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Effective anomaly detection in power grid engineering is essential for ensuring
the reliability of dispatch and operation. Traditional anomaly detection methods
based onmanual review and expert experience cannot be adapted to the current
rapid increases in project data. In this work, to address this issue, knowledge
graph technology is used to build an anomaly detection dataset. Considering the
over-smoothing problem associated with multi-level GCN networks, a deep skip
connection framework for anomaly detection on attributed networks called DIET
is proposed for anomaly detection on ultra-high voltage (UHV) projects.
Furthermore, a distance-based object function is added to the conventional
object function, which gives DIET the ability to process multiple attributes of the
same type. Several comparative experiments are conducted using five state-of-
the-art algorithms. The results of the receiver operating characteristic with the
area under the curve (ROC-AUC) indicator show a 12% minimum improvement
over other methods. Other evaluation indicators such as precision@K and recall@
K indicate that DIET can achieve a better detection rate with less ranking. To
evaluate the feasibility of the proposedmodel, a parameter analysis of the number
of GCN layers is also performed. The results show that relatively few layers are
needed to achieve good results with small datasets.
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1 Introduction

In recent years, the Chinese economy, industry, and society have progressed
significantly. This has led to a tremendous growth in power consumption. Meanwhile,
to meet environmental protection demands, carbon peaking and carbon neutralization
targets have been proposed (Cao et al., 2023; L; Li et al., 2023; Zhang et al., 2023), which have
led to important changes in both electricity production and transmission. The reliability
remains an important topic for both power systems and multi-energy systems. However,
traditional reliability improvement methods mainly focus on the operation progress, the
other important aspect called construction progress which concerns power grid structure
and equipment is less studied. Among the whole construction progress, a process called the
review of power transmission and transformation projects which exists between the initial
design and construction stage is the key to ensure the reliability of power systems. The main
purpose of the review step is to find design flaws, and the step is carried out jointly by
relevant power design institutes and project review institutes. It mainly consists of four
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stages: the collection and verification of review data, an evaluation by
professionals, the formation of review opinions, and the archiving of
project data into a database. An effective anomaly detection method
is needed to find unusual features in design plans. At present, the
specific processes and details of the review step are relatively
complete, but the following problems remain to be addressed:

1) The review documents often contain problems including
errors, omissions, and irregular writing. For example, some
equipment attribute specifications are incompletely filled in,
which can cause problems in the construction stage.

2) There are still deficiencies in the standardization of the review
working process, which mainly relies on the experience of
professionals. It is less efficient and prone to errors.

3) There are still deficiencies in the handling of new technologies,
new equipment, and special engineering environments.

In order to address these problems, studies on the auxiliary
review system for power transmission and transformation projects
have been conducted. Most researchers process data based on
browser-server (B/S) architecture and SQL server databases.
Compared with the traditional client-server (C/S) architecture,
B/S architecture is highly distributed, simple to develop, highly
shareable, and easily maintained. Intelligent review management
platforms have been proposed for the design of power transmission
and transformation projects above and below 110 kV (Huang, 2018;
Li et al., 2021). These systems include key factor extraction, data
platform selection, and data analysis. The difference between the two
scenarios is the database types adopted, and it has been shown that
relational databases can achieve better results in the intelligent
review management platform for power transmission and
transformation engineering design review. Systems already in
operation, such as the Fujian power transmission and
transformation project design review system, show that the B/S
model system architecture can achieve its best results when handling
the entire process of the feasibility study, preliminary design,
construction drawing review, construction drawing budget, and
completion settlement (Hong, 2014). Due to the flexibility of the
architecture, the standardized management of review processes and
the templated management of review documents have also been
realized. Meanwhile, the China Electric Power Planning &
Engineering Institute has established an expert decision-making
system that can realize engineering information extraction, plan
management, and carry out auxiliary decision-making and other
functions based on its own business needs. As the scale of the power
grid continues to expand, the efficiency of existing platforms in
knowledge acquisition encounters the problem of low efficiency and
an inability to meet knowledge reasoning needs.

With the development of artificial intelligence technology,
knowledge graph technology, which has the advantages of high
scalability, efficient query efficiency, and better visualization, has
become an option for building the next-generation of power
transmission and transformation engineering auxiliary review
platforms. A knowledge graph is an auxiliary knowledge base
originally proposed by Google to enhance search engine
functions (Y. Song et al., 2023). It uses “entity-relationship-
entity” triples to describe objects in the real world and the
relationships between them (Pu et al., 2021). It has strong

relationship expression, reasoning, and error correction
capabilities which could provide strong support for applications
in various fields (Ji et al., 2022). Existing research on this topic can be
mainly divided into two aspects: knowledge graph construction and
graph application. In terms of the construction of knowledge graphs,
knowledge extraction based on different business needs is the key.
For power systems, a framework for the application of knowledge
graphs in power systems has been proposed and the key technologies
required to build a domain-specific knowledge graph have been
introduced (Pu et al., 2021). Several researchers have constructed
knowledge graphs based on their own needs (Guo et al., 2021; Tian
et al., 2022; Wang et al., 2023). Although the research objects and
specific algorithm models differ, the key algorithms such as named
entity recognition, relation extraction, and entity fusion are the
same. In terms of graph application, different application cases in
multiple fields such as natural disasters in power transmission and
transformation lines, electricity consumption by power users,
transformer status sensing, and assisted decision-making in
distribution network faults have been studied (Ruan et al., 2021;
Ye et al., 2022; Chen et al., 2023). At present, the applications of
knowledge graphs in the power field mainly include power
dispatching (Li et al., 2019; Zhou et al., 2019; Liu et al., 2020),
operation and maintenance (Guo et al., 2021; Wang et al., 2021; Shu
et al., 2023), and fault handling (Tian et al., 2022; Liu et al., 2023).
However, there has been little research on knowledge graph
construction based on power transmission and
transformation projects.

The goal is to detect defects in power transmission and
transformation projects, so a knowledge-graph-based anomaly
detection algorithm is needed. As it is an attributed network,
there has been a large amount of anomaly detection research
based on the graph convolutional network (GCN). An attributed
network consists of two components: an adjacency matrix that
represents the structural information and an attribute matrix that
contains the feature embedding of node attributes. Leveraging GCN
as an encoder, DOMINAT has been proposed as a basic model to
detect anomalies with a ranking mechanism using both structural
and attribute information (Ding et al., 2019). Noticing that the
nodes’ attributes are different, ALARM introduced multi-view data
into the encoder-decoder framework (Peng et al., 2020). ResGCN,
on the other hand, proposed a deep residual modeling approach (Pei
et al., 2021). All the methods mentioned above are based on
unsupervised learning, and HCM is a self-supervised anomaly
detection method that considers the hop counts of global and
local information. Moreover, a semi-supervised anomaly
detection method has been proposed to tackle datasets with few
labeled nodes (Kumagai et al., 2021). Although all the above
algorithms achieve good results in their own domains, they all
neglect the over-smoothing problem of the deep GCN network,
which could reduce node specificity.

To solve the problems mentioned above, a deep skip connection
framework for anomaly detection on attributed networks called
DIET is proposed in this work. Specifically, to handle the over-
smoothing problem, a skip connection mechanism is used, which
leverages the former GCN output as input for the next hidden layer.
Furthermore, noticing that all the nodes have the additional
attribute of entity type, it is intuitive to cluster all the nodes with
the same type and use a distance-based algorithm to find anomalies
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in the group. The rest of this article is structured as follows. A
detailed analysis of the requirements for the review of power
transmission and transformation projects is provided in Section
2, along with the construction method based on the UHV dataset.
The proposed anomaly detection framework, DIET, is presented in
Section 3, followed by a detailed case study to evaluate the feasibility
of DIET in Section 4. Finally, a conclusion is presented in Section 5.

2 UHV knowledge graph

With the increasing demand for clean energy and the expanding
scale of UHV projects, the digital transformation of power grid
infrastructure projects is imminent. The review of transmission and
transformation projects requires a great deal of professional
knowledge, and the massive amounts of data have created
challenges. Moreover, traditional intelligent platforms usually use
relational databases for data storage, which leads to low knowledge
reasoning ability. By constructing a UHV knowledge graph,
unstructured historical engineering data can be stored as nodes
and relations, making anomaly detection more effective. The
construction of a UHV knowledge graph mainly includes three
steps: demand analysis, data collection, and graph construction.

2.1 Demand analysis

The review of power transmission and transformation projects is
one of the key processes in project construction. It has a direct
impact on the equipment selection, the project quantity calculation,
and the cost of power grid construction. Compared with general civil
construction projects, the evaluation of power transmission and
transformation projects is stricter. Themain review process of power

transmission and transformation projects includes a preliminary
design review (including the budget, technical specifications, and
safety topics), a construction drawing review (including a rough
budget and major design changes), and other reviews of related
topics. It involves many fields of power construction, such as
primary electrical design, secondary electrical design, power line
design, line structure, and substation electrical design. It requires
strong professionalism, an understanding of complex processes, and
significant experience from reviewers. It is completed jointly by an
electric power design institute and a project review institute. The
specific process is shown in Figure 1. Some of the key elements of
substation, overhead line and cable projects are listed in Tables 1–3.

2.2 Data collection

In a power transmission and transformation project, the dataset
can be very large, stored in different formats, and from a variety of
sources. In general, heterogeneous data can be divided into three
types: a grid information model (GIM) that contains the device
properties and graphics information, text data, which usually comes
in Word or PDF format and contains almost all of the important
design details, and images that usually come from the construction
stage. According to existing storage regulations, data is stored in
various databases, which are indexed differently and lack unified
standards. Taking ultra-high voltage (UHV) projects as an example,
the various data types are shown in Figure 2. Geographic
information is the basis for constructing a substation or overhead
lines. It mainly contains altitude information, lightning area, wind
speed and so on. GIM model is a 3D visualization data. It is
constructed based on Grid Information Model (GIM) standard.
Design data is the data generated from the design progress. It mainly
contains two types of data: preliminary design report and equipment

FIGURE 1
The power transmission and transformation project recheck flow chart.
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TABLE 1 Part of substation projects review key elements.

First-level evaluation indicators Second-level evaluation indicators

Main electrical wiring Voltage levels at all levels of substations

Wiring form

Circuit breaker of main transformer

Isolating switch of high-resistance loop

Main equipment selection 50 kA, 60 kA

Transformer type

Neutral point DC blocking device

Shunt reactor

Reactive power compensation equipment

Short circuit current 50 kA for a 500 kV voltage level

60 kA for a 1,000 kV voltage level

Power distribution device Power distribution device selection

Device layout

Insulation Grounding switch

Data

Station electricity Station electrical wiring method

Station power capacity

Cable Low voltage power cable

Control cable

Communication cable

TABLE 2 Part of the overhead line projects review key elements.

First-level evaluation indicators Second-level evaluation indicators

Overhead line path Overhead line path selection

Overhead line corridor width

Crossing point selection

Weather condition Wind speed

Ice thickness

Strong wind area

Ground wire selection Maximum allowable temperature of conductor

Ground conductor excess length

Overhead line transposition Transposition method selection

Insulation Demarcation of polluted areas

Suspension insulator string creepage distance

Suspension insulator string type selection

Anti-icing flash measures

Power distribution device Power distribution device configuration method
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inventory. Association hook relationship is an index type data which
gives clear connection between a specific document and its storage
name. Technical and economic data mainly concerns financial data

in the whole construction progress. Engineering technical indicators
are key specification in a project, such as rated voltage, quantity of
transformers and so on. Engineering research materials are new
technology and new equipment used in a specific project. Post-
project evaluation data is an important part in the progress of project
acceptance. It contains a check list of all the indicators for a project.
Engineering features specifies the distinguish aspects from other
projects, for example, a project is constructed in a high-altitude area.
Considering reliability improvement for the energy system, not all
these data are used.

2.3 Graph construction

A knowledge graph is an undirected graph composed of nodes
and edges. The nodes can store equipment and attribute variables,
and the edges can store the relationships between variables.
Constructing a knowledge graph mainly consists of two steps:
ontology design and knowledge extraction. Ontology design
defines the types of entities and relations in a conceptual view,
defining multiple ideas, entity and relation types, and mapping rules
between entities. It provides a guide for knowledge extraction.
Knowledge extraction is the key technology used to construct the
data layer of a knowledge graph and mainly consists of two steps:
named entity recognition (NER) and relation extraction (RE).
Named entity recognition, also known as proper name
recognition or named entities, refers to the identification of
entities with specific meanings in text, for example, the names of
people, place names, and organization names, or properties such as
quantity, length, and width. Relation extraction is a process of
extracting triples such as (subject, relationship, object) from a
text corpus. It has two tasks: identify subjects and objects in the
text corpus and determine which relationship these two entities
belong to. As shown in Figure 3, a knowledge graph contains two
layers: a data layer that is the result of NER and RE, and a concept

TABLE 3 Part of the cable projects review key elements.

First-level evaluation indicators Second-level evaluation indicators

Cable path Cable path selection

Cable corridor width

Crossing point selection

The distance between cables and cables, pipelines, roads, structures, etc.

Layout Layout selection

Cable type and cross-section selection Cable type

Insulation shielding

Metal sheath

Cable armoring

Outer protective cover

Shield grounding Shield grounding method

Cable laying 500 kV layout method

330 kV layout method

FIGURE 2
UHV project data types.
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layer that represents the ontology design. Orange and blue ovals
denote the entity types and instances, and straight lines with arrows
denote relationship instances whose types are pre-defined in the
concept layer. The remainder of this section will elaborate on the
ontology design and knowledge extraction in UHV projects.

There are generally three methods for constructing knowledge
graph ontology: top-down, bottom-up, and a combination of the
two. In the domain of UHV construction projects, a clear
framework of data structure exits according to procedures and
specifications issued by power grid companies. However, there are
two problems which could affect the accuracy of the ontology: a rather
rough framework and the gradually used new equipment. To achieve
better knowledge extraction accuracy, a combination of the two
methods is used to construct the UHV project knowledge graph
ontology, also taking expert experience and data characteristics into
consideration. Such knowledge graph ontology architecture is believed
to provide better performance when it comes to meeting the needs of
different downstream applications, such as searching and project
reviewing. As shown in Figure 4, the ontology of UHV projects
mainly consists of four parts: basic information, design company,
substation, and line. The basic information includes the name of the
project, the construction scale, the natural conditions, and the project
classification, which are the properties of the project. The design
company information describes the basic information related to the
company that makes the preliminary design plan, which is important
because different companies have different design preferences, though
important information such as technical indicators should be contained
in the knowledge graph. Substation and line are two key parts of the
knowledge graph. According to current national, industry, and
enterprise standards and other specifications, to evaluate the
feasibility of a project, the most important consideration is the
equipment type and quantity. Analysis of the preliminary design
report shows that the main substation equipment can be divided

into six categories: electrical primary parts, electrical secondary parts,
relay protection, telecontrol equipment, heating, ventilation and air
conditioning (HVAC) equipment, and communication equipment. The
line part consists of power towers and overhead lines. All of these pieces
of equipment should have two properties, equipment type and quantity,
which are not shown in Figure 4. Table 4 shows some entity examples in
a concept layer.

Knowledge extraction refers to extracting the knowledge
contained in different data sources and storing it as triples in
knowledge graphs. As shown in Figure 5, the initial step of
knowledge extraction is data cleaning, whose purpose is to
remove duplicate information, correct errors, and enforce data
consistency. Since UHV project data comes from different
sources, NER and RE are based on various data formats, which
could be classified as structured data, semi-structured data, and
unstructured data. Structured data refers to a kind of data that can be
represented and stored in a two-dimensional form using a relational
database. It is usually stored in row units, with one row of data
representing the information on an entity, and the attributes of each
row of data being the same. As the most important data form in
UHV projects, structured data contains enormous amounts of
information on equipment, particularly for properties such as
equipment type and quantity. Semi-structured data is a form of
structured data that does not conform to the data model structure
associated with a relational database or another data table form, but
contains relevant tags to separate semantic elements and classify
records and fields. To extract entities and relations from these two
kinds of data formats, various rules can be constructed based on
expert experience. For unstructured data, deep learning methods
should be used. As shown in Table 4, some entities in unstructured
data are very long and an entity nesting problem can be observed.
For example, the ‘Beijing 1,000 kV substation main transformer
expansion project’ is an entity of the ‘Name’ type, while ‘Beijing’

FIGURE 3
Two views of a knowledge graph.
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could also be regarded as an entity of the ‘Location’ type. To handle
this problem, nested NER algorithms should be taken into
consideration, such as Global Pointer (Su et al., 2022). As for RE
problem, we use a combination of rule-basedmethod and supervised
learning method. Considering some simi-structured data such as
equipment inventory, we constructed several rules to extract
relationships between entities. For example, a sentence describing
the attributes of transformer may be like “The rated voltage of the
transformer is 1000 kV”, then the relationship between
“transformer” and its attribute “1000 kV” is “rated voltage”. For
those relations that cannot be extracted by rules, we treated the RE

problem as a classification problem. Specifically, a pair of entities
could be classified to several pre-defined relation types including
non-relation type. During this progress, the type of the entity should
also be treated as an input which could improve the accuracy of
the algorithm.

3 Anomaly detection based on DIET

In this section, the proposed anomaly detection framework
DIET is elaborated on in detail. Its architecture is shown in

TABLE 4 Entity examples in a concept layer.

First-level concept Second-level concept Entities Quantity

Basic information Name Beijing 1,000 kV substation main transformer expansion project -

Basic information Classification Expansion project -

Newly construction project

Basic information Construction scale Transformers 4

Basic information Construction scale High voltage shunt reactor 10

Substation Electrical primary part SF6 fully enclosed combined electrical appliances 2

Substation Electrical primary part Voltage transformers 6

Substation Electrical secondary part Electricity meter 6

Substation Relay protection Breaker 20

Substation Telecontrol equipment Power cable 100

Substation HVAC equipment Fire extinguisher 4

FIGURE 4
The ontology of the UHV project.
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Figure 6. As with conventional anomaly detection models, DIET is
an unsupervised model based on GCN, which mainly consists of
three components: (1) a representation layer, which leverages
multiple GCN layers to embed the given attributed network
based on a skip connection mechanism; (2) a decoder layer,
which reconstructs structural information and attributes
information from a unified representation generated from the
representation layer; (3) an aggregator layer, which attempts to
detect anomalous nodes by aggregating three components:
restructure errors in the structure and attributes, and outlier
characteristics within a specific node set. After multiple

iterations, the nodes are ranked according to their anomaly
scores. The larger the score is, the more likely the samples are to
be anomalies.

3.1 Problem analysis and definitions

As elaborated on in Section 2, a knowledge graph is a digital
structure that represents knowledge as concepts and relationships
between concepts. It can be represented in two common ways:
attributed networks and RDF triples. Considering the flexibility of

FIGURE 5
A UHV project knowledge graph knowledge extraction flowchart.

FIGURE 6
The proposed deep skip-connection framework DIET for anomaly detection on attributed networks.
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representation and rich algorithms, attributed networks are used to
model knowledge graphs. The search for knowledge graph errors is
transformed into anomaly detection on attributed networks. Unlike
conventional anomaly detection problems, subgraphs constructed
on domain data often have similar structures and attributes, but
nodes of the same type have no connections with each other. For
example, the number of transformers in a 1,000 kV substation
construction project in Beijing is the same as that in Shanghai,
while the two nodes are separated in different sub-graphs.
Moreover, deep GCN networks with multiple layers can lead
to an over-smoothing problem, while a single GCN layer can only
aggregate information from neighboring nodes. Taking these two
problems into consideration, a deep skip connection framework
for multi-type anomaly detection on attributed networks is
proposed, called DIET for attributed networks. In this section,
the attributed networks and anomaly detection problem
are defined.

DEFINITION 1. (attributed network) An attributed graph G(V, E, X)
consists of three components: (1) the set of nodesV= {v1, v2, v3,. . ., vn}∈ n;
(2) the set of edges E, where |E| = m; and (3) the attribute matrix X,
where the ith row denotes the feature vector of the attributes of node i.
In addition, an adjacency matrix is defined asA of graph G, where aij =
0 if there is no edge between node vi and vj. Otherwise, aij = 1.

DEFINITION 2. (anomaly detection) Given an attributed graph
G(V, E, X), the task is to detect nodes that differ from the majority of
nodes in terms of structure and attributes. More formally, an order
of nodes is generated as U = {u1,u2,. . .,u3} from the anomaly scores
using a score function, which is used to classify the sample vi based
on the threshold λ, as shown in Eq. 1:

yi � 1, if i≤ λ
0, if i> λ{ , (1)

where yi is the label of sample vi, 0 is the normal node, and 1 is the
anomalous node.

3.2 Representation layer

GNN is a powerful deep-learning framework for solving image-
related and graph-related problems. Each node in the graph sends its
feature representation to nodes within its neighborhood, and after
multiple iterations, a feature matrix is obtained for downstream tasks.
One of the most eminent variants of GNN is the deep convolutional
neural network known as GCN, the core idea of which is to update the
feature vector of node vi denoted by hi via recursively aggregating
information from its neighboring nodes vj. The process can be
represented in the following Eq. 2:

hl+1
i � σ ∑

vj∈N vi( )aijW
l+1hl

j( ), (2)

where σ is a non-linear activation function such as RELU,N (vi) are
the neighboring nodes of vi, aij is the (i, j)-th element of the
symmetric normalized Laplacian matrix Â, which can be
obtained as Â � D−1

2(A + In)D−1/2, and Wl+1 is a layer-specific
trainable parameter matrix. The output matrix of the (l+1)-th
layer can be denoted as Eq. 3:

H l+1( ) � σ ~D
−1
2 ~A ~D

−1
2H l( )W l( )( ) (3)

As shown in the above two equations, GCN-based neural
networks are message-passing neural networks, which have a
strong ability to embed nodes into a low-dimensional dense
space. Several research results (Zhao and Akoglu, 2019; Huang
et al., 2020; Yang et al., 2020) have shown that despite its
outstanding feature expression ability, a GCN is unable to
capture long-distance dependencies between nodes, which has led
researchers to explore deep frameworks of multiple layers. However,
GCNs and their variants are essentially low-pass filters for graph
signals. As the number of layers increases, information can easily
become over-smoothed and indistinguishable, which may affect the
anomaly detection performance. Therefore, to address the problems
mentioned above, a skip connection mechanism is applied in the
framework. Specifically, the input of the (l+1)-th layer (l > 1) is a
combination of the output of the l-th layer and the (l-1)-th layer,
which can be represented as Eq. 4:

H l+1( ) � σ ~D
−1
2 ~A ~D

−1
2 H( l( ) +H l−1( ))W l( )( ) (4)

Obviously, an additional input can improve the
representation ability.

3.3 Decoder layer

The output of the representation layer is a unified representation
matrix Z, where each row Zi is a feature vector of node vi. To detect
anomalous nodes in attributed networks, the network structure and
attribute matrix are reconstructed to calculate residuals with the
original matrices. Specifically, two decoders are designed: a structure
decoder and an attribute decoder.

The structure decoder takes the latent representation of each
node as input and then reconstructs an adjacency matrix Â by
calculating the scalar product between them with an activation
sigmoid function as presented in the following Eq. 5:

Â � sigmoid ZZT( ) (5)

The attribute decoder aims to obtain the attribute matrix of the
original knowledge graph based on the representation matrix Z. To
be more specific, a simple fully-connected network as presented in
Eq. 6 is used to obtain the original attribute information:

X̂ � σ ZW + b( ), (6)
where W∈d1×d2 , d1 is the dimension of the feature vector of the
representation matrix Z, d2 is the dimension of the feature vector of
the original attribute matrix X, and b is the corresponding
bias parameter.

3.4 Aggregator layer

After obtaining the reconstructed adjacency matrix Â and the
attribute matrix X̂, an anomalous score of each node is calculated
as an indicator of the anomaly. Considering the clustering
characteristics of the nodes of the same type, a term is added
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to the conventional objective function. To guarantee the
embeddings of nodes in each subgraph are calculated using
the same model, virtual nodes such as the basic information,
substation, line, and design company can be regarded as joint
nodes to ensure all subgraphs can be combined into a large
attributed network, which contains the complete history of the
same project type. Specifically, the objective function contains
three distinct components: a structural reconstruction error, an
attribute reconstruction error, and the mean errors of the same
node types.

Structural reconstruction error. Taking the original and
reconstructed adjacency matrix A and Â as input, the structural
reconstruction error can be denoted as Eq. 7:

RS � A − Â (7)

For a certain pair of nodes vi and vj, if their connective
information can be estimated through the encoder-decoder
process, there is a low probability of a structural anomaly. If the
connectivity information is different between these two matrixes, it
suggests that there may be an anomaly.

Attribute reconstruction error. Similar to the structural
reconstruction error, the residual of X and X̂ is used to calculate
the attribute reconstruction error as presented in Eq. 8:

RA � X − X̂ (8)
Mean error. Due to the different entity types of the nodes,

such as transformers, isolating switches, and breakers, the
attribute matrix is divided into multiple sets. Given
V′ � v1, v2, . . . , vm{ }, where vi all belong to the same entity
type, vi could belong to a different subgraph from vj. Then,
the clustering center of V′ is calculated using the K-nearest
neighbors (KNN) algorithm, which can be denoted as u′. Note
that due to the fact that all nodes in the set share the same type,
the number of clustering groups should be fixed to 1. The mean
error can be denoted as Eq. 9:

RM � X̂ − U (9)
Until now, three components have been defined considering the

reconstruction errors and mean errors within each group. To jointly
determine the probability of whether a node is an anomaly or not,
the objective function of the proposed deep GCN framework can be
formulated as Eq. 10:

L � w1RS + w2RA + w3RM

� w1 A − Â
���� ����2F + w2 X − X̂

���� ����2F + w3 X̂ − U
���� ����2, (10)

where w1, w2, w3 are weight parameters that balance the impacts of
each component, ‖ · ‖2F denotes the simple Frobenius norm, and
‖ · ‖2 denotes the Euclidean distance. To find anomaly nodes, we
rank scores from large to small and the largest ones are considered
as anomalies.

4 Case study

In this section, the proposed deep skip connection model DIET
is performed on an attributed network that is constructed from a
power grid infrastructure project dataset. The content mainly

consists of four parts: dataset setup, experimental settings,
experimental results, and parameter analysis.

4.1 Dataset setup

As was elaborated upon in Section 2, the UHV knowledge graph
is transformed into an attribute network and is adopted as an input
in the experiment. The UHV dataset contains 30 graph samples,
which all represent new substation construction projects. Every
graph represents a specific project, containing an average of
129 nodes and 128 edges.

As all the samples are unlabeled and there is no ground truth of
anomalous nodes in the UHV knowledge graph, some anomalies
need to be manually injected into the attributed network to get
some negative samples. To be more specific, two anomaly injection
methods are leveraged to generate structural anomalies and
attribute anomalies separately. For structural anomaly injection,
the method introduced by Ding et al. (2019) is adopted to inject
small disturbances into the adjacency matrix. The idea behind this
approach is that a fully connected subgraph has a higher
probability of being a group of anomalous nodes. Thus, m
nodes are selected randomly and aij = 1 is enforced in the new
adjacency matrix. Considering the fact that the ratio of positive
and negative samples could affect the accuracy of the experiment,
this process is iteratively repeated n times, thus generating m×n
structural anomalies in the adjacency matrix. To be more specific,
the number of fully connected nodes m is fixed to 10, because
analysis of the UHV knowledge graph shows that there is no
complete graph whose size is larger than 10. The number of
iterations n is set to 38, which ensures the proportion of
structural anomalies is roughly 10%. For attribute anomaly
injection, the method from Song et al. (2007) is improved to
generate anomalies in the attribute matrix. Instead of picking
nodes from the maximum Euclidean distance to the reference
node, a statistical method is adopted to ensure the quality of
anomalous nodes. Therefore, for each node vi, k nodes of the
same type are randomly selected. To make sure that the number of
attribute anomalies is equal to that of structural anomalies, k is
fixed tom×n. Denoted asX′ � x1, x2, . . . , xk{ }, the data is fitted to a
Gaussian distribution using the following two Equations 11, 12:

~u � ∑k
i�1
xi (11)

σ �
														∑k

i�1 xi − u( )2/n√
, (12)

where ~u and σ denote the sample mean and standard deviation,
respectively. Thus, the embeddings of the anomalous nodes should
be three standard deviations away from themean. In the experiment,
considering the number of nodes that each type possesses, the
number of samples k is set to 50.

4.2 Experiment settings

The goal is to detect anomalous nodes in attributed networks
with higher accuracy and a lower false alarm rate, so several
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comparative experiments are conducted with five state-of-the-art
algorithms to achieve outstanding results in anomaly detection. In
addition, to better understand the proposed DIET method and
evaluate the model performance properly, three commonly used
evaluation matrices are adopted. A detailed analysis is
provided below.

The proposed DIET framework is compared with the following
anomaly detection algorithms.

DOMINANT (Ding et al., 2019) detects anomalous nodes
with a three-layer GCN encoder without a skip connection
mechanism. Similarly to the proposed DIET framework, it
reconstructs structural and attribute information separately
and then uses an anomaly score to rank nodes, considering
nodes with rankings higher than a predefined threshold
as anomalies.

RESGCN (Pei et al., 2021) leverages a residual-based
attention mechanism to alleviate the over-smoothing issue of
the multi-layer GCN network. Specifically, it uses several fully
connected layers to embed an attribute matrix and output a
residual matrix R to aggregate with the output of the GCN in
each layer.

ALARM (Peng et al., 2020) takes multi-view characteristics into
consideration, with each view embedded with one separate GNN
encoder. A weighted aggregation method performs better than a
concatenation aggregation method on most open-source synthetic
datasets. Thus, the ALARM-weighted algorithm is used as a
comparison algorithm.

COMGA (Luo et al., 2022) makes use of the community
characteristic present in the attributed network and a tailored
deep graph convolutional network is proposed to tackle
this problem. The gateway module improves the model
performance.

ANOMALYDAE (Fan, Zhang, and Li, 2020) follows the natural
intuition that the fusion of structural and attribute information
could lead to performance improvements. Therefore, a dual
autoencoder structure is proposed in which the decoder process,
node embedding, and attribute embedding are combined using the
inner product.

To effectively evaluate each model, three evaluation indicators
are used: the receiver operating characteristic with the area under the
curve (ROC-AUC), precision@K, and recall@K.

ROC-AUC has been a frequently used evaluation indicator in
most previous anomaly detection modules. The ROC curve is a
curve on a two-dimensional plane, where the X-axis is the false
positive rate (FPR) and the Y-axis is the true positive rate (TPR). The
definitions of the FPR and TPR are elaborated on below in Equations
13, 14. The AUC is a number between 0.1 and 1 that represents the
area under the ROC curve. The AUC can intuitively evaluate the
quality of a model. A higher AUC indicates a method with better
performance.

FPR � FP
FP + TN

(13)

TPR � TP
TP + FN

, (14)

where FP is an abbreviation of false positive and represents the
number of negative samples that are predicted as positive samples;
TN is an abbreviation of true negative and represents the negative

samples correctly predicted as negative samples; TP is an
abbreviation of true positive, which represents the positive
samples correctly predicted as positive samples; and FN is an
abbreviation of false negative, which represents the number of
positive samples that are predicted as negative samples.

Precision@K represents the precision of the first k items in the
list, that is, the proportion of true samples in the top k ranking
nodes. Considering the fact that a ranking mechanism is used to
detect anomalies in the experiment, precision@K is a useful
indicator for evaluating the performance of a model. With a
range of 0–1, a larger precision@K represented in Eq. 15
indicates better performance of the model.

Precision@K � TP@K

TP@K + FP@K
(15)

Recall@K represented in Eq. 16 is similar to precision@K, but
represents the proportion of correct predictions among all results.

Recall@K � TP@K

TP@K + FN@K
(16)

For all the comparison algorithms, the default
hyperparameters are taken and a large number of experiments
are conducted to achieve the best results. For the proposed DIET
framework, the objective function is optimized with the Adam
optimizer and trained for 100 epochs to fit the model parameters
to the given dataset. The representation layer is made up of three
GCN layers, in which the size of the trainable matrices of the
three GCN layers are 192 × 64, 64 × 64, and 64 × 64. Note that
192 is the number of input dimensions of the feature matrix. In
addition, the learning rate of the model is set to 0.005. All the
experiments are conducted on a personal computer with an Intel
i7-11800H CPU and an NVIDIA GeForce RTX
3070 Laptop GPU.

4.3 Experimental results

In this section, six experiments are conducted on a UHV-
attributed network that includes five control groups and one
experimental group. The results are as follows. First, the ROC-
AUC results are presented in Figure 7. Then, the other two
evaluation indicators, Precision@K and Recall@K, are
illustrated in Tables 5, 6. As can be easily observed, the
proposed DIET method outperforms all the other comparison
algorithms. For the GCN over-smoothing problem, the DIET
leverage skip connection mechanism is better than RESGCN,
which uses a residual-based attention framework. This shows
that an aggregation of the output from the former layer, which
contains both structural and attribute information, can achieve
better performance than using only the attribute matrix.
Furthermore, the skip connection mechanism can alleviate the
vanishing gradient problem to a certain extent. In addition, it can
be seen from the original attributed network that the attributes of
each node represent different aspects of the entity. For example, a
node with the type transformer has two attributes that can be
represented in a list: {“Quantity”: 4; “Device model”: “ODFPS-
1000000/1000”}, in what was called a multi-view problem by
Peng et al. (2020). Intuitively, obtaining the embeddings of each
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attribute separately could give the cascading GCN model a more
precise input, thus achieving better performance. Results from
the comparison of the proposed model with ALARM show that a

attribute separation based on different characteristics could be
ignored because a distance-based method which apdopts the
residual to each type of nodes could achieve better results.
Results from DOMINAT show that an encoder-decoder
framework is suitable for anomaly detection problems. As the
GCN has a strong ability to embed a graph-based dataset, it is
better to take the whole attributed network with structural and
attribute information as input rather than treating them
separately.

4.4 Parameter analysis

The reason that DIET achieves good performance is the
introduction of the skip connection mechanism in the model. It
enhances the information interaction between GCN layers and
alleviates over-smoothing problems. In this section, the impact of
different numbers of GCN layers is investigated and the result is
shown in Figure 8. It can be concluded that as the number of GCN
layers gradually increases, the AUC first gradually increases and
then levels off. The highest AUC value appears when the number of
layers is set to three. Although a study (Li et al., 2019) on the GCN
depth showed that it could stack over 50 GCN layers and achieve a
3.7% boost in performance, the results of the experiments show that
three layers of GCN can achieve the best results. This is probably
because the dataset in the experiment is relatively simple, and three
GCN layers are sufficient to get abundant information for
anomaly detection.

FIGURE 7
ROC curve and AOC values of all algorithms in the UHV dataset.

TABLE 5 Precision@K of different algorithms on the UHV dataset.

K 100 200 300 400

DOMINANT 0.68 0.70 0.65 0.59

RESGCN 0.56 0.61 0.52 0.48

ALARM 0.55 0.59 0.50 0.46

COMGA 0.59 0.65 0.57 0.51

ANOMALYDAE 0.65 0.68 0.61 0.55

DIET 0.72 0.76 0.68 0.62

TABLE 6 Recall@K of different algorithms on the UHV dataset.

K 100 200 300 400

DOMINANT 0.21 0.24 0.28 0.30

RESGCN 0.08 0.10 0.15 0.20

ALARM 0.05 0.09 0.13 0.19

COMGA 0.11 0.15 0.17 0.22

ANOMALYDAE 0.18 0.22 0.23 0.28

DIET 0.25 0.29 0.35 0.42
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5 Conclusion

With the rapid development of energy systems, reliability
improvement is becoming an important topic. Traditional
reliability improvement methods mainly contain two aspects: the
analysis of power grid structure and the operation of power grid.
Although many researchers have shown that the operation and
scheduling affect the frequency and voltage fluctuation, which exert
great influence in power supply reliability, the power grid structure
and equipment are the hardware basics of energy systems. In this
paper, considering the increasing amount of data accumulated from
existing power grid projects, we proposed an artificial intelligence
based method to deal with anomaly detection problem in order to
improve reliability in the aspect of power grid structure. The main
contributions are as follows:

1) A knowledge graph is used as the basis for data modeling and
knowledge reasoning. Specifically, heterogeneous data
accumulated from different sources are converted to
structured data and modeled as a knowledge graph. This
kind of data is also easy for downstream applications such
as data search and inference.

2) A skip connection mechanism is leveraged. Multiple GCN
layers could lead to over-smoothing problem. In this
context, we use output from the layer Li-2 as input of Li.

3) A distance-based indicator is added to the objective function. This
indicator could introduce the information from the same type of
subgraphs and improve the accuracy of the algorithm.

To evaluate the performance of our proposed algorithm DIET,
we compared it with five different GCN-based methods. DIET
clearly achieves the highest AUC scores for the UHV dataset. An
additional analysis of the depth of the hidden layers has shown that
in some datasets with fewer samples, a simple three-layer-GCN
network is sufficient to achieve better results than other algorithms.

Specifically, the AUC from DIET for the UHV dataset is 0.82, which
represents an improvement over other algorithms of more than 12%.
Precision@K and recall@K show our method can detect anomalies
more quickly than the other comparison algorithms. In conclusion,
the proposed anomaly detection algorithm can help reduce data
errors in energy systems and help in improving the reliability of
energy systems.
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