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To enhance the resilience of power distribution networks against extreme natural
disasters, this article introduces a robust fault recovery strategy for multi-source,
flexible interconnected power distribution networks, particularly under scenarios
of extreme disasters. Initially, the comprehensive risk of system failure due to ice
load on distribution lines and poles is fully considered, and a model for the overall
failure rate of lines is constructed. This model addresses the diverse failure
scenarios triggered by various meteorological conditions. Through the use of
information entropy, typical extreme disaster failure scenarios are identified, and
lineswith high failure rates under these scenarios are determined. Subsequently, a
box-type intervalmodel is developed to represent the uncertainty in the output of
distributed generation (DG), and on this basis, a robust fault recovery model for
multi-source power distribution networks interconnected through soft open
points (SOPs) is established, and use the Column and Constraint Generation
(C&CG) algorithm to solve the problem. Finally, the fault recovery model and
strategy proposed are validated through an illustrative example based on a
modified IEEE 33-node interconnected system.
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1 Introduction

In recent years, the frequency and intensity of extreme weather events, such as severe ice
and snow storms, hurricanes, and floods, have significantly increased (Nasri et al., 2022).
The complexity of their operating environments and the vulnerability of numerous
components to external conditions make distribution networks particularly susceptible
to these extreme weather phenomena, often resulting in widespread power outages (Jufri
et al., 2019). While existing research on power distribution network fault recovery has
predominantly focused on the electrical characteristics of the networks, it has largely
overlooked the comprehensive impact of meteorological conditions and natural disasters.
This includes a notable gap in integrating collected weather data with early warning systems
for accidents, which is crucial for enhancing response strategies and reducing the
vulnerability of these networks to such catastrophic events.
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To mitigate the impacts of extreme natural disasters on
distribution networks, scholars from around the world have
developed specific disturbance event models tailored to extreme
weather conditions (Dehghani et al., 2021). For example, Ref. (Zhou
et al., 2018). explored the influence of typhoon conditions on the
fault rates of distribution network lines, establishing a model that
correlates typhoon wind speed and direction with line fault rates.
Similarly, other research has formulated models to assess the fault
rates of distribution networks during severe ice, snow, and
earthquake conditions (Yang et al., 2020; Yan et al., 2021). In an
effort to bolster the resilience of distribution networks, researchers
have proposed a variety of response strategies, focusing on network
planning and operational scheduling. These strategies encompass
both preventive measures before disasters strike and recovery
actions post-disaster (Gazijahani et al., 2022). However, existing
research mainly focuses on post-disaster recovery measures aimed at
prioritizing the restoration of power supply to users. Although
traditional distribution networks can restore power supply to
outaged areas through network reconfiguration, their capabilities
are limited in cases of main network disconnection or multiple faults
caused by extreme disasters. According to the IEEE 1547-
2003 standard (Standards Coordinating Committee, 2003),
improving the reliability of power supply requires users to
implement local DG islanding operation under technical
compliance, to maximize the recovery of lost loads. Within this
framework, researchers are delving into post-disaster fault recovery
strategies for active distribution networks through various
innovative approaches. These include heuristic algorithms (Gao
et al., 2016), multi-agent systems (Li et al., 2020b), artificial
intelligence algorithms (Wang et al., 2018), and mathematical
programming methods (Li et al., 2019).

Regarding recovery strategies, Ref. (Yin et al., 2023). introduced
a novel approach for fault recovery in active distribution networks,
focusing on networks with reducible loads. Ref. (Liu et al., 2020).
developed a two-step fault recovery methodology that initially
reconfigures the main network before segmenting the remaining
unrecovered sections into isolated islands. Ref. (Li et al., 2020b).
further integrated the concepts of island partitioning and network
reconfiguration, presenting a comprehensive fault recovery strategy
for active distribution networks. Due to the uncertainty of DG
output that can affect the effectiveness of fault recovery, it is
necessary to consider this uncertainty in the active distribution
network fault recovery model. Common methods to handle this
uncertainty include interval optimization (Wang et al., 2020),
stochastic optimization (Lu et al., 2020), and robust optimization
(Chen et al., 2016). Robust optimization has been widely applied due
to its ability to operate without describing probability distributions,
with main solution methods including the Benders decomposition
method (Han Gao and Zhengshuo Li, 2021) and the C&CG
algorithm (Chuan He et al., 2017). Considering the uncertainty
of load and DG output, a two-stage robust fault recovery strategy
was proposed in (Zhao et al., 2020). Another study considered the
uncertainty of wind and photovoltaic unit output and proposed a
robust island recovery strategy for distribution networks using
electric vehicles as emergency dispatch resources (Chen et al., 2018).

However, the above fault recovery strategies have not effectively
modeled the fault rate of distribution networks under extreme
natural disasters, and thus cannot fully address the impact of

extreme natural disasters on distribution networks (Li et al.,
2023). Particularly, as a flexible power electronic device, the SOP
can provide necessary voltage support in the event of a fault,
effectively expanding the possibilities for fault recovery and
significantly enhancing the self-healing capability of the
distribution network (Ali Arefifar et al., 2023). This role was
verified in a study where the SOP was shown to play a key role
in the recovery of distribution system faults, significantly enhancing
the supply range and overall resilience of the system (Li et al., 2020a).
In light of this, the primary objective of this study is to bolster the
resilience of power distribution networks against extreme natural
disasters and to expedite the restoration of power to areas impacted
by outages. This research endeavors to investigate fault recovery
strategies for distribution networks under extreme weather
conditions. Through the lens of case study analysis, the efficacy
of the proposed model and strategies in quickly reinstating critical
loads within distribution networks under severe disaster scenarios
has been corroborated. The principal contributions of this paper are
delineated as follows:

(1) A model to predict fault rates in lines and poles under severe
weather conditions has been developed, employing the
information entropy method to pinpoint scenarios with an
increased likelihood of failure. This method effectively tackles
the myriad of fault scenarios arising in complex
meteorological conditions, thereby enhancing the reliability
of the distribution network.

(2) A comprehensive fault recovery model for a multi-sourced
distribution network, interconnected through the use of
SOPs, has been established. Tailored recovery strategies for
lines prone to frequent faults were devised, aiming for swift
restoration of service following power outages by
implementing pre-designed recovery plans in the event of
actual faults.

(3) A box-type interval model has been formulated to encapsulate
the uncertainty inherent in DG outputs. The advanced robust
fault recovery strategy, which prepares for the most adverse
DG output scenarios, outperforms traditional deterministic
approaches by offering enhanced recovery effectiveness and
greater resilience to the unpredictability in DG outputs.

The remainder of the paper is organized as follows: Section 2
involves the construction of a fault model and the filtration of fault
scenarios. Section 3 develops a robust fault recovery model for a
multi-sourced distribution network interconnected with SOPs.
Section 4 provides a detailed description of the solution
methodology. Section 5 conducts a case study analysis, and
Section 6 concludes the paper with a summary of its findings.

2 Fault model construction and
scenario filtering

2.1 Fault rate model

During extreme natural disasters, the ice load on power lines is
considered to gradually increase over time. When the ice layer
becomes overloaded, significant bending occurs in the line.
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Excessive bending deformation can lead to line breakage. The ice
overload or breakage of lines results in an increase in unbalanced
loads on the poles. If the acting load exceeds the pole’s maximum
load-bearing capacity, the crossarms may be damaged, leading to
bending and twisting of the pole itself, eventually causing breakage
and collapse.

2.1.1 Ice load on distribution lines
Many factors influence the ice load on distribution lines,

including the intensity and duration of the disaster, as well as the
distance from the center of the storm. By establishing a
mathematical model using a coordinate system with the root
node of the distribution feeder as the origin, the variation in ice
thickness over time for a particular segment of the line j can be
deduced and represented as Eqs 1, 2:

Lice xj, yj, t( ) � ∫t

0
Arate exp −1

2

xj − μx t( )
σx

( )2

+ yj − μy t( )
σy

( )2( )( )dt
(1)

μx t( ) � μx 0( ) + Vice cos θ( )t
μy t( ) � μy 0( ) + Vice sin θ( )t (2)

where Arate indicates the ice growth rate on the line, i.e., the change in
ice coverage per unit length of line per unit time, expressed as Eq. 3:

Arate �
−0.0277Dline +

���������������������
0.0277Dline( )2 + 1.088arate

√
0.0554

(3)

where arate is the ice growth rate factor, affected by disaster factors
such as temperature, wind speed, and precipitation rate, expressed as
Eq. 4:

arate � a0 + a1Ttemp + a2Vwind + a3Ppreci (4)

2.1.2 Ice load on tower
When considering the ice load on poles, several factors need to

be taken into account: the impact of wind on ice accumulation on
poles, the effect of the swaying of power lines hung on the poles, and
the calibration of more straightforward design equations. In the ice-
loading model for the tower-line system, the ice loads on insulator
strings and poles are relatively minor compared to their own
structural loads and can be neglected. Therefore, the focus is on
calculating the ice loads on the conductors and ground wires. The
unit ice load on power lines is as Eq. 5:

Gice t( ) � 0.0277Lice t( ) × Lice t( ) +Dline( ) (5)

The ice load exerted on the poles by the power lines hanging at
both ends primarily arises from the tension in the lines. In the case of
uniform, windless conditions, it’s necessary to calculate the vertical
load borne by the pole, as Eq. 6:

Gpole t( ) � Gice t( ) l1 + l2
2

+ Fl1h1
Gice t( )l1 +

Fl2h2
Gice t( )l2( )( ) (6)

where Fl1 and Fl2 represent the horizontal tension in the lines on
either side of the pole. l1 and l2 are the span lengths on both sides of
the pole. h1 and h2 denote the difference in height between the
suspension points on either side of the pole, with a positive value
indicating the neighboring pole is higher, and negative if it is lower.

2.1.3 Overall line fault rate
The aim of the component damage assessment method is to

evaluate how weather conditions affect various components of the
distribution network. The damage probability to the distribution
network from extreme natural disasters is represented by fault rate
curves, with the existing fault probability of distribution support
structures approximated as an exponential function using historical
data. The ice load ratio, described as the ratio of ice load to the design
load of the distribution network, is used in conjunction with the
relationships between line ice thickness, pole load, and line fault rate
to establish a mathematical model for line fault rate, as Eq. 7:

Pline
ice t( ) � alinee

ηline t( )
bline

Ppole
ice t( ) � apolee

ηpole t( )
bpole

⎧⎪⎪⎨⎪⎪⎩ (7)

In severe weather conditions like ice and snow, multiple faults
can occur along most lines, and the fault rate of a distribution line
can be considered as the sum of the fault rates of each line and pole
along that line. To facilitate the simulation of multiple faults along a
line under extreme weather conditions, the lines can be divided into
multiple segments based on span length and then connected in
series. The overall fault rate of the line is given as Eq. 8:

Pfault.j t( ) � 1 − ∏
m

1 − Ppole
ice.j.m t( )( )∏

n

1 − Pline
ice.j.n t( )( ) (8)

2.2 Selection of typical fault scenarios

The primary impact of extreme weather on distribution
networks is manifested in the significant increase in line fault
rates and the occurrence of multiple line faults. Given the
multitude of distribution network lines and the vast number of
fault scenarios corresponding to different meteorological conditions,
each with varying line fault rates, it is feasible to select typical fault
scenarios based on their randomness. These scenarios can then
provide the line fault rates necessary for research on distribution
network fault recovery. Information entropy is a method used to
quantify the disorder in a system (Shannon, 1948). The selection of
typical fault scenarios based on the fault rates of distribution
network lines involves choosing scenarios with a high probability
of occurrence. The information entropy is represented as Eq. 9:

W � ∑
i∈Ωl

− log2 Pfault
j,t( )τj,t t ∈ Tice (9)

Each fault scenario corresponds to an τj,t vector, representing
the entropy value of the system under that scenario. The occurrence
probability of a typical fault scenario is relatively high, so its
information entropy W should not be too large or too small and
must satisfy the Eq. 10:

Wmin ≤ ∑
j∈Ωl

− log2 Pfault
j,t( )τj,t ≤Wmax

∑
t

τj,t ≤ 1

⎧⎪⎪⎨⎪⎪⎩ t ∈ Tice (10)

By calculating the entropy values of the distribution network
under different scenarios and selecting typical fault scenarios based
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on reasonable entropy value limits, the fault lines corresponding to
these entropy values can be identified. These identified fault lines are
then used for the next step in the study of distribution network fault
recovery measures.

2.3 Fault recovery process for distribution
networks under extreme weather scenarios

The fault recovery process for distribution networks under
extreme weather scenarios is illustrated in Figure 1.

Step 1: Input meteorological parameters for the extreme weather
scenario and relevant data about the distribution network structure.

Step 2: Calculate the distribution of fault rates for each line
under the current meteorological parameters using the ice load-
based line fault rate model.

Step 3: Generate multiple fault scenarios by changing
meteorological parameters, and calculate the corresponding
entropy values using the information entropy formula.

Step 4: Determine whether the selected scenario is a typical fault
scenario. If it is, select the high fault rate lines in that scenario and
formulate a fault recovery strategy for them. if not, return to Step 2.

3 Robust fault recovery strategy for
multi-source distribution networks
interconnected with SOPs

3.1 Objective function

The objective is to minimize the sum of the load shedding amount,
network loss cost, and DG operating cost, which is represented as:

f � min
x

max
u∈U

min
h

⎡⎢⎢⎣λ1 ∑
i∈Ωn

1 − yi( )wlPi,load

+ λ2 ∑
ij∈Ωb

Isqrij Rij + ∑
i∈Ωn

aPi,DG
2 + bPi,DG + c( )⎛⎝ ⎞⎠⎤⎥⎥⎦ (11)

Analyzing Eq. 11, it’s evident that the objective function of the
proposed robust fault recovery strategy is a min-max-min problem: The
first layermin problemuses x as the decision variable, aiming to generate
a network topology with the least load shedding. The second layer max
problem uses u as the decision variable to find the worst-case fluctuation
scenario for DG injection power within the given uncertainty setU. The
third layer min problem uses h as the decision variable.

3.2 Constraints

The constraints of the robust fault recovery strategy include
power flow equations, system operational safety constraints, SOP
operation constraints, and radial network configuration constraints.
This paper constructs the distribution network branch power flow
equations based on the second-order cone programming model
proposed in literature (Farivar and Low, 2013), which include node
injected power balance Eq. 12 and branch voltage drop Eq. 13. The
specific forms are as follows:

(1) Node Injected Power Balance Equation

∑
ij∈Ωb

Pij − ∑
ki∈Ωb

Pki − RkiI
sqr
ki( ) � Pi

∑
ij∈Ωb

Qij − ∑
ki∈Ωb

Qki −XkiI
sqr
ki( ) � Qi

Pi � ~Pi,DG + Pi,SOP − yiPi,load

Qi � ~Qi,DG + Qi,SOP − yiQi,load
~Pi,DG � Pref

i,DG + ΔPi,DGεi, εi ∈ −1,+1[ ]
~Qi,DG � ~Pi,DG tan θ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
∀i ∈ Ωn (12)

(2) Branch Voltage Drop Equation

Usqr
i − Usqr

j � 2 PijRij + QijXij( ) − R2
ij +X2

ij( )Isqrij ,∀ij ∈ Ωb

Isqrij Usqr
i ≥P2

ij + Q2
ij,∀ij ∈ Ωb

{ (13)

During the fault recovery process, changes in the distribution
network topology necessitate the relaxation of the branch flow voltage
equation using the big-Mmethod.When a branch ij is open, i.e., xij = 0,

FIGURE 1
Fault recovery process of distribution network under extreme
weather scenarios.
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the branch flow voltage equation need not be satisfied. Conversely, when
a branch ij is closed, i.e., xij = 1, the branch voltage drop equation must
be strictly adhered to. The revised Eq. 13 is as follows:

Usqr
i − Usqr

j ≤M 1 − xij( ) + 2 PijRij + QijXij( ) − R2
ij +X2

ij( )Isqrij ,∀ij ∈ Ωb

Usqr
i − Usqr

j ≥ −M 1 − xij( ) + 2 PijRij + QijXij( ) − R2
ij +X2

ij( )Isqrij ,∀ij ∈ Ωb

Isqrij Usqr
i ≥P2

ij + Q2
ij,∀ij ∈ Ωb

⎧⎪⎪⎨⎪⎪⎩
(14)

(3) System Operational Safety Constraints

System operational safety constraints include node voltage Eq. 15 and
branch capacity Eq. 16.Node voltage constraints ensure that the voltage at
each node remains within a safe operating range during the fault recovery
period. The constraint is represented as Eq. 15:

yi Umin
i( )2 ≤Usqr

i ≤yi Umax
i( )2 (15)

Branch capacity constraints ensure that the power in each branch
does not exceed limits. The constraint is represented as Eq. 16:

−�Pijxij ≤Pij ≤ �Pijxij∀ij ∈ Ωb

− �Qijxij ≤Qij ≤ �Qijxij∀ij ∈ Ωb

Isqrij ≤xij
�I
sqr
ij

⎧⎪⎨⎪⎩ (16)

(4) SOP Operating Constraints

Pi,SOP + Pj,SOP + PL
i,SOP + PL

j,SOP � 0 (17)����������������
Pi,SOP( )2 + Qi,SOP( )2√

≤ Si,SOP (18)�����������������
Pj,SOP( )2 + Qj,SOP( )2√

≤ Sj,SOP (19)

PL
i,SOP � Ai,SOP

����������������
Pi,SOP( )2 + Qi,SOP( )2√

(20)

PL
j,SOP � Aj,SOP

�����������������
Pj,SOP( )2 + Qj,SOP( )2√

(21)

(5) Description of DG Output Uncertainty

Instead of representing DG output with a single deterministic
forecast value, a box-type interval model is constructed as Eq. 22:

U �
Pi,DG ∈ Pref

i,DG − ΔPi,DG, Pref
i,DG + ΔPi,DG[ ]

∑
i∈Ωn

Pi,DG − Pref
i,DG

∣∣∣∣ ∣∣∣∣
ΔPi,DG

≤ ΓDG

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (22)

where ΓDG is the “uncertainty parameter” for the possible values of
the uncertain quantity, which can be chosen from the set {0, −1, 1}.

To contrast with the robust fault recovery model proposed in
this paper, a deterministic fault recovery model is established as
follows. The objective function of the deterministic model is to
minimize the load shedding amount, network loss, and DG
operating costs, specifically formulated as Eq. 23:

f � min⎡⎢⎢⎣λ1 ∑
i∈Ωn

1 − yi( )wloadPi,load + λ2⎛⎝ ∑
ij∈Ωb

Isqrij Rij

+ ∑
i∈Ωn

aPi,DG
2 + bPi,DG + c( )⎞⎠⎤⎥⎥⎦ (23)

The constraint conditions, aside from the node injected power
balance constraint, are the same as those in the robust fault recovery
model. In the deterministic recovery model, the uncertainty of DG
output is not considered, and the node injected power balance Eq. 12
is modified to Eq. 24:

∑
ij∈Ωb

Pij − ∑
ki∈Ωb

Pki − RkiI
sqr
ki( ) � Pi

∑
ij∈Ωb

Qij − ∑
ki∈Ωb

Qki −XkiI
sqr
ki( ) � Qi

Pi � Pi,SOP + Pi,DG − yiPi,load

Qi � Qi,SOP + Qi,DG − yiQi,load

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
,∀i ∈ Ωn (24)

In summary, the objective function of the robust fault
recovery model proposed in this paper is represented by
Formula 11, with constraints including node injected power
balance Eq. 12, branch voltage drop Eq. 14, node voltage Eq. 15,
branch capacity Eq. 16, SOP operating Eqs 17–21, and DG
uncertainty set (22). This model is a two-stage robust
optimization form of a min-max-min problem with certain
constraints and belongs to a large-scale combinatorial
optimization problem, which is challenging to solve directly.
The robust fault recovery model Eqs 11–22 and the
deterministic model Eqs 13–21, 23, 24 provide a
comprehensive framework for addressing fault recovery in
power distribution networks under uncertain conditions.

4 Model transformation and solution

4.1 Compact form of the model

To better illustrate the algorithm’s process, the two-stage robust
optimization model Eqs 11–22 are integrated into the following
compact form:

min
x
max
u∈U

min
h∈F x,u( )

bTh (25)
s.t. Ax ≤ b (26)
Bx � d (27)

F x, u( ) � h ∈ Sh: Ch≥ Ex,Dh � u
Glh‖ ‖≤ gTl h,∀l � 1, . . . , m

{ (28)

Model Eqs 25–28 present a two-stage optimization problem that
is challenging to solve directly. To address this, the C&CG algorithm
is employed to decompose the two-stage robust optimization model
into a master problem and sub-problems, which are then solved
iteratively.

4.2 Master problem

The master problem decides the network topology under the
condition that the output power of each DG unit, u*l , is already
determined. The expression for the master problem is:

MP: min
x,η

η (29)
s.t. Ax ≤ b (30)

η≥ bThl,∀l≤ k (31)
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Ex ≤Cl,∀l≤ k (32)
Dyl � u*

l ,∀l≤ k (33)
Gih

l ≤ gTi h
l, i � 1, . . . , m,∀l≤ k (34)

A real variable η is introduced to replace the max-min problem
in Eq. 25, and Eq. 31 is added to obtain a relaxed problem as shown
in Eqs 29–34.

4.3 Subproblem

The subproblem, solved after determining the network topology
in the first phase, finds the worst-case fluctuation scenario of
distributed generation u*l . The subproblem is described as
Eqs 35–37:

SP: Q x*( ) � max
u∈U

min
h∈F x*,u( )

bTh (35)
s.t.Ch≥Ex* (36)
Dh � u (37)

Glx‖ ‖≤ gTl x,∀i � 1, . . . , m (38)

The subproblem is a max-min, two-layer optimization problem,
which is difficult to solve directly. To address this, dual theory is applied
to transform the innermin problem into its correspondingmax problem,
which is then combined with the outer max problem to form a single-
layer max problem. The transformed subproblem expression is:

Q x*( ) � max
u,πl ,π2 ,wi ,λi

Ex*( )Tπ1 + uTπ2 (39)

s.t.CTπ1 + DTπ2 +∑
i

Giwi + g iλi( ) � b (40)

wi‖ ‖2 ≤ λi, i � 1, . . . , n (41)
where π1, π2 are the dual variables for Eqs 36, 37. (wi, λi) is the dual
variable for Eq. 38.

The objective function of the subproblem (39) contains the
nonlinear, bilinear term uTπ2, which needs to be processed for
easier solving of the model. The big-M method can be used to
linearize uTπ2 as follows:

uTπ2 � ∑
s

usπ2,s � ∑
s

gs

gs ≤ π2,s

gs ≤Mus

gs ≥ π2,s − 1 − us( )M
gs ≥ 0
us ∈ 0, 1{ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(42)

where gs is a new variable introduced, which represents the dot
product of the corresponding elements of the variables u and π2.

4.4 C&CG algorithm

The basic principle of robust optimization is to transform the
original robust optimization model into a two-stage optimization
problem, which is then solved using the C&CG algorithm. The
algorithm iteratively solves the master and subproblems, adding the
columns generated by the subproblem to the constraints of the

master problem. The optimal result is output when both the upper
and lower bounds meet the convergence precision. The model-
solving process of the C&CG algorithm is illustrated in Figure 2.

The specific iterative process is as follows:
Step 1: Initialize data, set the upper and lower bounds of the

objective, let LB � −∞, UB � +∞, k = 0, and set O as an empty set.
Step 2: Solve the master problem Eqs 29–34, obtaining the

optimal solution (xk+1* , ηk+1* , h1*, ..., hk*), and update the lower
bound LB � ηk+1* of the original problem.

Step 3: Substitute the given x � xk+1* from the master problem
into the subproblem Eqs 39–42, solve the worst-case scenario uk+1* and
the optimal objective function value Q(xk+1* ), and update the upper
bound UB � min UB,Q(xk+1* ){ } of the original problem.

Step 4: Check if the convergence condition UB − LB≤ ε is met. If
yes, the iteration is complete, and the current optimal solution is
output. If not, proceed as follows:

(1) If Q(xk+1* )< +∞, create a new decision variable hk+1, add the
Eq. 43 to the master problem Eqs 29–34:

η≥ bhk+1

Ex ≥Chk+1

Dhk+1 � uk+1*

Gih
k+1"""" """"≤ gTi hk+1

(43)

where uk+1* is the optimal value from Step 4). Set k � k + 1,
O � O ∪ k + 1{ }, and return to Step 2.

(2) If Q(xk+1* ) � +∞, create a new decision variable yk+1, add the
Eq. 44 to the master problem:

Ex ≥Chk+1

Dhk+1 � uk+1*

Gih
k+1"""" """"≤ gTi hk+1 (44)

Update the constraint set accordingly. Set k � k + 1 and return
to Step 2.

5 Case analysis

To analyze the fault recovery of distribution networks under extreme
weather scenarios, a test was conducted using an interconnected
distribution system based on SOPs. This system consists of three
IEEE 33-node systems interconnected with SOPs (Yuduo Zhao et al.,
2022). The initial topology, as shown in Figure 3, illustrates that the tie
switches, represented by dashed lines, are initially open. A coordinate
system is established with node 1 of Distribution Network A as the
origin. The load data and line impedance for each IEEE 33-node system
are referenced from (Shaheen et al., 2021).

Following the method proposed in (Lu Zhang et al., 2018), the
positions for integrating DG and SOPs were determined. Four DG
units were integrated into Distribution Network 1 at nodes 9, 14, 17,
and 27, each with a predicted active power output of 150 kW and a
power factor set at 0.9 (Zhu et al., 2017). The loads were classified
according to their importance levels, with each load level and its
corresponding weight settings presented in Table 1. SOP1 was
connected between nodes a12 and a22 of Distribution Network 1,
SOP2 between node a18 of Distribution Network 1 and node b18 of
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Distribution Network 2, and SOP3 between node a28 of Distribution
Network 1 and node c28 of Distribution Network 3. All SOPs were
set with a capacity of 200 kVA and a loss coefficient of 0.02. The
permissible voltage fluctuation range at the nodes was set between
0.95 and 1.05 p.u. In the objective function, λ1 and λ2 were set to
100 and 1, respectively.

The effectiveness of fault recovery was assessed using the load
recovery rate, defined as the ratio of the restored load to the total
load lost before restoration. The recovery rates for primary,
secondary, and tertiary loads were denoted as σ1, σ2, σ3 with the
total load recovery rate also represented by σs. This case study aims
to evaluate the performance of the proposed fault recovery strategies

FIGURE 2
Model solving process of C&CG algorithm.

FIGURE 3
Modified IEEE 33-node distribution system based on SOP interconnection.
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in restoring different levels of loads in the interconnected
distribution network under adverse weather conditions.

5.1 Line fault rate analysis in typical
fault scenarios

In the simulated scenario, the distribution network is under
snowstorm conditions with an ambient temperature of −5°C, wind
speed of 10 km/h, and precipitation rate of 40 mm/h. The center of the
snowstorm, located at coordinates (−150 km, −150 km),moves towards
the distribution network at a speed of 4.2 km/h in the 45° direction
along the x-axis. The climate impact radius R is set at 130 km, with R
values of 0.4 for line ice coverage fault rate, 0.18 for line fault rate, and
0.1 for pole ice coverage fault rate, increasing to 0.46 and 0.43,
respectively, as conditions worsen. Over time, both the ice thickness
and the line-pole fault rates change. Figure 4 illustrates the ice thickness
and line-pole fault rates for this fault scenario.

Figure 4A shows that as the snowstorm center moves closer to
the distribution network, the ice layer thickness on the lines rapidly
increases. Figure 4B indicates that with the increase in ice layer
thickness, the fault rates of lines and poles first experience a slow
growth, then the line fault rate exhibits an exponential increase after
20 h, and the pole fault rate rises rapidly after 30 h. Line breakage
may occur if the ice thickness exceeds the line’s load-
bearing capacity.

By varying environmental temperature, precipitation rate,
snowstorm center location, and movement speed, various
extreme ice and snow disaster scenarios can be simulated. The
entropy value corresponding to each scenario can be calculated

using Eq. 9, with the probability distribution of the system’s
information entropy shown in Figure 5. The higher the
probability of occurrence of an entropy value, the more likely the
scenario is considered a typical fault scenario.

For this simulation, the fault rates of each line in Distribution
Network 1 are shown in Figure 6. The entropy value calculated for
this scenario using Eq. 9 is 14.71. According to Figure 5, this entropy
value has a high probability of occurrence, marking it as a typical
extreme ice and snow fault scenario. Figure 6 reveals that Lines 1
(a1-a2) and 18 (a2-a19) in Distribution Network 1 have higher fault
rates than other lines, indicating that these lines are relatively
vulnerable within the system and more prone to faults due to ice
and snow disasters. Consequently, the fault recovery strategies
proposed in this paper will be applied specifically to these two
high-fault-rate lines to formulate fault recovery plans.

TABLE 1 Grade and weight of load.

Load level Node number Total load/kW Load weight

Primary load 1–3, 9–11, 14, 32, 33 745 100

Secondary load 4, 5, 12, 15, 18–21, 25, 26, 29 1260 10

Tertiary load 6–8, 13, 16, 17, 22–24, 27, 28, 30, 31 1710 1

FIGURE 4
Icing thickness curve and line-tower failure rate. (A) Icing thickness curve; (B) Line-tower failure rate.

FIGURE 5
Entropy probability distribution.
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5.2 Impact of SOP integration on fault
recovery effectiveness

For Distribution Network 1, Lines 1 and 18 were selected as fault
lines, leading to the cessation of all loads from nodes a2 to a33,
resulting in a substantial active power loss of up to 3715 kW. To
analyze the impact of SOP integration on fault recovery, three SOP
integration scenarios were tested:

Scenario 1: Fault recovery through internal SOP1 and network
reconfiguration in Distribution Network 1. Scenario 2: Based on
Scenario 1, connecting Distribution Network 2 through SOP2.
Scenario 3: Based on Scenario 1, connecting Distribution
Networks 2 and 3 through SOP2 and SOP3, respectively.

The fault recovery effects for these three scenarios are shown
in Table 2.

Table 2 reveals that Scenario 1 has the lowest total load recovery
rate at 31.89%. This is due to the disconnection of Distribution
Network 1 from the main power source, with the required active
power for loads being supplied only by internal DG and transmitted
through internal SOP1, which also provides reactive power
compensation. The fault recovery capacity in this scenario is
limited. Comparing Scenarios 1 and 2, the total load recovery
rate in Scenario 2 increases to 45.09%, indicating that connecting
Distribution Network 1 with Network 2 through SOP2 allows
flexible power transmission control, restoring more lost loads.
Scenario 3 has the highest total load recovery rate at 55.31%, as
the faulted distribution network is interconnected with Networks B
and C through two SOPs, allowing two power sources to support
power restoration in the outage area. However, not all loads are

restored under this SOP capacity, as the capacity of SOP influences
its power flow transfer ability and consequently affects the fault
recovery outcome.

To analyze the impact of SOP capacity, Scenario 3 was tested
under four different SOP capacities: 200, 400, 600, and 800 kVA, and
the fault recovery conditions and SOP output powers were assessed.
The influence of SOP capacity on fault recovery effectiveness is
shown in Table 3.

As indicated in Table 3, as the integrated SOP capacity in the
system increases, the fault recovery capability of the distribution
network continuously strengthens. With a single SOP capacity of
200 kVA, the total load recovery rate is relatively low at 55.31%, with
a primary load recovery rate of only 63.75%, indicating poor
recovery effectiveness. At 400 kVA, the total load recovery rate
improves to 72.01%, with primary loads fully restored, and a slight
increase in the tertiary load recovery rate. At 600 kVA, nodes a7 and
a25 are restored, with a high total load recovery rate of 88.69%,
including 100% recovery for primary and secondary critical loads.
With 800 kVA, the total SOP capacity accounts for 64.60% of the
load power, with strong power flow transfer capability, resulting in
the restoration of all lost loads.

The active power outputs of SOPs under four different capacities
are shown in Figure 7.

Figure 7 shows that for all four SOP capacities, the active power
of VSC a12 in Distribution Network 1 is negative, while VSC a22’s
is positive, indicating that the active power flow on the SOP is from
node a12 to node a22. After Distribution Network 1 is
disconnected from the main power source, VSC a12 obtains
electrical energy from nearby DGs at nodes a9 and a14. VSC
a22, lacking nearby DG resources, receives active power
transmitted through SOP1 from node a12 to restore the lost
loads 19–22. For SOP2 connecting Distribution Networks 1 and
2, the active power of VSC a18 is positive, and that of VSC b18 is
negative, indicating active power flow from Network 2’s node
b18 to Network 1’s node a18. Similarly, SOP3 injects active power
fromDistribution Network 3 into Network A’s node a28 to provide
electricity for the lost loads.

5.3 Impact of DG injection power on fault
recovery effectiveness

Considering that the integration of DG changes the system’s
power flow distribution and affects the fault recovery outcome, this
section analyzes the impact of DG integration on fault recovery.
Based on the integration of three 200 kVA SOPs, a comparative
analysis was conducted with different levels of DG injection power.

FIGURE 6
Failure rate of each line.

TABLE 2 Fault recovery effect of distribution network under three schemes.

Scheme Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

Before recovery 2–33 3715 0 0 0 0

1 2–4, 7, 8, 14, 19, 23–25,29–32 2530 30.20 40.47 26.31 31.89

2 7, 8, 14, 24, 25, 29–32 2040 55.70 57.14 31.58 45.09

3 7, 8, 24, 25, 31–33 1660 63.75 66.67 43.27 55.31
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The fault recovery effects under varying DG injection power levels
are presented in Table 4.

Table 4 shows that with the increase in DG injection power,
the total load recovery rate correspondingly rises from 55.31% to
100.0%. When the DG injection power is 150 kW, only 63.75% of
primary load can be restored, indicating low power supply
reliability. At a DG injection power of 225 kW, the recovery
rate of primary load increases from 63.75% to 100%, and the
recovery rates of secondary and tertiary loads also rise. With
300 kW of DG injection power, primary and secondary critical
loads are fully restored, and the tertiary load recovery rate
increases to 73.10%. At 375 kW, DG within the Distribution
Network 1 accounts for 40.38% of the total load power, enabling
the recovery of all loads. Thus, it is evident that DG injection
power plays a positive role in fault recovery. DG injection power
can locally meet the demands of nearby loads, enabling more
loads to be restored.

5.4 Comparison of recovery effects between
two fault recovery strategies

Todemonstrate the effectiveness of the robust fault recovery strategy
for distribution networks proposed in this paper, a comparison of fault
recovery effects between deterministic and robust strategies was
conducted. In the deterministic recovery strategy, DG power remains
at the forecasted value, while in the robust strategy, DG output fluctuates
within the range of an uncertainty set. With a single SOP capacity of
200 kVA and the same parameter settings, the fault recovery effects of
the two strategies are shown in Table 5.

As evident from Table 5, the recovery effect of the robust strategy is
superior to that of the deterministic strategy. The deterministic strategy,
which bases the network topology on the predicted values of DG, has
weaker adaptability to uncertainties, resulting in a lower total load
recovery rate of only 55.31%. In contrast, the robust strategy,
considering the worst-case DG output samples, achieves an improved

TABLE 3 Effect of SOP capacity on fault recovery.

SOP capacity/kVA Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

200 7, 8, 24, 25, 31–33 1660 63.75 66.67 43.27 55.31

400 7, 24, 25 1040 100 66.67 63.74 72.01

600 24 420 100 100 75.44 88.69

800 -- 0 100 100 100 100

FIGURE 7
Active power output of SOP.

TABLE 4 Fault recovery effect under different DG injection Power.

Injected power of DG/kW Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

150 7, 8, 24, 25, 31–33 1660 63.75 66.67 43.27 55.31

225 7, 8, 20–22, 24 1090 100 85.71 46.78 70.66

300 7, 8, 16 460 100 100 73.10 87.62

375 -- 0 100 100 100 100
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total load recovery rate of 61.78%. Furthermore, it ensures 100% recovery
of primary loads, though the recovery rate of secondary loads is slightly
reduced. It is apparent that the proposed robust strategy yields better
recovery results than the deterministic strategy and possesses a superior
ability to adapt to the uncertainties in DG output.

To verify the scalability of the proposed method in large-scale actual
systems, an analysis was conducted using a 234-node system
interconnected by SOPs. This system consists of three 78-node
systems interconnected through SOPs (Ji et al., 2023). In Distribution
Network A, 7 DGs were connected at nodes 5, 24, 29, 47, 52, 60, and 78,
with each having a forecasted active power of 150 kW and a power factor
set to 0.9. SOP1 connects to Distribution Network A at nodes a22 and
a59, SOP2 connectsDistributionNetworkA at node a18 andDistribution
Network B at node b18, and SOP3 connects Distribution Network A at
node a28 and Distribution Network C at node c28, with each having a
capacity set to 1000kVA and a loss coefficient of 0.02. Two fault recovery
strategies, deterministic recovery strategy and robust recovery strategy,
were compared. Table 6 presents the recovery effects of the two fault
recovery strategies under the same fault location and parameter settings.

From Table 6, it is evident that the robust strategy still outperforms
the deterministic strategy in terms of load recovery effectiveness. The
deterministic strategy exhibits a weaker adaptability to the uncertainty
of DGs, with a total load recovery rate of 76.08%. In contrast, the robust
strategy achieves an improved total load recovery rate of 81.38%, with
critical loads being fully restored to 100%. Thus, in large-scale actual
systems, the proposed robust strategy can achieve better recovery
outcomes than the deterministic strategy.

6 Conclusion

To enhance the distribution network’s capability to copewith extreme
ice and snow disasters, this paper proposes a robust fault recovery strategy
formulti-source distribution networks under extremeweather conditions.
Simulation analyses were conducted on systems with modified IEEE 33-
node interconnected by SOPs, leading to the following conclusions:

(1) For lines with a high fault rate under typical extreme ice and
snow disaster scenarios, pre-established fault recovery
strategies enable the rapid restoration of lost loads after
actual faults occur, thus improving the distribution
network’s ability to handle extreme ice and snow disasters.

(2) The proposed fault recovery strategy makes full use of the flow
control capabilities of SOPs and the power support of DGs.

The coordination of SOPs with network reconstruction
effectively restores power supply to lost loads, enhancing
the fault recovery capability of the distribution network.

(3) The proposed strategy accounts for the uncertainty of DG
output, demonstrating superior adaptability to the
uncertainties of DG output compared to deterministic strategies.

Future research focuses only on fault scenarios related to ice and
snow weather disasters. It will be more practically significant to
consider a wider range of fault scenarios in future studies.
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TABLE 5 Fault recovery effect of two fault recovery strategies.

Strategy Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

Deterministic strategy 7, 8, 24, 25, 31–33 1660 63.75 66.67 43.27 55.31

Robust strategy 7, 8, 21, 22, 24, 25 1420 100 59.52 46.78 61.78

TABLE 6 Fault recovery effect of two fault recovery strategies.

Strategy Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

Deterministic strategy 34, 35, 53, 57, 58, 69, 70, 76 1850.6 91.33 53.69 91.17 76.08

Robust strategy 34, 35, 50, 53, 57, 58 1440.4 100 59.96 91.17 81.38
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Nomenclature

Indices

Ωl Set of distribution network lines

Ωn Set of all load nodes

Ωb Set of all branches

U Set of uncertainties for dg output

k Number of iterations

Parameters

Lice(xj , yj , t) Ice load on the line j

(xj , yj) Coordinate of line j

Vice Movement speed of the snowy weather

Arate Ice growth rate on the line

Dline Outer diameter of the line

arate Ice growth rate factor

Ttemp Ambient temperature

Vwind Wind speed

Ppreci Precipitation rate

a0 , a1 , a2 , a3 Constant

Lice(t) Thickness of ice covering the line

Dline Outer diameter of the line

Mline Design ice load of the line

aline , bline Constants used to calibrate the line ice fault rate and ice load ratio

wl Weight coefficient of loads to distinguish between primary,
secondary, and tertiary loads

Pi,load Active load demand at node i

Rij Resistance of branch ij

a, b, c Cost coefficients of DG operation

Rki ,Xki Resistance and reactance of branch ki

Rij ,Xij Resistance and reactance of branch ij

�Pij Maximum active power limit of branch ij

�Qij Maximum reactive power limit of branch ij

�Isqrij Square of the maximum allowable current in branch ij

λ1 , λ2 Weighting coefficients of the objective function

Variables

(μx(t), μy(t)) Coordinates of the blizzard center changing over time t

σx , σy Load parameters corresponding to the x and y axes of the line,
respectively

Pline
ice (t) Line ice fault rate

ηline(t) Line ice load ratio

Pf ault.j(t) Fault rate of line j

Ppole
ice.j.m(t) Fault rate of the m-th pole of line j

Pline
ice.j.n(t) Fault rate of the n-th span of line j

W Information entropy

Tice Time taken for the disaster to pass through the distribution network
area

Pfault
j,t

Fault rate of line j at moment t

τj,t Whether a fault occurs on line j at moment t, with 1 for a fault and
0 otherwise

x Binary variables

xij On-off status of branch ij and yi indicating the load status of node i

u Uncertain variable of DG output

h A vector of continuous variables related to distribution network flow
optimization

Isqrij Square of the current magnitude in branch ij

Pi,DG Active output of DG at node i

Pij ,Qij Active and reactive power flowing through branch ij, respectively

Pki,Qki Active and reactive power flowing through branch ki, respectively

Isqrki Square of the current magnitude in branch ki

Pi,Qi Active and reactive power injections at node i

~Pi,DG , ~Qi,DG Actual active and reactive power outputs of the DG at node i

Pi,SOP ,Qi,SOP Active and reactive power outputs of the SOP at node i

PDG,ref
i

Predicted DG output

ΔPi,DG Variation in output due to uncertainties

tan θ Tangent of the power factor angle

Usqr
i Square of the voltage magnitude at node i

Usqr
j Square of the voltage magnitude at node j

PL
i,SOP ,P

L
j,SOP Active power losses at nodes i and j for the SOP.

Pi,DG ,Qi,DG Active and reactive power outputs of the DG at node i

x First-layer optimization variables

u Second-layer optimization variables

h Third-layer optimization variables

η Auxiliary variable of the C&CG algorithm
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