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As the penetration of renewable distributed generation (RDG) continues to grow,
the stochastic and intermittent nature of its output imposes significant challenges
on distribution networks (DNs), such as source–load mismatch and voltage
fluctuations, which seriously affects the safety and reliability of the system.
Thus, this paper presents a stochastic optimal allocation method for a battery
energy storage system (BESS) in the DN, with the consideration of annual load
growth, BESS degradation, and DN operation, aiming tominimize the overall cost
of DNs and harvest more renewable energy. Based on the rainflow-counting
concept, BESS degradation is efficiently modeled and linearized to improve
solvability. Additionally, to address the uncertainties of RDG outputs and loads,
a stochastic optimization (SO) method is adopted. Furthermore, considering that
a large number of integer variables of the BESS allocation model may cause a
heavy computational burden, a feasibility pump-based solution algorithm is
introduced to accelerate the solving speed. Finally, the effectiveness of the
proposed BESS allocation method and the solution algorithm is verified on a
33-bus DN system through comparative analyses, showing high efficiency and
performance.
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1 Introduction

The integration of high penetration of renewable distributed generation (RDG) in a
distributed network (DN) can bring technical challenges, particularly the voltage rise and
line overload caused by the RDG power injection. These problems impose more stress on
traditional regulation equipment in DN and affect the economy and stability of the
distribution system.

Installing battery energy storage systems (BESSs) in DN is one of the promising
solutions. BESS characterizes the features of high flexibility, rapid response, and less
geographical restriction, which can effectively dampen the output fluctuation and
intermittency of large-scale renewable energy (Hidalgo-León et al., 2017). However, the
placement and sizing of BESS are two crucial factors that influence the performance of BESS
application (Li et al., 2023; Yang et al., 2023). Given this, the optimal allocation of BESS in
DN has received significant attention (Zhang and Wang, 2022).
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In general, the existing literature on BESS allocation primarily
focuses on the economic or security aspects of DN, with system
operating constraints (Mohseni-Bonab et al., 2020; Zheng et al.,
2020; Zhao et al., 2023). Meng et al. (2023) proposed a bi-level model
for minimizing the total cost of DN based on the AC/DC hybrid DN
topology, but it does not consider the placement optimization of
BESS. Additionally, an optimal sizing and siting strategy of BESS in a
high wind-penetrated power system has been suggested by Zhang
et al. (2023a) to minimize the BESS investment cost. Taha et al.
(2022) developed a multi-objective optimization planning model to
minimize the average power loss and voltage fluctuation by
optimizing the allocation of RDGs, BESS, and capacitor banks.
Meanwhile, the three-phase power unbalance of DN is
considered an objective for BESS allocation, and the future PV
installation is treated as an uncertainty by Wang et al. (2021).
However, these studies do not account for the impact of BESS
degradation. In practice, unregulated charge or discharge behaviors
can lead to battery lifespan deterioration, which can have adverse
effects on the long-term reliable operation of BESS (Wang
et al., 2020).

Currently, extensive research has been conducted on BESS
degradation. Farzin et al. (2016) and Ju et al. (2018) investigated
the lifespan degradation of BESS and found a direct correlation
between the lifespan and depth of discharge (DOD). Mohsenian-
Rad et al. (2016) restricted the number of cycles that a BESS can
operate per day to ensure the battery lifespan, but it lessens the
operational flexibility of BESS. Moreover, Zhang et al. (2021a)
incorporated BESS degradation costs into a robust optimization
(RO) model, and it assumes the uniform costs for each discharge
cycle. In addition, the degradation cost caused by each discharge
cycle is considered the function of DOD in Wang et al. (2020),
enabling the calculation of the varying degradation costs of BESS.
However, the aforementioned literature simplified the quantification
of the number of BESS discharge cycles by equating it with the
number of discharge, which may not accurately reflect the complete
discharge cycle. In order to achieve the precise quantification of the
total number of complete discharge cycles in BESS, the rainflow-
counting method is commonly employed in practical engineering
applications (Huang et al., 2021). This method emulates the flow of
raindrops by analyzing the charge and discharge trajectory of BESS,
thereby facilitating an accurate determination of the BESS cycle
count (Xu et al., 2018a). However, it is important to note that the
rainflow method lacks an analytical mathematical expression and
cannot be directly integrated into the BESS allocation problem
(Schneider et al., 2021). To address this limitation, the BESS
degradation model has been decomposed in He et al. (2016) to
iteratively optimize the BESS market quotation. However, this
approach introduces numerous nonlinear terms, such as power
functions and absolute value functions, which may lead to
increased computational complexity. Additionally, Xu et al.
(2018a) proposed a BESS operating model based on the rainflow
method to optimize its charge and discharge for participation in the
auxiliary frequency regulation market, but the newly introduced
binary variables also add to the computational burden. Moreover,
the deterioration of BESS capacity is also a notable consideration in
the allocation problem of BESS (Ochoa-Barragán et al., 2023).
However, there is a lack of inclusion of BESS capacity
degradation in the operational models of the existing BESS

allocation literature. Therefore, this study aimed to
comprehensively account for the cost of BESS degradation based
on the rainflow method in its allocation model. Additionally, the
impact of capacity fade will be incorporated into the BESS
operational model to reflect the practical situation for the BESS
long-term operation.

Moreover, the uncertainties of RDG outputs and loads are also
highly influencing the BESS planning stage. To address this issue,
RO (Zhang et al., 2023b) and stochastic optimization (SO) (Hua
et al., 2022) methods are often applied. RO constructs the
uncertainty sets based on the upper and lower limits of
uncertainty fluctuations and search for the worst case within the
uncertainty sets to obtain an optimal solution under the worst case
of uncertainty realization. Wang et al. (2021) proposed an RO
allocation method for BESSs to improve the hosting capacity of
the unbalanced three-phase DNs. However, the result obtained by
the RO method could be conservative. On the other hand, Li and
Grossmann (2021) and Pamshetti et al. (2022) introduced the SO
method which produces numerous sampled scenarios to model the
uncertainties based on their probability distribution and optimizes
the decision variables with these sampled scenarios. In Li and
Grossmann (2021), the SO method is compared with the RO
method, and it concludes that SO is efficient when the goal is to
optimize the expected outcome, and the problem can be modeled
using probability distribution. Pamshetti et al. (2022) applied SO to
solve the allocation problem of soft open point and BESS,
considering the uncertainties of PV and load. The scenarios are
produced using Monte Carlo simulation and employ the K-means
clustering technique to determine the reduced scenarios with high
quality and diversity. Considering that planning tends to find the
optimal target expectation and the SO method is in line with this
feature, so it is adopted in this paper.

Furthermore, the installation and operation of BESS, as well as the
power flow model, typically involve a large number of integer variables
and nonlinear terms (Cheng et al., 2023), which leads to a large
computational burden and solving time. This will become serious
with the application of SO, in which multiple scenarios are
generated to represent the uncertainty realization. Therefore, it is
necessary to explore an efficient solution algorithm. Some works
adopt second-order cone relaxation and piecewise linearization
methods to accelerate the computing speed (Shao et al., 2020;
Mohamad et al., 2021; Wang et al., 2022), but they are still unable
to efficiently address the issue caused by a large number of integer
variables. Fischetti et al. (2005) proposed a feasible pump (FP)
algorithm to deal with integer variables using a relax-and-rounding
strategy. This strategy is also successfully utilized by Zhang et al. (2021b)
to address the battery charge–discharge complementarity. Considering
the advantage of the FP algorithm, it is therefore applied to address the
integer variable problem in this paper.

Through the above literature review, it is found that the BESS
degradation model in the allocation problem is not fully modeled,
and the existing works do not comprehensively consider capacity
fade, BESS degradation, annual growth, and uncertainty of DG and
load in BESS allocation issues. Meanwhile, the integer problem in
BESS allocation cannot be efficiently solved. Thus, this paper
introduces a BESS allocation method in highly renewable-
penetrated DNs, considering the factors mentioned above. The
main contributions of this paper are summarized as follows:
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(1) A stochastic optimal allocation approach of BESS in high
renewable-penetrated DNs is proposed, aiming to minimize
the overall cost and improve renewable power
accommodation. The annual growth of RDG capacity and
loads, as well as their uncertainties, is fully considered.
Moreover, the battery degradation cost based on the
rainflow-counting method and capacity fade is accurately
modeled, and the nonlinear terms are efficiently linearized.

(2) To address the issue of slow solving speed due to numerous
integer variables in the proposed BESS allocation model with
SO, an FP-based algorithm is proposed. In this solution
algorithm, the original stochastic BESS allocation problem
is converted into a relaxed linear programming (LP) problem,
which provides an initial solution. Then, the FP-rounding
problem and integer flipping procedure are iteratively
implemented until the feasible integer solution is obtained.
The high efficiency of the proposed FP-based algorithm is
demonstrated in this case study.

2 Mathematical formulation

This section introduces the proposed BESS allocation model. It
not only determines the location and capacity of BESSs in DN but
also simulates the operation of BESSs and DNs.

2.1 Objective function

The objective function (OF) of the proposed BESS allocation
method is to minimize the total cost of DNs and harvest more
renewable energy, which is expressed as follows:

minOF � IC
︷︸︸︷A + OC +DC + EPC

︷�������︸︸�������︷B

+ EA
︷�︸︸�︷C

, (1)
where Part A in Eq. 1 represents the investment cost (IC) of BESS;
Part B stands for the total operating costs (e.g., operating cost,
degradation cost of BESS, and energy trading cost); and Part C
denotes the goal of renewable power accommodation.

First, the mathematical expression of IC is given as follows:

IC � EACbess ∑
i∈Ωbess

Cinv
E,bessE

bess
i,cap,1, (2)

where Ωbess represents the set of nodes for BESS installation;
EACbess represents the equivalent annual investment cost of
BESS, which can be defined in Eq. 3, where r represents the
discount rate and y is the BESS economic life. Cinv

E,bess denotes the
unit capacity cost of BESS, and Ebess

i,cap,1 indicates the installed
capacity of BESS.

EACbess � r 1 + r( )y
1 + r( )y − 1

. (3)

Meanwhile, Part B in Eq. 1 denotes the total operating cost of
DN, whose mathematical expression is determined as follows:

OC � ∑Y

y�1∑T

t�1365 COM
bess ∑i∈Ωbess

Pch
i,y,tη

ch
bess + Pdis

i,y,t/ηdisbess( )( ), (4)

EPC � ∑Y

y�1∑T

t�1365 Pbuy
t,y Pdef

t,y − Psell
t,y P

suf
t,y( ), (5)

DC � ∑
i∈ Ωbess

∑Y

y�1∑T

t�1∑J

j�1cjP
dis
i,y,t,j. (6)

Equation 4 represents the operation cost of BESS, Y is the
planning year, and T is the duration of a day in the planning
scenario. Pch/dis

i,t,y represents the charge/discharge power of BESS, and
ηch/disbess represents the charge/discharge efficiency.COM

bess represents the
operating cost per unit power of BESS. Equation 5 represents the
energy trading cost, Prbuy/sellt,y represents the buying/selling price, and
Pdef /suf
t,y represents the energy trading power of DN.
Equation 6 represents the degradation cost of BESS. In this paper,

considering that the amounts of energy charged and discharged from a
BESS are almost the same per day (Chen, 2023), for simplicity, we
assume that full-cycle aging degradation only occurs during the BESS
discharge stage of a cycle. As a result, the degradation cost of BESS can
be defined as the product of the discharge power Pdis

i,y,t.j and marginal
degradation cost cj of BESS. It is noted that, in order to mitigate the
impact of the nonlinear components of the BESS degradation model,
this study has utilized the piecewise linearization method to divide Pdis

i,y,t

into five segments (Pdis
i,y,t,j, j = 1,2,3 . . . 5), thereby approximating the

model. A detail explanation of DC can be found in Section 2.3.
In order to harvest more renewable energy in DN, penalty cost

coefficients CRDG are introduced to minimize the curtailment of RDGs.
Thus, the expression of the C component in Eq. 1 is shown as follows:

EA � 365∑Y

y�1∑T

t�1 ∑
i∈ΩRDG

CRDGP
RDG
ab,i,y,t( )( ), (7)

where ΩRDG represents the set of nodes for RDGs and PRDG
ab,i,y,t

represents the curtailment power of RDGs.

2.2 Allocation model of BESS

The general BESS allocation constraints are modeled as follows:

αiE
bess
cap,min ≤E

bess
i,cap,y ≤ αiE

bess
cap,max, (8)

∑
i∈Ωbus

αi ≤NBSL, (9)
0≤Pch

i,y,t ≤ 1 − βi( )P bess
max , (10)

0≤Pdis
i,y,t ≤ βiP

bess
max , (11)

0≤Pi,y,t

ch
dis τ≤Ebess

cap,max, (12)
Ebess
i,y,t � Ebess

i,y,t−1 + Pch
i,y,tη

ch
bessτ − Pdis

i,y,tτ/ηdisbess, (13)
Ebess
i,y,0 � Ebess

i,y,24, (14)
Ebess
i,cap,ySOCmin ≤Ebess

i,y,t ≤E
bess
i,cap,ySOCmax, (15)

where τ represents the time period; αi represents the binary decision
variable for BESS installation; NBSL represents the maximum
number for installation in DN; P bess

max represents the maximum
charge/discharge power of BESS; Ebess

i,cap,y represents the installed
capacity; and SOCmax /min represents the maximum/minimum SOC.
βi represents a binary variable that indicates the mode of charge or
discharge. If BESS is in the charge mode, βi will be 0, and if BESS is in
the discharge mode, it will be one.

Constraints (8) and (9) limit the maximum BESS allocation
power and the number of BESS installing positions. Constraints
(10)–(12) limit the BESS charge/discharge power and ensure that at
most one charge/discharge state can be active at each time interval.
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Equation 13 denotes the remaining energy of BESS after charge/
discharge at each time interval. Equation 14 ensures that the energy
in BESS at the last time of a day is equal to the initial energy, and
constraint (15) limits the BESS state of charge (SOC) within the
optimized upper and lower SOC limits.

2.3 Degradation model of BESS

2.3.1 Introduction of the rainflow-
counting method

Considering that BESS degradation is highly related to the
number of discharge cycles throughout its entire life cycle (Gräf
et al., 2022). In order to obtain the discharge cycle set M during
BESS operation, the rainflow-counting method is applied in practice
(Valentin et al., 2015). Figure 1 describes the process of cycle depth
obtained using the rainflow method. As an example, the BESS SOC
during the operation is shown in Figure 1A, and the result of a cycle
depth of BESS is shown in Figure 1B, which can be obtained by the
following sequence:

(1) Taking the first four points, namely, A, B, C, and D, their
distance is calculated: ΔSAB � |A − B|, ΔSBC � |B − C|, and
ΔSCD � |C −D|.

(2) If ΔSBC ≤ΔSAB and ΔSBC ≤ΔSCD, a full cycle of DOD ΔSBC
(B–C–B′) will be obtained. Therefore, B and C will be
removed and the calculation will be repeated with the
points of A, D, E, and F.

(3) If the cycle is not obtained, the calculation is shifted forward
and the calculation is repeated with points B, C, D, and E.

(4) The calculation will be repeated until no more cycles can be
found throughout the remaining profile.

According to the steps above, the three full cycles of depth 30%
(B–C–B′), 20% (E–F–E′), and 50% (A–B–B′–D–E–E′–G) are
obtained, as shown in Figure 1B. Thus, the cycle set M will
contain three discharge cycles: a 30% depth cycle of B–C, a 20%
depth cycle of F–E′, and a 50% depth cycle of D–E–E′–G.

Then, the overall degradation expense of BESS can be considered
the sum of the degradation costs incurred from each identified cycle
determined using the rainflow-counting method. This is articulated
as follows:

DC � ∑
m∈M

Lm, (16)

where M represents the set of discharge cycles during BESS
operation and Lm represents the degradation cost in the mth cycle.

2.3.2 Marginal degradation cost of BESS
The degradation of BESS during each discharge cycle is

associated with its DOD (Ju et al., 2018). To describe the
incremental degradation caused by different DODs, a cycle
depth aging stress function Φ(δi,t) has been defined (Xu et al.,
2017), where a typical curve is shown in Figure 2. In addition, for
the BESS allocation problem, in order to avoid nonlinear
constraints, tracking the BESS discharge power is easier than
DOD, so it is necessary to further explore the relationship
between incremental degradation and discharge power in each
cycle (Xu et al., 2018b).

In practical operation, if BESS is discharged from SOCup to
SOCend and later charged back to SOCup (or vice versa), this process
will be considered a discharge cycle, and the DOD δi,t and the
discharge power Pdis

i of this cycle can be expressed as | SOCup −
SOCend| and | SOCup − SOCend|Ebess

i,cap/τ, respectively, where Ebess
i,cap

represents the capacity of BESS. Then, during a cycle, assuming that
the BESS will discharge Pdis

i,t power from DOD δi,t−1 at time t. The
cycle depth of BESS at time t can be expressed in Eq. 17, and the
incremental degradation in this cycle is Φ(δi,t).

δi,t � 1

ηdisbessE
bess
i,cap

Pdis
i,t τ + δi,t−1. (17)

Then, to calculate the incremental degradation caused by
discharging power, we can consider the derivative of Φ(δi,t) with
respect to Pdis

i,t , substituting from Eq. 17 as follows:

∂Φ δi,t( )
∂Pdis

i,t

� dΦ δi,t( )
dδi,t

dδi,t
dPdis

i,t

� τ
ηdisbessE

bess
i,cap

dΦ δi,t( )
dδi,t

. (18)

FIGURE 1
Illustration of BESS cycle depth by rainflow algorithm. (A) Example of BESS operation profile. (B) Cycle depth of proposed BESS operation profile.
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Through Eq. 18, the incremental degradation brought by unit
discharge power is obtained. Additionally, considering that Φ(δi,t) is
a nonlinear function, for the sake of simplicity, this paper uses a
piecewise linearization method to construct an approximation
function Cp(δi,t). This function evenly divides the cycle depth range
(from 0% to 100%) into J linear segments to achieve an approximation.

Then, dΦ(δi,t)dδi,t
in Eq. 18 is expressed as follows:

dΦ δi,t( )
dδi,t

� dCp δi,t( )
dδi,t

�

k1 if δi,t ∈ 0,
1
J

[ ),
..
.

kj if δi,t ∈
j − 1
J

[ ,
j

J
)

..

.

kJ if δi,t ∈
j − 1
J

, 1[ ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (19)

where kj is the slope of the linearized function of the jth segment.
Finally, by converting the replacement cost R � rEbess

i,cap of BESS
into the marginal degradation cost, the finally cycle degradation cost
of BESS is expressed as follows:

cj � Rτ
ηdisbessE

bess
i,cap

kj � rτ
ηdisbess

kj, (20)

where r represents the unit replacement cost of BESS. Based on the
cycle degradation cost, the total degradation in the mth cycle is
expressed as follows:

Lm � cPdis
i,t,m, (21)

where Pdis
i,t,m represents the discharge power in the mth cycle and c

represents the set of the final cycle degradation cost cj(j � 1, 2, 3 . . . J).

2.3.3 BESS degradation model
It is worth noting that the cycle set M obtained based on the

rainflow method in Section 2.3.1 is derived from known trajectories
and does not have an analytical mathematical expression, which
presents challenges for its direct application within the allocation
model. To accurately calculate the degradation cost caused by
multiple discharge cycles during BESS operation, a BESS
degradation model is constructed, aiming to achieve the
approximation of the rainflow method (Xu et al., 2018a), whose
expression is shown as follows:

Pdis
i,y,t � ∑J

j�1P
dis
i,y,t,j, (22)

Pch
i,y,t � ∑J

j�1P
ch
i,y,t,j, (23)

0≤Pch
i,y,t,j ≤P bess

max , (24)
0≤Pdis

i,y,t,j ≤P bess
max , (25)

ebessi,y,t,j − ebessi,y,t−1,j � Pch
i,y,t,jη

ch
bessτ − Pdis

i,y,t,jτη
dis
bess, (26)

0≤ ebessi,y,t,j ≤ ~ei,j, (27)

~ei,j � 1
J
Ebess
i,cap,1, (28)

Ebess
i,y,t � ∑J

j�1e
bess
i,y,t,j, (29)

where j represents the segment interval divided by the piecewise
linearization method, as shown in Section 2.3.2. Pch/dis

i,y,t,j denotes the
charge/discharge power; ebessi,y,t,j represents the energy stored at time t,
and ~ei,j represents the upper limit of the energy stored in the
jth segment.

Equations 22 and 23 denote the equivalent charge and discharge
power, respectively. Constraints (24) and (25) limit the charge and
discharge power for each segment, respectively. Equation 26
represents the amount of energy stored in the jth segment.

FIGURE 2
Typical cycle depth pressure curve.

Frontiers in Energy Research frontiersin.org05

Zhang et al. 10.3389/fenrg.2024.1345057

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1345057


Constraints (27) and (28) set the upper and lower limits in the jth
segment, respectively, and the storage level of BESS is described
in Eq. 29.

Considering that Φ(δi,t) is convex, BESS will generally be
charged or discharged from the shallowest segment to the deeper
segment. Thus, constraints 22–29 can achieve a close approximation
with the rainflow method, and the total degradation cost during
BESS operating time is calculated in Eq. 6.

An example is shown to illustrate how the proposed BESS
degradation model can make a close approximation of the
rainflow method using the operation trajectory, as shown in
Figure 1. In this example, we assume the detail function of
Φ(δ) = 100δ2, and the number of segments J divided through
piecewise linear approximation function is 10. For illustration
and simplicity, the cost coefficient rτ

ηdis
bess

is also assumed as 1$/kW.
Consequently, the cycle degradation cost of BESS is expressed
as follows:

c � 1, 3, 5, 7, 9, 11, 13, 15, 17, 19[ ].

According to the rainflow method in Section 2.3.2, we observe
that the trajectory shown in Figure 1B has three discharging cycles of
30%, 20%, and 50% depth, and the total degradation cost is 38 $.
Then, we implement the operation profile based on the proposed
method and record the degradation cost during each time interval
through Eq. 6. The results are shown in Table 1.

In Table 1, the energy level of BESS is shown as a vector ej in
the third column, which is a 10 × 1 vector, and its energy level is
sorted from a shallower to deeper depth. Moreover, each segment
is normalized; if the segment is full, it will be one, and if the
segment is empty, it will be 0. Similarly, the discharge power of
each segment is also shown as a 10 × 1 vector in the fourth
column, and if the segment discharges 10% Ebess

i,cap power, it
will be one.

Through Table 1, we can find that, in the counting process of a
discharge cycle (such as D–E–F–G), if a charge behavior occurs
(E–F), the proposed model will restart discharge from the shallowest
segment in the next discharge behavior and recounting the DOD of
this new cycle until charge power is full released (F–E′). Then, the
model will continue to calculate the DOD of the original cycle based
on the previous discharge depth (E’) until the next charge behavior
that occurs beyond the current DOD. This process is similar to the

rainflow method, and the example results in the total degradation
cost of 38 $ in both the proposed model and rainflow method.

2.4 Deterministic optimal allocation model
for BESS

By combining the above BESS model and objective function, the
optimal allocation model of BESS is obtained as follows:

minOF � IC + OC +DC + EPC + EA. (30)
subject to (8)–(15) and (22)–(29)

Pi,y,t � PLD
i,y,t − PRDG

i,y,t − Pdis
i,y,t + Pch

i,y,t, (31)
Qi,y,t � QLD

i,y,t, (32)
0≤PRDG

i,y,t ≤PRDG,pre
i,y,t , (33)

PRDG
ab,i,y,t � PRDG,pre

i,y,t − PRDG
i,y,t , (34)

∑
i∈u j( ) Pij,t � ∑

i∈v j( ) Pik,t − Pj,t, (35)
∑

i∈u j( ) Qij,t � ∑
i∈v j( ) Qik,t − Qj,t, (36)

Vj,t � Vi,t − rijPij,t + xijQij,t

V0
, (37)

Umin ≤Ui.t ≤Umax, (38)
PRDG
i,y,n � εRDG

y PRDG
i,y−1,n, (39)

PLD
i,y,n � εLDP

y PLD
i,y−1,n, (40)

QLD
i,y,n � εLDQ

y QLD
i,y−1,n, (41)

Ebess
i,cap,y � εbessy Ebess

i,cap,y−1, (42)

where Eqs 31 and 32 represent the injected power at node i, and
PLD
i,y,t, Q

LD
i,y,t, and PRDG

i,y,t represent the output power of the load and
RDGs. Constraints (33) and (34) denote the curtailment constraints
of RDGs, and PRDG,pre

i,y,t represents the predicted power. Equations
35–37 represent the power flow model of the system, and Eq. 38
limits the voltage value of bus nodes. Equations 39–41 propose the
annual growth model for loads and RDGs in the system, where εRDG

y ,
εLDP
y , and εLDQ

y represent the annual growth rates for RDGs and
loads. Equation 42 represents the degradation of BESS capacity, and
εbessy represents the annual capacity decay rate.

TABLE 1 Example of the proposed BESS degradation counting model.

Point SOC/% ej Pdis
j Degradation cost / $

A 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 50 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C 20 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 9

D 60 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 20 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 16

F 40 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 10 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 13

Total — — — 38
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2.5 Stochastic optimization for the BESS
allocation model

To address the uncertainties of RDGs and loads, a scenario-
based two-stage SO method is applied. Considering that the
probability distribution could be unknown or inaccurate, a
sample average approximation method (Li et al., 2017) is used in
this paper. Thus, the proposed model is expressed as follows:

min IC + min
1
Ns

∑
us∈U

OC +DC + EPC + EA. (43)

subject to (8)–(15), (22)–(29), and (31)–(42),
where U represents the set of scenarios and us represents the

uncertain output of RDG and load under scenario s. Ns represents
the total number of scenarios in the set U.

Model (43) can be regarded as a two-stage optimization. The first
stage is the minimization of the BESS allocation cost by optimizing
BESS location and sizing in the DN, i.e., min IC. The second stage
represents the minimization of DN operation with the first-stage BESS

allocation decisions, i.e., min 1
Ns

∑
us∈U

OC +DC + EPC + EA. By

combining these two stages together, Model (43) forms a two-stage
optimization problem, indicating that BESS allocation is optimized with
the consideration of a DN operation.

3 Solution algorithm

The BESS SO allocation model with integer variables proposed
in Section 2.5 is expressed in the following compact form:

min
x,z1

CT
1x + 1

Ns
min

us∈U,ys,z2,s
CT

2ys, (44)

subject toA x; z1[ ]≥ b, (45)
D x; z1[ ] + E ys; z2,s[ ] + Fu≥ v, (46)
G x; z1[ ] +H ys; z2,s[ ] + Iu � ω. (47)

In Model (44), x denotes the continuous decision variables
Ebess
i,cap,y, while z1 represents the integer decision variables αi in

the first stage. Then, ys signifies the continuous variables,
including Pch/dis

i,y,t,j , P
def
t,y , and Psub

t,y , and other dependent variables.
z2,s denotes the integer variable βi in the second stage. In addition,
the first-stage inequality constraint (45) includes (8) and (9).
Constraint (46) represents the inequality constraints in the
second stage, including constraints (10)–(12), (15), (24), (25),
(27), (33), and (38). Constraint (47) represents the other equality
constraints in Model (43).

Model (44) is a typical MILP problem, which is often solved
by commercial solvers, such as Gurobi and CPLEX. However,
solving MILP problems with a large number of integer variables
generally takes a long time. Therefore, it is crucial to balance
between the solution optimal and solving time. This study is
based on the FP algorithm to improve the solving efficiency of the
MILP problem. The algorithm mainly comprises two parts:
relaxed LP problem and FP-rounding problem. The specific
handling methods are as follows.

First, let z be the set of integer variables in the problem, which
means z � z1; z2,s{ }; then, by relaxing all integer variables into
continuous variables ~z and adding the following constraints,
we obtain

0≤ ~zj ≤ 1. (48)

As a result, the relaxed LP problem can be formulated in the
following manner:

FIGURE 3
Solving process.
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FIGURE 4
Topology of a 33-bus DN system.

FIGURE 5
Typical RDGs and load output for the four seasons.

TABLE 2 Bus location and rated power of RDGs.

PV WT

Bus Rated power/kW Bus Rated power/kW

3 480 3 480

6 480 6 480

13 480 13 480

15 480 15 480

18 240 18 240

22 240 22 240

24 240 24 240

32 240 32 240

All the numerical simulations are conducted on a 2.3-GHz CPU and 16 GB RAM laptop. The proposed optimization model is programed on aMATLAB 2022b platform with YALMIP toolbox

and solved by Gurobi 10.0.
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min
x,~z1

CT
1x + 1

Ns
min

u∈U,ys,~z2,s
CT

2ys. (49)

subject to (48)

A x; ~z1[ ]≥ b, (50)
D x; ~z1[ ] + E ys; ~z2,s[ ] + Fu≥ v, (51)
G x; ~z1[ ] +H ys; ~z2,s[ ] + Iu � ω. (52)

Then, z
↔
* � [~z*] is used to round each integer variable in ~z*

obtained from the relaxed LP problem, and the distance function
between the continuous variables ~z and the currently obtained
integer variables is calculated z

↔
* as follows:

Δ ~z( ) � ∑
z
↔

j* � 0~zj + ∑
z
↔

j* � 1 1 − ~zj( ). (53)

Moreover, in order to obtain results by the FP algorithm close to
the optimal solution, (44) and (53) are added as the objective
function to form the FP-rounding problem as follows:

min ~zω1
Δ ~z( )

Δ ~z( )max

+ ω2

niter

F

Fmax

F � min
x,~z1

CT
1x + 1

Ns
min

u∈U,ys,~z2,s
CT

2ys

subject to 48( ), 50( ) − 52( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(54)

where ω1 and ω2 represent weighting coefficients for each objective.
F represents the objective function of the original problem, and niter
represents the number of iterations of the proposed FP-based
algorithm. By incorporating the ω2

niter
F

Fmax
component into the

objective function, the results derived from the FP-rounding
problem will be close to the optimal solution of the original
problem. Additionally, as the number of iterations increases, the
impact of F will diminish, thereby mitigating its influence on

feasibility. Moreover, when Δ(~z)
Δ(~z)max

reaches the minimum value 0,
F will also obtain the relatively minimal values, which can be
considered an acceptable optimal result for the original
MILP problem.

Then, the new solution ~z* obtained from the FP-rounding
problem is rounded to obtain a rounded integer solution z

↔
*, and

the distance function s � ∑I

i�1|z
↔
* − ~z*| is calculated. The role of s

is to determine the distance between ~z* and z
↔
*; the smaller s is,

the closer ~z* is to the integer solution; and when s � 0, ~z* will be
the final feasibility solution. Moreover, if s> 0, the rounded
integer solution z

↔
* will be used for the next FP-

rounding problem.
Furthermore, to avoid stalling issues, it is necessary to flip a

random set of RN(RN ∈ [RN, RN ]) variables in the integer
flipping procedure. It is worth noting that the lower and
upper bounds of the random number are expected to be set
with the consideration of the optimization problem size. The
larger the problem is, the larger the range should be. The detail
instruction of the bound setting can be found in Fischetti
et al. (2005).

The iteration continues to solve the FP-rounding problem and
integer flipping procedure until an integer solution is obtained.
During the solving process, the algorithm either returns an infeasible
result or the optimal integer solution for the original MILP problem.
The solving process for the stochastic BESS allocation model based
on the FP algorithm is shown in Figure 3.

4 Case study

4.1 System setting

To verify the effectiveness of the proposed BESS SO allocation
approach, a 33-bus system is applied, and its topology is shown in
Figure 4. The typical RDGs and load output for the four seasons are
shown in Figure 5, which are regarded as the expected condition.
The prediction bounds are set as ± 20% of the RDG output and ±
10% of load output. Then, 100 scenarios are obtained through
Monte Carlo random sampling in these bounds for SO
application. In addition, the rated power and location of each
RDGs are shown in Table 2.

The specific calculation conditions are described as follows:

(1) The penalty cost of curtailment RDGs is 0.83 $/kW (Yan
et al., 2022).

(2) The unit capacity cost of energy storage is 2,000 $/kW h (Yan
et al., 2022).

(3) The planning cycle is 10 years, and the annual capacity decay
rate is set as 2%.

(4) The alternative points for BESS are nodes 3, 6, 13, 15, 18, 22,
24, and 32, and the maximum number of installation nodes
for BESS is 4.

TABLE 3 Cost of DN without BESS.

Cost of RDG curtailment/$ million Energy purchase cost/$ million Voltage range/p.u Total cost/$ million

7.1872 27.68 [0.942, 1.05] 22.29

FIGURE 6
BESS allocation results of the proposed method.
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(5) The maximum installation capacity of BESS is 2 MW h, and
the minimum is 200 kW h.

(6) The setting categories of time-of-use electricity prices are as
follows: the peak hour electricity price is 0.93 $/kW between 9:
00 and 13:00 and 18:00 and 21:00. The valley hour electricity
price is 0.31 $/kW between 22:00 and 5:00, and the normal
electricity price is 0.62 $/kW between 6:00 and 8:00 and 14:
00 and 17:00.

(7) The setting categories of electricity sales price are 0.3 times the
time-of-use electricity prices.

(8) The voltage range is set as 0.95–1.05 p.u.

4.2 Results and performance comparison

4.2.1 BESS allocation in DN
Without considering the BESS allocation, the penalty cost for

RDG curtailment in the DN is shown in Table 3. Moreover, the BESS
allocation results obtained by the proposed model are shown in
Figure 6. By installing BESS at buses 13, 15, 18, and 32, we can
achieve the total cost at 25.66 $ million. In addition, based on the
obtained BESS allocation results and typical scenarios, the detail
costs of DN are shown in Table 4. By comparing the content of
Table 3 and Table 4, we can find that due to the high cost of BESS,

TABLE 4 Cost of DN with BESS.

Cost of RDG curtailment/$ million Energy purchase cost/$ million Voltage range/p.u Total cost/$ million

0 1.79 [0.954, 1.05] 25.78

FIGURE 7
Charge/discharge situation of BESS in typical scenarios.
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the total cost of the system increases, but the cost of energy
purchasing and RDG curtailment power has significantly
decreased, and the voltage range is maintained in the safety

range, which increases the DN’s ability to accommodate
renewable energy and improves its operational safety.

Figure 7 shows the operation of DN with allocated BESS in
typical scenarios. It can be seen that BESSs release energy for the
growing loads in the morning. Then, with the increase in the PV
power output and the decrease in load demand between 12:00 and
17:00, BESSs initiate charge to store the surplus energy. Then, during
the peak load period, BESSs are discharged to support the high-load
demand. Moreover, the energy trading power that reverse to the
upper-level grid is significantly decreased during the peak PV
period. Particularly, in scenarios 2 and 4, the reverse power
reduces to 0, which illustrates that the installation of BESS can
enhance the DN’s ability to harvest more renewable energy.

4.2.2 Comparison of the solution algorithm
The above BESS allocation model has numerous integer variables

with a large number of optimization scenarios, which can easily lead to
large solving time. This article solves the proposed allocation problem
based on the FP algorithm to increase solving efficiency.

In order to verify the effectiveness of the proposed FP-based
algorithm, another method that applies Gurobi solver to directly
solve the proposed problem is used for comparison, and the solving
results are shown in Table 5. Meanwhile, the convergence of the FP-
based method is shown in Figure 8. It can be seen that using Gurobi
solver to directly solve the proposed problem is difficult to converge
because the planning problem contains a large number of 0–1 variables,
and the problem dimension is high. By using the algorithm proposed
above, mixed integer programming can be transformed into linear
programming, greatly improving the single-solution speed. After
testing, in this example, the proposed strategy can achieve
convergence after six iterations, and the solver time of the proposed
method is significantly decreased.

4.2.3 Economy comparison
To analyze the economic performance of the proposed model,

three BESS allocation methods are applied for comparison, which
are given as follows:

Method A: A certain BESS allocation model without considering
the uncertainties of RDGs and loads.

Method B: The BESS allocation model based on the ROmethod.
The prediction intervals are set as ± 20% of the RDG output and ±
10% of the load output.

Then, 1,000 test scenarios are randomly generated based on the
prediction bounds. Each scenario functions as a manifestation of
uncertainty and undergoes testing in the three BESS allocation
results. The expected total cost of the threemethods is shown in Table 6.

TABLE 5 Optimization result comparison.

Proposed Directly solve

Solving time Iterations Time/s Time/s

1 56.43 2765.43

2 46.56

3 50.25

4 43.58

5 52.16

6 40.68

Total time \ 289.66 2765.43

Allocation results of BESS \ 13: 0.73 MW h 13: 0.73 MW h

15:1.12 MW h 15:1.12 MW h

18:2 MW h 18:2 MW h

32:2 MW h 32:2 MW h

Total cost/$ million \ 25.66 25.66

FIGURE 8
Convergence of the algorithm iteration.

TABLE 6 Comparison of economic performance.

Method A Method B Proposed

Allocation cost/$ million 9.05 13.7 11.7

Expected operating cost/$ million 16.505 13.64 14.53

Expected RDG curtailment cost/$ million 0.024 0 0.0012

Expected total cost/$ million 25.58 27.34 26.23

Constraint violation rate/% 14.8 0 0.26
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As shown in Table 6, since the results of Method B are obtained
under the worst case, DN can achieve the safe operation and full RDG
output consumption during testing, but the expected total cost is the
highest among the three methods due to the highest installation cost of
BESS. Additionally, both Method A and the proposed method all need
to necessitate the use of an RDGpower curtailment strategy tomaintain
the safe operation of DN. Moreover, in comparison to Method A, the
proposed method demonstrates notably lower expected RDG
curtailment costs and constraint violation rates. Thus, the proposed
method has the ability to achieve the comprehensive optimal
performance in terms of security and economic efficiency.

5 Conclusion

This paper proposes a stochastic optimal BESS allocation
method, aiming to minimize the overall cost of DNs and prompt
the renewable energy consumption. In this method, besides the
stochastic nature of generation and demand, BESS degradation cost,
capacity degradation, and the annual dynamic growth of generation
and demand are also being considered. In addition, considering the
proposed problem has massive integer variables, this paper is based
on the FP algorithm to solve it. Based on the analysis of the
allocation results, the following conclusion can be summarized:

1) In the comparison of the operating results in the proposed FP-
based method and directly solving method, the proposed
method can effectively mitigate the challenges posed by a
high volume of integer variables, thereby improving the
efficiency of solving the BESS allocation model.

2) The phenomenon of RDG curtailment has significantly
decreased with the installation of BESS, which is important
for the economic operation of DN.

3) The proposedmethod has the ability to achieve the comprehensive
optimal performance in terms of security and economic efficiency.

However, current research primarily concentrates on the allocation
of BESS and has not yet taken into account the influence of different
regulating devices in DN. The future research work is devoted to
investigating smart charge/discharge operations of BESS and the
multi-time-scale coordinate allocation strategy, considering the
operational characteristics of multiple regulating devices (such as
capacitors and soft open points) in DN.
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