where 14,000 data points are allocated for the training set,
250 data points are allocated for validation, and 3,318 data points
are allocated for testing. The installed capacity of the wind farm is
100 MW. Each epoch consists of 80 batches, with a training batch
size of 100 and a learning rate of 0.001. The training phase utilizes
the Adam optimizer.

4.1 Model parameter configuration

The forecasting model employs feature sequences of length
30 steps as input, meaning that wind power for future n time
steps is predicted using the previous 30 steps of features. The
number of FAM heads in the model is equal to the number of

input time steps. A double-layer GRU network is employed for the
preliminary forecasting of wind power, with each layer containing
64 GRU units. The choice of attention heads is crucial, and in this
case, parameter tuning experiments are conducted under 20 steps
forecasting horizon. The number of attention heads, denoted as H,
is tested with values of 2, 3, 4, 5, and 6, and the fluctuation of errors
under different attention head numbers is shown in Table 1. The
minimum error is achieved when H is set to 4. The convolutional
kernels corresponding to the 4 attention heads have sizes of 3× 1,
5× 1, 7× 1, and 9× 1, with a stride of 1, the edge padding strategy
is set to “same”, and the activation function is set to “ReLU”. The
number of time steps in which the model outputs its forecasts is the
number of output time steps for each TAM.

4.2 Validation of model effectiveness

In this paper, three core components of the DAM-GRU model
are the FAM, the GRU network, and the MHTAM. In order to
emphasize the diversity of each time feature, a Gaussian bias is added
to the multi-head time attention module. To evaluate the influence
of each component of the DAM-GRU model on forecasting
performance, this section compares the model with other models
that use the same dataset and GRU network parameters. The
DAM-GRU models compared include the GRU model, GRU-TAM
model, FAM-GRU model, and GRU-MHTAM model. The GRU-
TAM model combines a temporal attention mechanism with a
single head within the GRU network. To ensure a fair comparison
in the experiments, a 3× 1 convolutional kernel is used to filter
the initial forecasts made by the GRU. The FAM-GRU model
combines the FAMwith theGRUnetwork, while theGRU-MHTAM
model combines the GRU network with the multi-head temporal
attention mechanism. The forecasting horizons are categorized into
three levels: 20 steps (5-h), 40 steps (10-h), and 80 steps (20-h).
Correspondingly, the lengths of the historical sequences are 30 steps,
60 steps, and 120 steps. This means that the model uses historical
input sequences of 30, 60, and 120 steps to forecast power values for
20, 40, and 80 steps into the future, respectively.

Figure 6 show the comparison of forecast curves and box plots
for five models at forecasting durations of 5-h, 10-h, and 20-
h. All three sets of forecast curves show that the single GRU
forecast model has a significant lag. This lag is attributed to its
limited ability to efficiently extract highly correlated meteorological
and time series features. The inclusion of the FAM and single-
head temporal attention mechanism results in varying degrees of
improvement, as evident in three box plots.The incorporation of the
MHTAM leads to a significant enhancement in model performance.
The proposed model in this paper demonstrates excellent feature
extraction capabilities, making it adaptable to the rapid fluctuations
in wind power. Overall, it demonstrates a significant decrease in lag
and improved alignment with the observed values compared to the
other models. Overall, the errors in model forecasts increase rapidly
with increasing forecast length, and certain models have varying
degrees; of outlier forecasts. This implies that the models require
additional features to account for variations in the meteorological
data as the forecast time horizon increases. The forecasting process
becomes more complex and challenging due to various external
factors that can impact the output of wind power.
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FIGURE 7
5-h, 10-h and 20-h forecast curves and box plots for 4 models including CNN-GRU, VMD-CNN-GRU, MTTFA-LSTM, and DAM-GRU.

Table 2 shows a comparison of the predictive performance
for different attention mechanisms at 5-h, 10-h, and 20-h. From
the table, it can be observed that the forecasting errors of all
models increase rapidly as the forecasting steps increase, while
the goodness-of-fit indicator, the coefficient of determination (R2),
decreases. This suggests that longer-term sequences exhibit weaker

regularity and higher complexity, making it more challenging for
models to extract features.Theperformance of the forecastingmodel
can be improved by incorporating temporal and feature attention
mechanisms. The model can more easily adjust to the intricacy
of wind power sequences because of these attention mechanisms,
which provide it the flexibility to focus on various attributes and
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TABLE 4 Comparison of multi-stage forecasting errors with other classic GRU-based models.

Forecasting horizon Model Evaluation metrics

RMSE MAE R2 SSE MAPE/% RRMSE

20 Steps (5 h)

CNN-GRU 0.7893 0.6405 0.9919 12.4586 7.6498 0.0982

VMD-CNN-GRU 0.7584 0.6008 0.9925 11.5044 7.6123 0.0946

MTTFA-LSTM 0.7246 0.5998 0.9931 10.5018 6.9354 0.0873

DAM-GRU 0.6809 0.4866 0.9939 9.2734 5.5039 0.0774

40 Steps (10 h)

CNN-GRU 1.2375 0.9935 0.9855 61.2598 10.3721 0.1887

VMD-CNN-GRU 1.1479 0.9492 0.9876 52.7060 8.9672 0.1428

MTTFA-LSTM 1.0216 0.8394 0.9901 41.7429 7.0038 0.0923

DAM-GRU 0.8822 0.6644 0.9926 31.1283 6.7024 0.0856

80 Steps (20 h)

CNN-GRU 1.7151 1.4209 0.9690 235.3202 12.2857 0.2571

VMD-CNN-GRU 1.5679 1.3076 0.9740 196.6564 1.1592 0.2058

MTTFA-LSTM 1.4042 1.1069 0.9792 157.7458 8.8852 0.1444

DAM-GRU 1.2521 1.0003 0.9835 125.4133 7.5511 0.1062

TABLE 5 Comparison of multi-stage training time and forecasting time
with other classic GRU-based models.

Forecasting
horizon

Model Training
time (s)

Forecast
time (ms)

20 Steps (5 h)

CNN-GRU 188 116

VMD-CNN-GRU 253 182

MTTFA-LSTM 286 219

DAM-GRU 304 262

40 Steps (10 h)

CNN-GRU 206 117

VMD-CNN-GRU 281 196

MTTFA-LSTM 305 235

DAM-GRU 329 264

80 Steps (20 h)

CNN-GRU 231 123

VMD-CNN-GRU 297 210

MTTFA-LSTM 330 248

DAM-GRU 368 277

time steps. Taking the 20-h forecast results as an example, the
GRU-TAM model reduced the RMSE, MAE, SSE, MAPE, and
RRMSE error metrics by 26.3%, 18.5%, 45.6%, 19.1%, and 24.6%

respectively, and increased the R2 by 3.4% compared to the GRU
model. On the other hand, the FAM-GRU model reduced the
RMSE, MAE, SSE, MAPE, and RRMSE errors metrics by 35.8%,
32.4%, 58.8%, 25.2%, and 33.8% respectively, and increased the
R2 by 4.3% compared to the GRU model. This demonstrates the
necessity of adding attention mechanisms to help the GRU model
extract features and temporal information. The GRU-MHTAM
model, compared to the GRU-TAM model, reduces the RMSE,
MAE, SSE, MAPE, and RRMSE error metrics by 53.0%, 56.4%,
78.9%, 53.7%, and 52.8% respectively, and increases R2 by 3.0%.
This suggests that the MHTAM can be effective in dealing with
time series features. In this experiment, the parts of the DAM-GRU
model are split and tested for comparison, which proves the validity
of the model design method from two perspectives: feature and
time series, and demonstrates that the DAM-GRU model has good
forecasting performance.

Table 3 shows a comparison of the time required for training
and forecasting for the five models. The time required for training
and prediction is not strictly increasing or decreasing due to
complex factors such as GPU performance and initial parameters
within the model, but generally shows some degree of regularity.
From the table, it can be seen that the sum of training time for
FAM-GRU and GRU-MHTAM is similar to the sum of training
time for GRU and DAM-GRU, and the forecast time has the
same pattern, which is consistent with the number of parameters
of the model. As the number of forecast steps increases, the
time required for training and forecasting may also increase, due
to the fact that an increase in the number of forecast steps
corresponds to an increase in the number of units in the input layer
of the model.
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FIGURE 8
5-h, 10-h and 20-h forecast curves and box plots for 5 models including ARMA, RF, SVM, BP, and DAM-GRU.

4.3 Forecasting performance tests

In order to test whether the proposed DAM-GRU model has
advanced prediction performance, we select CNN-GRU (Gao et al.,
2023), VMD-CNN-GRU (Zhao et al. 2023), and MTTFA-GRU
(Liu and Zhou, 2024) under the same data set algorithms as

comparison models for the experiment. Among them, the number
of input features of CNN-GRU and MTTFA-LSTM models is
5, the VMD-CNN-GRU model uses VMD decomposition to
decompose the wind speed into four submodules, and then
combines them with the wind power series using the CNN-
GRU model to predict. To ensure the fairness of the experiments,
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TABLE 6 Comparison of multi-stage forecasting errors with traditional models.

Forecasting horizon Model Evaluation metrics

RMSE MAE R2 SSE MAPE/% RRMSE

20 Steps (5 h)

ARMA 2.4292 1.9001 0.9214 118.0191 24.7752 0.3015

RF 2.4164 1.8993 0.9223 116.7826 23.0981 0.2986

SVM 2.1266 1.8459 0.9398 90.4450 22.1179 0.2698

BP 1.9926 1.6608 0.9471 79.4128 19.1813 0.2324

DAM-GRU 0.6809 0.4866 0.9939 9.2734 5.5039 0.0774

40 Steps (10 h)

ARMA 3.4827 2.9137 0.8855 485.1629 29.7151 0.4426

RF 3.2436 2.6804 0.8871 420.8490 24.0143 0.3536

SVM 3.0249 2.6165 0.9136 366.0060 23.7110 0.3296

BP 2.5323 2.0402 0.9395 256.4942 17.2039 0.2317

DAM-GRU 0.8822 0.6644 0.9926 31.1283 6.7024 0.0856

80 Steps (20 h)

ARMA 4.5361 3.5865 0.7828 1642.1259 19.7657 0.2577

RF 4.2578 3.3195 0.8086 1450.3125 19.1700 0.2493

SVM 3.7247 2.9615 0.8536 1109.8757 16.7168 0.2105

BP 3.3629 2.7205 0.8806 904.7498 15.6823 0.1988

DAM-GRU 1.2521 1.0003 0.9835 125.4133 7.5511 0.1062

the training batch size and iteration number of the comparison
models are the same as the models in this paper, using the
same settings.

At forecast horizons of 5 hours, 10 hours, and 20 hours, Figure 7
compare the suggested DAM-GRU model with three models.
Box plots and forecast curves are compared in the figures. We
find that the DAM-GRU model forecasts values that are quite
similar to the observations. It demonstrates excellent predictive
performance even during rapid changes in wind power over a
short time frame. When combined with the accuracy metrics
presented in Table 4, the DAM-GRU model outperforms the
comparative models for forecasting horizons of 5 h, 10 h, and
20 h. Specifically, for a forecasting horizon of 5 h, the proposed
model reduces RMSE, MAE, SSE, MAPE, and RRMSE forecasting
errors by 6.0%, 18.9%, 11.7%, 20.6%, and 11.3% respectively, and
increased the R2 by 0.8% compared to the MTTFA-LSTM model.
For 10 and 20 h, The DAM-GRU model also outperforms the
MTTFA-LSTM model to varying degrees. The DAM-GRU model’s
performance is also superior to that of the CNN-GRU and VMD-
CNN-GRU models. The validity of the DAM-GRU model was
further confirmed.

To compare the training and forecasting time of the proposed
DAM-GRU model with other mainstream and advanced GRU-
based models. Table 5 shows that the proposed DAM-GRU
model has a slight increase in training time and forecasting

time compared to CNN-GRU, VMD-CNN-GRU, and MTTFA-
LSTM models, but considering its obvious improvement in
forecasting performance and that the time spent in actual online
training is much less than the length of forecasting for each
training, it can meet the technical requirements in practical
applications.

4.4 Comparison with traditional models

In order to fully understand the difference between the
forecasting performance of the DAM-GRU model and the
traditional models, this section selects 4 traditional models
including ARMA, RF, SVM and BP, and conducts comparative
experiments using the same experimental strategy as in Section 4.3.
The autocorrelation order of ARMA is set to 25, and the moving
average order is set to 3. The number of decision trees of RF
model is 80, and the minimum number of leaves is 5. SVM
adopts Radical Basis Function (RBF) as the kernel function to
build a regression model with multidimensional variables. The
BP neural network has 6 units in the input layer, which are
used to input 5 features and the forecasting results from the
previous step, the hidden layer has 15 units for high dimensional
mapping, and the output layer has one node for multi-step
cyclic forecasting. Figure 8 shows a comparison of the forecast
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TABLE 7 Comparison of training time and forecasting time with
traditional models.

Forecasting
horizon

Model Training
time (s)

Forecast
time (ms)

20 Steps (5 h)

ARMA 74 14

RF 136 26

SVM 138 34

BP 129 32

DAM-GRU 304 262

40 Steps (10 h)

ARMA 81 15

RF 155 29

SVM 142 30

BP 136 37

DAM-GRU 329 264

80 Steps (20 h)

ARMA 96 19

RF 167 31

SVM 171 38

BP 181 43

DAM-GRU 368 277

curves and box plots for each model when forecasting 20, 40 and
80 steps.

From Figure 8 it can be seen that the ARMA model is slightly
stable at 5 h, but the error increases significantly as the prediction
time increases, which may be less suitable for long-term forecasting.
The threemodels, RF, SVM and BP, also show significant lags and do
not fit the observed curves well at the peaks, where power changes
more frequently. The DAM-GRU model proposed in this paper is
able to accurately capture most of the large power variations and
achieve accurate forecasts. This shows that the ideas and time-series
feature processing methods specifically designed for wind power
forecasting can make good use of historical data and capture the
patterns embedded in longer time periods. Combining Tables 6, 7,
it can be seen that although the proposed model has about twice the
training and prediction time, its accuracy has improved significantly.
As hardware performance improves, the training time for the model
will be reduced even further in the future.

5 Conclusion

Highly precise wind power forecasting is essential. Specifically,
from the energy and environmental perspectives, it is conducive to
the efficient utilization of wind power and the reduction of global
carbon emissions; from the grid perspective, it is beneficial to the
operator’s response to the fluctuation of wind power and the rational

allocation of power. In order to achieve this goal through both real-
time feature selection and time complexity reduction, we propose a
DAM-GRU model and derive the following conclusions:

1. The results of the comparative experiments show that the
introduction of the FAM in this study effectively extracts
features contributing significantly to the point being forecast,
thus enhancing short-term wind power forecasting accuracy.

2. One-dimensional convolutions with different kernel sizes
provide filtering effects, reducing the complexity of the wind
power sequences in individual channels and making forecasts
less challenging for the model.

3. The temporal attention mechanism extracts crucial temporal
features of preliminary forecasts at different time steps, while
the addition of MHTAM helps the GRU network extract
significant temporal features from multiple channels.

The proposed DAM-GRU algorithm is investigated with
measured wind power data from a wind farm in Inner Mongolia,
and better forecasting results are obtained, which will provide
an effective basis for the construction of new wind farms in the
neighbourhood. For example, accurate wind power forecasting will
reduce the pressure on nearby peak frequency regulation power
plants and increase the installed capacity of wind power generation,
as well as facilitate the measurement of operating costs and the
development of maintenance plans for the newly built wind power
plants. However, this study also has the shortcoming that the
setting of hyperparameters is based on the tuning experiment,
which may cause the model to fall into local optimisation. In
addition, the study is insufficient for the generalisation ability of the
model. In the future, we will take the optimisation algorithm and
the generalisation ability test as a breakthrough point to improve
the model.
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