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As the internet data centers are mushrooming, the energy consumption and
carbon emission of data centers are increasing rapidly. To cut down the electricity
cost and carbon emission of the data centers, we proposed an optimization
method to reduce the electricity cost and carbon emission in geo-distributed
multiple data centers. In the proposed method, the carbon tax is considered in
the overall operation cost to optimize the carbon emission. The spatial and
temporal flexibility of computational workload is fully utilized by considering the
difference in renewable energy power output, local electricity and carbon
emission of multiple geo-distributed data centers to achieve a better
performance. Furthermore, the nonlinear characteristics of the power loss of
uninterruptible power supply (UPS) are considered in the optimization. To verify
the proposed optimization method, simulation of six cases is carried out with
realistic data, and results have proved the proposed method can reduce the
operational costs by 4.93%–12.7% and decrease carbon emissions by up to 10%.
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1 Introduction

Carbon emissions, being an important cause of phenomena such as global warming,
have garnered escalating attention worldwide (Carbon Tax Center, 2021). In response, an
increasing number of countries have implemented carbon taxes to incentivize factories and
enterprises to reduce their carbon emission. (World Bank Group, 2020). As a significant
consumer of electricity, energy consumption and carbon emission of data centers have
become increasingly prominent as the number of data centers increases, which pose a
serious carbon emissions issue. As reported by the NRDC, U.S. data centers are forecasted to
consume 140 billion kW hours of power by 2020, resulting in an electricity cost of nearly
13 billion dollars and emission of carbon dioxide 150 million tons (Delforge, 2014). The
energy consumption and carbon emission have led to negative impacts on the environment,
as well as great operational cost under the carbon tax policy (Liu et al., 2020). Therefore,
reducing the electricity cost and carbon emission can meet the expectations of government
and data center operators alike, which have drawn increasing attention from both academia
and industry all over the world (Ni and Bai, 2017).

Most existing research on the aforementioned issue focuses on reducing the power
consumption rather than carbon emission of data centers (Yu et al., 2014), which tried three
main ways to reduce the energy consumption in the data centers. The first is to boost the
power conversion efficiency of data center power supply system by improving the efficiency
of power converters, such as power supply unit (PSU) or uninterruptible power supply
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(UPS) (Ahmed et al., 2017; Zhao et al., 2019). The second is to jointly
optimize the computational workload scheduling with the micro
grid operations in data centers, or optimize the planning of data
center micro grid (Li et al., 2018). The third method is to optimize
the workload distribution in multiple distributed data centers in
different city and cut down operational cost by utilizing the local
electricity cost and renewable energy output (Liu et al., 2012; Qi
et al., 2019). Microsoft and Equinix have also introduced micro grid
into data center (Peter, 2017). Yang et al. have built the prototype of
waste heat recovery system, which has also been verified by
commercial application (Luo et al., 2019). And the related data
center testbed has been built at RISE ICE Datacenter in northern
Sweden in order to perform experiments on load balancing, micro-
grid interactions and the use of renewable energy sources (Brannvall,

2020). The aforementioned methods can effectively reduce energy
consumption while simultaneously decreasing the accompanying
carbon emissions. However, according to literature (Li et al., 2011;
Na et al., 2022), there is a certain deviation between the optimal
points of energy consumption and carbon emissions, therefore the
research focused on energy consumption cannot guarantee the
optimization of carbon emissions. Hence, in the optimization
process, it is necessary to consider reducing carbon emissions as
an optimization objective concurrently.

The reduction of carbon emissions in data centers can be
achieved through two main methods: cutting down energy
consumption in data centers and maximizing the utilization of
renewable energy. Li et. al. proposed a data center micro grid
planning method, which introduces the renewable energy devices

FIGURE 1
Multiple data center micro grid system.

FIGURE 2
Relationship between computational workload and data center real-time power.

FIGURE 3
Computational workload; (A) Batch workload, (B) interactive workload.
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into data center (Cui et al., 2016). However, carbon emission is
not considered in the planning method. Ding proposed a multi
objective method to reduce the carbon emission and electricity
consumption, but research did not considered the scheduling of
computational workload in multiple data centers, and the
nonlinear characteristics of the power supply system inside of
the data center (Ding et al., 2018). Ting et al. proposed a carbon
reduction method in four data centers in different city, but the
electricity consumption is not taken into account (Ting et al.,
2022). Zhou et al. proposed an electricity consumption reducing
method in geo-distributed data center micro grids with
renewable energy, but the carbon emission are not directly
taken into consideration (Zhou et al., 2016; Liu and Xu, 2023;
Zhang et al., 2023 proposed several optimal planning methods of
data centers considering carbon emission, however it achieves the
optimal planning of single data center and ignores the spatial
scheduling flexibility of workloads in data centers; Wu et al.,

2023; Yang et al., 2023 proposed carbon emission aware
scheduling method in multiple data center, while the UPS
characteristics are ignored. Furthermore; Misaghian et al.,
2023 proposed a carbon aware flexibility assessment method
to estimate the operational flexibility of data centers, however
it has not proposed the relevant scheduling method. In brief, the
characteristics of power supply devices, such as uninterruptible
power supply (UPS) are not considered in the exiting methods,
which may lead to extra energy consumption and
carbon emission.

In view of this, we proposed a hybrid operation optimization
method to reduce the electricity cost and carbon emission in geo-
distributed data center by jointly considering computational
workload scheduling, carbon emission, micro grid operation
and characteristics of UPSs. The proposed method reduced the
operational cost and carbon emission by utilizing the degree of
freedom in computational workload scheduling to limit the
nonlinear growth of UPS power losses. To balance the
electricity reduction and carbon emission reduction, the
carbon tax is introduced as a parameter in the optimization
object, which describes the carbon emission of both micro
grid devices and the marginal carbon emission caused by
electricity purchasing from the utility grid. Six cases are
simulated on the Gurobi platform, and results have verified
the effectiveness of the proposed method.

2 The influence of workload scheduling
and UPS power on optimization
objectives

The system architecture of a typical geo-distributed data
centers is given in Figure 1. The proposed method can reduce
the energy consumption and carbon emission simultaneously by
jointly considering the scheduling flexibility of the computational
workloads the data centers and the nonlinear characteristics of
UPS power losses. Therefore, the relationship between workload

FIGURE 4
Relationship between computational workload and data center
real-time power.

FIGURE 5
UPS power loss curve.

FIGURE 6
UPS load rate and carbon emission.
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scheduling and carbon emission is firstly analyzed, and then the
relation between UPS characteristics and carbon emission is
given. Furthermore, the necessity of incorporating both carbon
emissions and operating costs as optimization objectives is
discussed below:

2.1 The influence of computational
workload scheduling on carbon emission

As shown in Figure 2, the real-time power of data center is decided
by computational workload, which can be scheduled through the
internet. Therefore, the most prominent feature of a data center
micro grid, as opposed to a traditional micro grid, is its exceptional
scheduling flexibility. On the one hand, computational workloads exhibit
a high degree of flexibility, as they can be scheduled in both time and
space dimensions, which can coordinate with renewable energy sources
and electricity prices to minimize carbon emissions resulting from data
center energy consumption. On the other hand, the devices within a data
center micro grid, such as energy storage systems and conventional
generator units, possess flexible regulation characteristics. The operation
of these devices also affects the carbon emissions of the data centermicro
grid. In the following sections, we will analyze the flexibility of load
scheduling and the data center carbon emissions separately.

2.1.1 Scheduling flexibility of
computational workload

The computational workload can be briefly divided into batch
workload and interactive workload (Cao et al., 2019). The interactive
workload, such as online shopping and game service, should be dealt
in a short time delay, which is usually no more than minutes or
seconds, as shown in Figure 3A. The service delay of this kind of
workload will lead to high economic losses. So the interactive
workload cannot be scheduled through different time period.
Since the computational workloads are mainly data blocks, it can
be scheduled between data centers in different cities with a small
delay through the data network.

The batch workload, such as processing of scientific research data
and training of neural network, can endure an hourly responds delay, as
shown in Figure 3B. Therefore, the batch workload can be scheduled
spatially and temporally, which means the potentiality of participating
in optimizing scheduling or demand response. Furthermore, the batch
workload can also be scheduled through long distance with a small
delay, which is negligible in the hourly scheduling, and the scheduling
delay is mainly decided by network bandwidth.

Therefore, the computational workloads can be scheduled
spatially and temporally in coordinated with renewable energy
and conventional generators, whose output power can influence
the carbon emission.

2.1.2 Composition and influencing factors of
carbon emission

The carbon emissions resulting from the operation of a data
center micro grid consist of two aspects: the carbon emissions
caused by the operation of the conventional generators in the
micro grid and the carbon emissions resulting from the
electricity provided by the utility grid, which is generated by

thermal power plants. In this paper, both aspects are considered
and optimized.

The carbon emissions caused by the operation of the
conventional generators in the data center micro grid are
primarily determined by the fuel type and real-time power
output (Ye and Gao, 2022), and the operation of coal-based
generator units and oil-based generator units cause different
levels of carbon emissions per unit of electricity produced.

The carbon emissions resulting from the electricity provided
by the grid are mainly determined by the proportion of
electricity generated by thermal power plants. As shown in
Figure 4, the proportion of electricity generated by thermal
power plants and renewable energy varies at different times
within a day, resulting in difference of carbon emissions in each
unit of the consumed electricity. Additionally, the differences in
energy structure among different cities also lead to differences
in carbon emissions when the same unit of electricity
is consumed.

2.2 The influence of UPS power losses on
carbon emission

In the exiting researches, few work is focused on the
influence of the energy consumption characteristics of data
center power supply equipment, such as UPS, in the data
center scheduling optimization. However, the efficiency and
power losses of UPSs do influence the energy consumption
and carbon emission of data center micro grids. In
implementation, the energy consumption of UPS varies
depending on the model and load rate. On the one hand, the
power supply efficiency and losses of different UPS equipment
vary, which may lead to differences in power supply efficiency
among different data centers. On the other hand, UPS energy
consumption increases non-linearly with load rate, resulting in
corresponding increases in power supply energy consumption
and carbon emissions. To further optimize the data center
consumption, the characteristics of UPS power losses and its
influence on carbon emission are considered in the optimization
and illustrated below.

2.2.1 Characteristics of UPS power losses
Uninterruptible Power Supplies (UPSs) play a critical role in

ensuring the reliability of data center power supply. Essentially,
UPSs consist of multi-stage converters. According to current
research, UPS power losses contribute to around 5%–10% of total
data center electricity consumption.

UPS power losses exhibit variability based on the load rate, as
illustrated in Figure 4, featuring nonlinear curves. In practice, UPS
power losses encompass three distinct components (Pratt
et al., 2007):

Power losses independent of output power, such as those
attributed to generating housekeeping power. These losses
predominate during light loads.

Power losses linearly proportional to output power, including
switching losses of power semiconductors, gate driver losses, and
core losses in magnetics.
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Power losses varying with the square of output power, arising
from circuit resistance, encompassing conduction losses of power
semiconductors and winding losses in magnetics. These losses are
prominent under heavy loads.

2.2.2 Relationship between UPS power losses with
data center carbon emission

The impact of uninterruptible power supply (UPS) on carbon
emissions in data centers is mainly due to increased energy
consumption. As illustrated in Figure 5, the efficiency of different
UPS devices varies, resulting in differences in the additional energy
consumption generated during the power supply process, and UPS
energy consumption changes non-linearly with the load rate.
Therefore, the distribution of loads on different UPS devices will
affect the energy consumption generated by UPS devices, as shown
in Figure 6, which thereby causes extra carbon emissions.

However, it should be noted that energy consumption is not the
sole factor affecting carbon emissions in data centers. Due to the
existence of new energy generation, energy storage, generator
equipment, and real-time electricity purchase in micro grids, the
optimization of carbon emissions should comprehensively consider
factors such as micro grid operation and local energy structure.

3 System model and mathematical
formulation

This section presents the system and mathematical models for
the optimization problem. The depicted typical system architecture
of geo-distributed data centers is outlined in Figure 1, wherein each
data center operates within a micro-grid featuring renewable power
sources, conventional generator units, and energy storage devices.
Within each data center, multiple UPS nodes are deployed,
corresponding to sets of UPS devices and a substantial number
of servers. The system is discretely modeled in time, with equal-
length time slots, each spanning 1 h.

The system is delineated into the power demand side and power
supply side. On the power demand side, we construct models for
workloads and UPS, elucidating the relationship between
computational workloads and data center power consumption.
On the power supply side, models for energy storage and
conventional generator units are formulated, with power balance
considerations. Ultimately, the optimization problem is formulated
in this section, with the objective of minimizing operational costs
and electricity bills across the entire system.

3.1 Power demand side

The energy consumption of power supply equipment is
primarily composed of the energy consumption of servers and
UPS devices. The energy consumption of servers is linearly
determined by the computational load rate, which can be
expressed as follows:

λi,j,t � ζ interi,j,t +∑A

a
μbatcha,i,j,t ∀i, j, t( ) (1)

0≤ λi,j,t ≤Capi,j ∀i, j, t( ) (2)

∑Dbatch
a

tbatcha
μbatcha,i,j,t � ∑A

a
μbatchtotal,a ∀a ∈ A( ) (3)

Pservers
i,j,t ≤PUPS

rated,i,j ∀i, j, t( ) (4)

Furthermore, for each time slot i, the aggregate real-time power
of node j in the data center is:

Pservers
i,j,t � Mij × φserver

i,j × λi,j,t + Pidle

i,j
( ) ∀i, j, t( ) (5)

where φserver
i,j � Ppeak

i,j − P
idle

i,j
(6)

The power losses of UPS exhibit non-linear variations
contingent upon the load rate, which is decided by server power
and can be expressed as follows:

PLoss UPS
i,j,t � PLoss UPS

rated,i,j × a0 + a1 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

+ a2 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∀i, j, t( )
(7)

where a0, a1 and a2 are constants decided by UPS type.
So the UPS input power is as follows:

PUPS
i,j,t � PLoss UPS

rated,i,j + Pservers
i,j,t ∀i, j, t( ) (8)

3.2 Power supply side

In each micro grid, servers and UPS units derive power from a
mix of solar and wind energy, conventional generators, and the
utility grid. Energy storage devices are deployed to stabilize
renewable energy variability and leverage daily electricity price
fluctuations, reducing overall costs.

Conventional generator unit commitment decision model can
be described as follows (Wang et al., 2012):

Punit
min ,i,l · ouniti,l,t ≤Punit

i,l,t ≤P
unit
max ,i,l · ouniti,l,t ∀i, j, t( ) (9)

−ouniti,l,t−1 + ouniti,l,t − ouniti,l,k ≤ 0

2≤ k − t − 1( )≤MUunit
i,l ∀i, j, t( ) (10)

ouniti,l,t−1 − ouniti,l,t + ouniti,l,k ≤ 1

2≤ k − t − 1( )≤MDunit
i,l ∀i, j, t( ) (11)

−ouniti,l,t−1 + ouniti,l,t + uunit
i,l,t ≤ 0 ∀i, j, t( ) (12)

ouniti,l,t−1 − ouniti,l,t + vuniti,l,t ≤ 0 ∀i, j, t( ) (13)
Punit
i,l,t − Punit

i,l,t−1 ≤ 2 − ouniti,l,t−1 − ouniti,l,t( ) · Punit
min ,i,l + 1 + ouniti,l,t−1 − ouniti,l,t( )

· URunit
i,l ∀i, j, t( )

(14)
Punit
i,l,t−1 − Punit

i,l,t ≤ 2 − ouniti,l,t−1 − ouniti,l,t( ) · Punit
min ,i,l + 1 − ouniti,l,t−1 + ouniti,l,t( )

· DRunit
i,l ∀i, j, t( )

(15)
ouniti,l,t , v

unit
i,l,t , u

unit
i,l,t ∈ 0, 1{ } ∀i, j, t( ) (16)

In the aforementioned equations, Eq. 9 outlines the generator
capacity constraint, Eqs 10 and 11 outlines the unit minimum-up/
down time constraints, Eqs 12 and 13 delineate the unit start-up and
shut-down constraints, while (14)–(15) specify unit ramping
up/down.
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The ESS can be described by the following equations:

ESi,t+1 � ESi,t + ηchari ·Pchar
i,t − ηdischari ·Pdischar

i,t ∀i, t( ) (17)
ESmin ,i ≤ESi,t ≤ ESmax ,t ∀i, t( ) (18)
Zchar
i,t ,Zdischar

i,t ∈ 0, 1{ } ∀i, t( ) (19)
Zchar
i,t + Zdischar

i,t ≤ 1 ∀i, t( ) (20)
0≤Pchar

i,t ≤Pchar
max ,i · Zchar

i,t ∀i, t( ) (21)

0≤Pdischar
i,t ≤Pdischar

max ,i · Zdischar
i,t ∀i, t( ) (22)

In the given equations, Eq. 17 characterizes the energy storage
condition for each time slot, determined by the charging and
discharging operations. Considering the conversion loss during
power charging and discharging, energy conversion efficiency is
incorporated in (17). Furthermore, the state of charge must fall
within the specified maximum and minimum energy storage
bounds, ensuring satisfaction of Eq. 18. Eqs 19 and 20
articulate the charge/discharge constraints, while (21)–(22)
describe the constraints on maximum charging/
discharging power.

Integrating the supply side and demand side, the power balance
constraints can be derived as follows:

Pgrid
i,t � ∑J

j
PUPS
i,j,t + ηchari ·Pchar

i,t − ηdischari ·Pdischar
i,t −∑L

l
Punit
i,l,t − PPV

i,t

− Pwind
i,t ∀i, t( )

(23)
Given the spatial and temporal variability of electricity, the

electricity bill within each micro grid can be formulated as:

Cgrid
i,t � Pgrid

i,t ·πgrid
i,t ∀i, t( ) (24)

The operational cost of conventional units is delineated in Eq.
25. As depicted in the equation, the operational cost of conventional
units comprises no-load cost, marginal cost, as well as start-up and
shut-down costs.

Cunit
i,t � ∑J

j
CUunit

i,l ·uunit
i,l,t + CDunit

i,l ·vuniti,l,t + COunit
i,l ·ouniti,l,t + CMunit

i,l ·Punit
i,l,t( ) ∀i, t( )

(25)

Also, since the proportion of renewable energy and thermal
power is different in different geographical location, the carbon
emission rate per kilo W hours is different. Furthermore, the
operation of conventional generators in each data center micro
grid also generate carbon dioxide. Therefore, the carbon emission in
each micro grid can be expressed by:

EMgrid
i,t � Pgrid

i,t ·egridi,t ∀i, t( ) (26)
EMunit

i,t � Punit
i,t ·euniti,t ∀i, t( ) (27)

Ccarbon
i,t � EMgrid

i,t +∑L

l
EMunit

i,l,t( ) · ρi,t ∀i, t( ) (28)

In the above equations, (26) describes the carbon emission
brought about by the electricity bought from the utility grid, (27)
describe the carbon of conventional generator, and (28) describe the
overall carbon tax in each data center micro grid.

3.3 Optimization problem

In order to address both the economic and environmental
impact of energy consumption in data centers, we consider the
operational cost and carbon emissions as optimization objectives
and use a carbon tax as a proportionality factor to transform the
bi-objective optimization problem into a single-objective
optimization problem. Hence, the optimization problem can be
formulated as follows:

min∑I

i�1∑T

t�1 Cgrid
i,t + Cunit

i,t + Ccarbon
i,t( )

s.t.
(29)

λi,j,t � ζ interi,j,t +∑A

a
μbatcha,i,j,t ∀i, j, t( ) (30)

0≤ λi,j,t ≤Capi,j ∀i, j, t( ) (31)
∑Dbatch

a

tbatcha
μbatcha,i,j,t � ∑A

a
μbatchtotal,a ∀a ∈ A( ) (32)

Pservers
i,j,t ≤PUPS

rated,i,j ∀i, j, t( ) (33)
Pservers
i,j,t � Mij × φserver

i,j × λi,j,t + Pidle

i,j
( ) ∀i, j, t( ) (34)

φserver
i,j � Ppeak

i,j − P
idle

i,j
∀i, j( ) (35)

PLoss UPS
i,j,t � PLoss UPS

rated,i,j × a0 + a1 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

+ a2 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∀i, j, t( )
(36)

PUPS
i,j,t � PLoss UPS

rated,i,j + Pservers
i,j,t ∀i, j, t( ) (37)

Punit
min ,i,l · ouniti,l,t ≤Punit

i,l,t ≤P
unit
max ,i,l · ouniti,l,t ∀i, j, t( ) (38)

−ouniti,l,t−1 + ouniti,l,t − ouniti,l,k ≤ 0, 2≤ k − t − 1( )≤MUunit
i,l ∀i, j, t( ) (39)

ouniti,l,t−1 − ouniti,l,t + ouniti,l,k ≤ 1, 2≤ k − t − 1( )≤MDunit
i,l ∀i, j, t( ) (40)

−ouniti,l,t−1 + ouniti,l,t + uunit
i,l,t ≤ 0 ∀i, j, t( ) (41)

ouniti,l,t−1 − ouniti,l,t + vuniti,l,t ≤ 0 ∀i, j, t( ) (42)
Punit
i,l,t − Punit

i,l,t−1 ≤ 2 − ouniti,l,t−1 − ouniti,l,t( ) · Punit
min ,i,l + 1 + ouniti,l,t−1 − ouniti,l,t( )

· URunit
i,l ∀i, j, t( )

(43)
Punit
i,l,t−1 − Punit

i,l,t ≤ 2 − ouniti,l,t−1 − ouniti,l,t( ) · Punit
min ,i,l + 1 + ouniti,l,t−1 − ouniti,l,t( )

· DRunit
i,l ∀i, j, t( )

(44)
ouniti,l,t , v

unit
i,l,t , u

unit
i,l,t ∈ 0, 1{ } ∀i, j, t( ) (45)

ESi,t+1 � ESi,t + ηchari ·Pchar
i,t − ηdischari ·Pdischar

i,t ∀i, t( ) (46)
ESmin ,i ≤ESi,t ≤ ESmax ,t ∀i, t( ) (47)
Zchar
i,t ,Zdischar

i,t ∈ 0, 1{ } ∀i, t( ) (48)
Zchar
i,t + Zdischar

i,t ≤ 1 ∀i, t( ) (49)
0≤Pchar

i,t ≤Pchar
max ,i · Zchar

i,t ∀i, t( ) (50)
0≤Pdischar

i,t ≤Pdischar
max ,i · Zdischar

i,t ∀i, t( ) (51)

Pgrid
i,t � ∑J

j
PUPS
i,j,t + ηchari ·Pchar

i,t − ηdischari ·Pdischar
i,t −∑L

l
Punit
i,l,t − PPV

i,t

− Pwind
i,t ∀i, t( )

(52)
Cgrid

i,t � Pgrid
i,t ·πgrid

i,t ∀i, t( ) (53)
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Cunit
i,t � ∑J

j
CUunit

i,l ·uunit
i,l,t + CDunit

i,l ·vuniti,l,t + COunit
i,l ·ouniti,l,t + CMunit

i,l ·Punit
i,l,t( ) ∀i, t( )

(54)
EMgrid

i,t � Pgrid
i,t ·egridi,t ∀i, t( ) (55)

EMunit
i,t � Punit

i,t ·euniti,t ∀i, t( ) (56)

Ccarbon
i,t � EMgrid

i,t +∑L

l
EMunit

i,l,t( ) · ρi,t ∀i, t( ) (57)

As indicated above, the optimization objective is to minimize
the system’s operational cost, comprising electricity costs,
operational costs of conventional units, and carbon taxes.
Constraints (30)–(37) pertain to the power demand side, while
constraints (38)–(52) ensure the functionality of the power
supply side. Eqs 53–57 detail the operational cost and carbon
emissions. The decision variables for the optimization problem
encompass the allocation of interactive and batch workloads, as
well as the operational schedule of energy storage systems (ESS)
and conventional generator units. The proposed resource
planning model is formulated as a mixed-integer linear
programming (MILP) problem.

4 Case study

In this section, a geo-distributed data center micro grid system
sample is created to assess the proposed methodology outlined in this
paper. All system modeling and solving algorithms are implemented in
the Gurobi platform (CPLEX, 2009), a widely employed tool for solving
binary programming or mixed-integer programming problems. The
simulations are executed on a desktop computer equipped with an Intel
Core i5-8400 CPU @ 2.80GHz and 8 GB memory.

4.1 Simulation setup

To separately verify the impact of UPS characteristics and multiple
data center scheduling on the optimization objectives, this study sets up
two simulation scenarios: one with a single data center to verify the effect
of UPS characteristics, and the other with multiple data centers to verify
the effectiveness of multiple data center scheduling and the proposed
approach. Within each micro grid, two conventional generators (one
coal-based and another gas-based), alongwith distributed solar andwind
generation units, are employed. Additionally, an energy storage system is
integrated. Thesemicro grids are interconnectedwith the utility grid, and
each micro grid serves as the power source for a designated data center.
In each data center, three UPS nodes supply power to servers. The
simulation encompasses three types of UPSs, and tomaintain simplicity,
the deployment of these UPS types is identical across the data centers,
meaning each data center features one of each UPS type. For ease of

representation, the type and number of servers powered by the UPS
nodes are also uniform. The system parameters are detailed in Tables
1–4. In the experiment, the time horizon T is set to be 24 h, which is the
maximum time to get a relatively accurate electricity price and
load status.

The attributes of conventional generation units and the energy

storage system are calibrated using data from ERCOT scheduling data

(Cao et al., 2019). Workload data is derived from Hu’s (Hu et al., 2021)

and Guo’s (Guo et al., 2019) research papers. For the simulation

scenario, it is assumed that the three data centers are located in

Texas, New York, and California. Real-time electricity price data,

solar and wind power output data are sourced from ERCOT

(ERCOT, 2023), CAISO (CAISO, 2023), and NYISO (NYISO,

2023), respectively. Furthermore, the proportion of coal and gas in

local electricity generation is collected from the website of U.S. energy

and information administration and listed in Table 5 (EIA, 2023).

4.2 Case study in single data center

To avoid potential interaction effects between the two proposed
improvements, we adopt the single-variable principle and conduct
simulations separately. Specifically, we first set up a simulation with
a single data center to verify the effectiveness of considering UPS
characteristics in the process of reducing the operational cost and
carbon emission. The simulation settings are as follows:

Case I. In a single data center, there are three groups of UPS with
different supply efficiency and energy consumption characteristics.
However, in the process of objective function calculating and
scheduling optimization, the impact of UPS characteristics is not
taken into account, and the computational workload is evenly
distributed among the three UPS.

Case II. In a single data center, there are three groups of UPS with
different supply efficiency and energy consumption characteristics. In
the process of objective function calculating and scheduling
optimization, the impact of UPS characteristics is taken into
account, and the computational workload is optimally distributed
among the three UPS.

4.3 Case study of multiple data center

To validate the effectiveness of the improvement that extending
the optimization from single data center to multiple data center and
takes the carbon tax and operational cost as dual-objective, we
conducted simulation of three data centers system and established
four scenarios as follows:

TABLE 1 Parameters of data centers.

UPS node Maximum capacity (MW) Number of servers UPS type

Node 1 15 6*104 1

Node 2 15 6*104 2

Node 3 15 6*104 3
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Case III. Three data centers are simulated, and the computational
workload is evenly distributed among them, and the optimization
objective is set to be the dual-objective of reducing the carbon tax
and operational cost. Furthermore, the UPS characteristics are not
considered in the process of objective function calculating and
scheduling optimization.

Case IV. Three data centers are simulated, and the computational
workload distribution among them is optimized, and the
optimization objective is set to be the single-objective of reducing
the carbon tax. Furthermore, the UPS characteristics are not
considered in the process of objective function calculating and
scheduling optimization.

Case V. Three data centers are simulated, and the computational
workload distribution among them is optimized, and the
optimization objective is set to be the dual-objective of reducing
the carbon tax and operational cost. Furthermore, the UPS
characteristics are not considered in the process of objective
function calculating and scheduling optimization.

Case VI. Three data centers are simulated, and the computational
workload distribution among them is optimized, and the
optimization objective is set to be the dual-objective of reducing
the carbon tax and operational cost. Furthermore, the UPS
characteristics are considered in the optimization.

By comparing Case III and Case V, it can be shown that multiple
data center scheduling has advantages over single IDC scheduling in
terms of energy saving and carbon emission reduction. By comparing
Case IV and Case V, it can be demonstrated that multi-objective

optimization is superior to its counterpart which takes the carbon
emission as the single optimization objective. By comparing Case V and
Case VI, it can be shown that the combination of the proposed
optimization methods can further improve the optimization results.

4.4 Result analysis

4.4.1 Result in single data center
The simulation results of Case I and Case II has been listed in

Table 6. As can be seen in the table, the total operational cost has
been reduced by 3.11%, and the carbon emission has been reduced
by 3.48%. The total cost which includes the operational cost and
carbon tax has been reduced by 3.24%.

To further demonstrate the impact of computation and UPS
characteristics on optimization results, we compared the distribution
of computing loads on UPS nodes between Case I and Case II, which
has been plotted in Figure 7. It can be observed that in Case I, the
computing load is evenly distributed, while in Case II, the computing
load is mostly distributed onUPS1 andUPS2, which have higher power

TABLE 2 UPS paramenters.

UPS
Types

Power loss equation parameters

a0 a1 a2

1 0.0086 0.0241 −0.0027

2 0.0241 0.0353 0.0617

3 0.0518 0.1787 0.0947

TABLE 3 Paramenters of conventional generator units.

Unit Fuel
type

High/Low
sustainable
limit (MW)

Ramp Up/
Down rate
(MW/h)

Minimum
Up/Down
time (h)

Initial
state

Initial
power
(MW)

Start-up/
Shut-
down

Cost ($)

No
load
Cost
($)

Marginal
Cost

($/MWh)

Unit 1 Gas 15/5 4/4 4/4 On 10 50 40 18

Unit 2 Coal 20/9 6/6 3/3 On 14 40 30 16

TABLE 4 Paramenters of energy storage system.

Maximum/Minimum
state (MWh)

Initial/Final
state (MWh)

Maximum charge/Discharge rate
(MW/h)

Charge/Discharge
efficiency

30/5 5 5 0.8

TABLE 5 Energy structure and carbon emission rate.

City Proportion of coal (%) Proportion of gas (%) Carbon emission Rate(kg/MWh)

Texas 16.75 52.05 381.55

New York 0.11 40.92 170.09

California 0.15 47.67 198.34
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supply efficiency and lower operating energy consumption. This
confirms that computation and UPS characteristics have an effect
on computing load distribution.

In order to further compare the carbon emissions, the hourly
carbon emissions of Case I and Case II were plotted in Figure 8.
It can be seen that after optimization (Case II), carbon emissions are
significantly reduced.

4.4.2 Result in multiple data center
The simulation results of Case III to Case VI has been listed

in Table. 7.
By comparing Case III and Case V, it can be shown that the

operational cost, carbon emission and total cost in Case V decreased
by approximately 12.7%, 10.5%, and 11.9% respectively, which has
proved that the workload scheduling among multiple data center
micro grids can bring about significant improvement in energy
consumption and carbon emission reduction compared to single
data center scheduling.

By comparing Case IV and Case V, it can be shown that the
carbon emission has decreased by 10.76% compared to Case V,
while the operational cost and total cost in increase 16.38% and
7.61% respectively, which has illustrated that the multi-objective
optimization can perform better than the single-objective
optimization.

Furthermore, by comparing Case V and Case VI, it can be
concluded that Case VI resulted in a decrease of approximately
4.93%, 0.32%, and 3.17% for the operational cost, carbon
emission, and total cost, respectively, compared to Case V.
This has proved that considering UPS characteristics in
the multiple data center scheduling can still reduce the
total costs and carbon emission, and the Case VI which has
adopted the proposed method performs better than any
other cases.

4.4.3 Application and shortcomings
The proposed method can be easily implemented in the existing

infrastructure without the need to add new hardware or change the
platform since the self-contained network devices can sufficiently
support the application of the proposed scheduling method.

Another difficulty that may hinder the application of our
method is the control of the micro grid devices and the
cooperative operation with data centers. However, the
development of communication technology and automatic
controllers makes such interaction conveniently (Cui, 2016).
Therefore, this difficulty can be easily overcome in implementation.

The servers in this paper are modeled to be of the same type.
However, in implementation, there are also data centers where the
servers are heterogeneous. This method may not be applicable to
heterogeneous data centers. The joint workload scheduling in
heterogeneous data centers can be further explored in the
future research.

5 Conclusion

This article proposes a dual-objective optimization method for the
operational cost and carbon emission of a multi-data centermicro grid
that considers the characteristics of Uninterruptible Power SuppliesT
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FIGURE 7
Computational workload distribution in (A) Case I, (B) Case II.

FIGURE 8
Hourly carbon emission in Case I and Case II.

TABLE 7 Comparision of simulation results in single data center.

Case I Case II

Operational Cost ($) Carbon Emission (kg) Total Cost ($) Operational Cost ($) Carbon Emission (kg) Total Cost ($)

6150.4 183300 9816.4 5959.8 176930 9498.53
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(UPS) and load flexibility. The article improves the energy
consumption model of UPS and fully utilizes the scheduling
flexibility of computing loads in time and space dimensions.
Carbon tax is used as a balancing criterion to compromise the
optimization objectives of carbon emission and operational cost,
achieving further optimization of both cost and carbon emission.
Simulation results indicate that the proposed method effectively
reduces operational costs by 4.93%–12.7%, decrease carbon
emissions by up to 10%, and lower total costs by 3.17%–11.9%.
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