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The present article presents a 3D simulation of a solar thermal panel containing
phase change materials (PCMs). Two pipes are devised in the panel, and several
pin fins (PFs) are applied to each pipe. Organic PCMs are encapsulated in a
compartment around the PFs and pipes. The variable is PF shape, which includes
four types, i.e., square, rectangular, triangular, and circular. Nanofluid (NFD) is
used within the pipes. The study is carried out transiently and continued until the
stabilization of outlets. Utilizing an FEM method based on a weak form, namely,
Galerkin, to find a numerical solution for mathematical modeling. The artificial
intelligent results indicate that using triangular, square, rectangular, and circular
PFs provides the highest NFD temperature in the outlet, respectively. Circular PFs
lead to a lower heat transfer coefficient (HC) compared to other PFs. The
comparison between various PF shapes shows that the use of circular and
triangular PFs results in the lowest and highest panel temperature,
respectively. Moreover, the highest and lowest volume fraction of melting
PCMs around the pipe is obtained through the use of triangular and circular
PFs, respectively.
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1 Introduction

Solar power is the most widespread source of energy in the world. The energy of
sunlight that strikes the earth in an hour is more than the energy consumption of the
earth’s population in a year. Despite its extensiveness, solar energy has an extremely low
density (Kim et al., 2022; Mustafa et al., 2022; Hassan et al., 2023). The Sun is not only an
enormous source of energy but also the origin of life and the source of all other energies
(Izadi et al., 2021; Roper et al., 2022). Fossil energy also originates from solar energy
because fossil fuels were once plants with sun-dependent life (Ascione et al., 2021; Hamzat
et al., 2021; Li et al., 2021). To harness this source, we need to find a way for the high-
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productive and low-cost conversion of its dispersed energy into
consumable electrical energy (Ejaz et al., 2021; Jamil et al., 2021;
Wang et al., 2021; Xiong et al., 2021). Therefore, many researchers
have focused their studies on solar energy. Bansal et al. (1994)

shown that the wind tower-connected solar chimney can create an
airflow rate of 1.4 kg/s at an incoming solar radiation of 700 W/
m2 using a solar chimney

linked with a wind tower-assisted ventilation system. The
findings also revealed that an air exchange rate of 35–73 air
changes per hour may be reached utilising a mass flow rate of
0.75–1.3 kg/s in an environment with a wind speed of 1 m/s. Using
a spreadsheet computer software, Aboulnaga (1998) provided a
parametric analytical evaluation of a rooftop solar chimney paired
with a cooled hollow. According to the findings, the suggested
rooftop solar chimney may produce up to 1.6 kg/s of airflow at an
incident solar radiation level of 850 w/m2 on average. Moreover,
the chimney’s highest air velocity was close to 1.1 m/s. The findings
also suggest that with a wind speed of 0.4 m/s, the cooled cavity
may provide a mass flow rate of 0.35 kg/s at an average incoming
solar energy of 575 w/m2 and an air velocity of 0.9 m/s in the
chimney. Nowadays, the use of photovoltaic (PV) systems to
convert solar into electrical energy is regarded as a solution to
meet energy needs (Chandrasekar and Senthilkumar, 2021; Salari
et al., 2021; Siah Chehreh Ghadikolaei, 2021). A small fraction of
absorbed solar-radiated energy is converted into electrical energy
by PV cells, while a large part of it is converted into thermal energy
and raises the cells’ temperature (Chan et al., 2010; Kumar et al.,
2015; Said et al., 2018; Ali, 2020). PV cells are the most crucial part
of PV systems, and the increased temperature of PV cells reduces
the efficiency of PV systems. Hence, the PV cells’ temperature
should be reduced as possible to improve the efficiency and

FIGURE 1
A view of the geometry of the solar panel and PF-added pipes.

TABLE 1 The values for the properties of the nanoparticle, water, and PCM (Żyła and Fal, 2017).

cp (J/kg.K) k (W/m · K) μ (kg/m · s) ρ (kg/m3)
Ag 235 429 - 10500

Water 4,179 0.613 0.001 997.1

Heat latent (J/g) k (W/m ·K) melting point (°C)

Paraffin wax 202.1 0.365 27.7

FIGURE 2
The comparison of panel temperature among the present article,
Nasrin et al. (2018), and Rahman et al. (2017) in different heat fluxes.
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productivity of such systems. Various researchers have proposed
different cooling systems with different conclusions (Katekar and
Deshmukh, 2020; Vaithilingam et al., 2020; Aghakhani et al.,
2022). The photovoltaic phenomenon is the one that generates
electricity through light radiation without any driving mechanism.
A PV system is the PV phenomenon and any system that employs
it. A solar PV system or solar energy system is a renewable energy
system that uses PV modules to convert sunlight into electricity
(Hernández-Callejo et al., 2019; Shittu et al., 2019; Wahab et al.,
2019). The generated electricity can be either stored or harnessed
directly. PV systems are widely-used systems concerning new
energies. Kazemian et al. (2019) presented a 3D simulation of a
comprehensive model of a PCM-integrated PV thermal system.
The findings show that as compared to the PVT system only, the
PCM-integrated PV thermal system has a lower surface
temperature and coolant output temperature. The findings
suggest that raising the melting point of PCMs from 40°C to
65 °C raises the surface temperature from 51.53°C to 58.78°C
while lowering the percentage of melted PCMs from 82.7% to
9.6%. The electrical and thermal energy efficiency of the PCM-

integrated PV thermal system is also shown to improve when the
thermal conductivity of the PCM rises.

Given the significance of energy restoration in solar devices by
PCMs due to the limited time of solar radiation, the present article
performs a numerical study on the effect of using PCMs in a solar
panel (Mondal, 2008; Sharma et al., 2009; Agyenim et al., 2010;
Rostami et al., 2020). To this end, some PCM is used under a solar
panel along with two pipes with a NFD flow. Several PFs are
embedded over the pipes, and the effect of PFs shapes,
i.e., square, rectangular, triangular, and circular, is investigated.
The transient study continues until the variations are stabilized,
and the values of outlet NFD‘s temperature, panel temperature, HC,
and PCM’s temperature and melting contours are studied.

2 Problem statement

The problem’s geometry includes a 100 × 85 cm solar panel,
under which a type- Paraffin wax PCM compartment is employed.
Two pipes with an internal diameter (ID) of 5 and 4 cm are

FIGURE 3
The vectors that denote the direction of the melted PCM current with temperature coloration for different shaped PFs on the NFD flow pipe.
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FIGURE 4
(Continued).
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embedded inside the compartment with a center-to-center spacing
of 46 cm. There is a flow of NFD inside the pipe with an inlet
temperature of 298.15 K and a constant Reynolds number. Several

circular (Cir), square (Sqr), rectangular (Rec), and triangular (Tri)-
shaped PFs are placed on the pipes with a height of 2.5 cm. Figure 1
depicts a view of the problem’s geometry.

FIGURE 4
(Continued). The temperature of the solar system for different shaped PFs on the NFD -containing pipes at four different times.
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Table 1 shows the values for the properties of the nanoparticle,
water, and PCM (Li, 2013).

3 The governing equations and
numerical method

The continuity, momentum, and energy equations for mixture
as well as the volume fraction equation for the secondary phase are
therefore solved using the mixture model. (Ishii, 1975).

∇ · ρm �vm( ) � 0 (1)
∇ · ρm �vm �vm( ) � −∇p + ∇. μm∇ �vm( ) + ∇.(∑n

k�1φkρk �vdr,k �vdr,k) (2)
∇.(∑n

k�1φk �vk ρkHk + P( ) � ∇. km∇T( ) (3)
∇. φpρp �vm( ) � ∇. φpρp �vdr,p( ) (4)

where �vm is the mass average velocity:

�vm � ∑2
k�1ϕkρk �vk
ρm

(5)

The drift velocity for nanoparticles, �v dr;k, is defined as

�vdr,k � �vk − �vm (6)
The nanoparticles’ velocity in relation to the base fluid’s velocity

is used to compute the slip velocity (relative velocity).

�vpf � �vp − �vf (7)

This is the relationship between slip velocity and drift velocity:

�vdr,p � �vpf −∑n

k�1
φkρk
ρm

�vfk (8)

The mixture model requires a constitutive equation to be
solved. As a result, the slip velocity may be calculated using the
Manninen et al. (Mikko et al., 1996) proposed equation
(Schiller, 1933).

FIGURE 5
The temperature of NFD -containing pipes for different shaped PFs on the NFD flow pipe at the final time.
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�vpf � ρp d
2
p

18μcfd

ρP − ρm( )
ρP

�g − �vm.∇( ) �vm[ ] (9)

f drag � 1 + 0.15 Re0.687p Rep ≤ 1000
0.0183ReP Rep > 1000

{ (10)

Enthalpy-Porosity is a well-considered approach for mimicking
a porous material in a domain.

The value of the volum fraction linked with each cell in this sort
of media indicates the porosity of the cells (Daneh-Dezfuli and
Pordanjani, 2022).

∂ρ
∂t

+ ∇. ρ �u( ) � 0 (11)

∂
∂t

ρ �u( ) + ∇. ρ �u �u( ) � μ∇2 �u − ∇P + ρ �g + �S. (12)

∂
∂t

ρH( ) + ∇. ρ �uH( ) � ∇. k∇T( ) (13)

Moreover, the source word expressed by the letter S was thought to
be as follows. (Kalbasi et al., 2019; Daneh-Dezfuli and Pordanjani, 2022):

S � Amushy
1 − γ( )2
γ3 + ε

�u. (14)

The term “enthalpy” was used to refer to the variation of “H" in
Eq. 13, which contains the latent and sensible enthalpies (Kalbasi,
2021; Daneh-Dezfuli and Pordanjani, 2022).

H � h + ΔH (15)
According to the following mathematical formulation, the

variant of “h” reflects the sensible enthalpy:

href + ∫T

Tref

CPΔT (16)

Moreover, the latent heat was represented by the symbol ΔH and
was described numerically as follows (Kalbasi, 2021; Daneh-Dezfuli
and Pordanjani, 2022):

FIGURE 6
The temperature on the middle layer of the solar system for different shaped PFs on the NFD flow pipe at the final time.
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ΔH � γLh (17)
where the γ is determined as follows:

γ �
0 if T<Ts;

T − Ts

Tl − Ts
ifTs ≤T<Tl;

1 if Tl ≤T;

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(18)

The density was predicted and applied using this simulation’s
boussinesq model. The aforementioned supposition is formally

expressed in the following equation. (Kalbasi et al., 2019;
Kalbasi, 2021).

ρ � ρl
β T − Tl( ) + 1

(19)

The finite element approach is used to conduct the
simulation (FEM). The equations of the NFD are solved using
the two-phase mixing technique. With COMSOL 6, all equations
are resolved.

FIGURE 9
The volume fraction of PCM for different shaped PFs on the NFD
-containing pipes.

FIGURE 7
The outlet NFD temperature of the solar system for different
shaped PFs on the NFD -containing pipes.

FIGURE 10
The average temperature of the solar panel for different shaped
PFs on the NFD -containing pipes.

FIGURE 8
The HC between the NFD and solar system for different shaped
PFs on the NFD -containing pipes.
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4 Validation

Two articles on solar energy and solar thermal panels are
employed to validate the present article. In Figure 2, the values
of panel temperature in different heat fluxes are compared among
two articles, i.e., Nasrin et al. (2018) and Rahman et al. (2017). The
given articles investigate solar panel temperature in different heat
fluxes. The result comparison indicates that the results of the present
simulation are close to those of the two previous articles.

5 Results and discussion

Figure 3 shows the vectors that denote the direction of the
melted PCM current with temperature coloration for different
circular, rectangular, triangular, and square-shaped PFs on the
NFD flow pipe. As with other fluids, the melted PCM contains
convective flow due to the temperature difference within, which
gives rise to the buoyant force in the melted PCM; as a result, the
hotter parts of PCMmoves upward against the gravity force, and the
colder and heavier parts move downward along the direction of the
gravity force. Of course, the high viscosity of the melted PCM leads
to weak buoyant force and extremely slow PCM movement.
However, the vectors depict the direction of the melted PCM’s
movement in the Solar System, showing that lower-temperature
parts of PCM move downward, and higher-temperature parts of
melted PCM move upward. The highest upward velocity is seen in
the middle of the two pipes, where PCMmelts more quickly and has
a higher temperature. In contrast, in lower-temperature parts, the
melted PCM moves downward to be replaced by higher-
temperature PCM.

Figure 4 shows the temperature of the Solar System for different
circular, rectangular, triangular, and square-shaped PFs on the NFD
-containing pipes at four different times. The analysis of the PCM’s
melting process over time shows that at the beginning, PCM starts to
melt sooner in the upper and middle parts of the two pipes,
especially in the outlet section. On the contrary, there is less
melted and more solid PCM in the lower part, especially around
the pipes. Since the NFD enters these areas, there is a high heat
transfer from PCM, which leaves PCM solid in the given area at all
times. On the contrary, the melting process gradually progresses in
other parts over time, covering the side parts of PCM in the Solar
System. In the upper layer, it can be seen that there is less melted
PCM in the area where the two pipes pass, which is due to the colder
NFD -containing pipes compared to other parts. Especially, a part of
solid PCM is seen in the inlet part of the NFD for all pin din shapes
at all times, which is due to the lower temperature of the NFD s in
this particular section. The PF shape variation has no significant
effect on the amount of melted PCM at different times, and slow
NFD is one of the reasons behind limited variations.

Figure 5 shows the temperature of NFD -containing pipes for
different circular, rectangular, triangular, and square-shaped PFs on
the NFD flow pipe at the final time. In all PF shapes, there is low-to-
high temperature variation from the inlet toward the outlet of the
NFD flow. On the inlet side, the pipe’s temperature is lower, while on
the outlet side, the pipe has the highest temperature. The maximum
temperatures on the pipe are close for different PF shapes, and the
minimum temperature on the pipe is different according to PF shape

variations. The addition of PFs on pipes results in the heat
transferring better from PCM to the pipe, which leads to
increased time of PCM melting and higher temperature of NFD
in the outlet. There is a lower minimum temperature on the pipe in
the circular and rectangular PFs compared to the triangular and
square PF shapes. The outlet NFD flow with a high temperature can
be employed for domestic use and hot water generation. As a
consequence, the enhanced heat transfer to the NFD raises the
temperature of the outlet NFD and lowers the temperature of the
panel, both of which improve the overall efficiency of the
Solar System.

Figure 6 gives the temperature on the middle layer of the Solar
System for different circular, rectangular, triangular, and square-
shaped PFs on the NFD flow pipe at the final time. The PF shape
variation changes the heat transfer area between the pipe and PCM.
Low-temperature NFD flow enters the pipe and takes in the PCM’s
heat. The extent of contact between the pipe and PCM affects the
amount of heat transfer from PCM to the NFD and the required
time to reach the steady state conditions. The maximum
temperature in this section of PCM shows no significant change
in the PF shape variations. The considerable energy restoration by
PCM mitigates the effect of PF shape. In a circular PF shape, the
NFD‘s temperature is lower to some extent in the middle of the pipes
and to some lower extent in the inlet compared to the three PF
shapes. The low NFD velocity is also a reason behind the limited
effect of PF shapes. However, the minimum temperature in this
section of PCM significantly changes with PF shape variations. The
minimum temperature is seen in the rectangular PF shape, followed
by two triangular and square cases. The highest temperature
minimum occurs in the circular PF. The close the minimum and
maximum temperatures in a Solar System, the higher the
temperature uniformity, which is desirable for solar systems
and panels.

Figure 7 shows the transient study of the NFD temperature in
the outlet of the Solar System for different circular, rectangular,
triangular, and square-shaped PFs on the NFD -containing pipes.
The NFD temperature in the outlet depends on the temperature of
the panel and PCM and is seen to be increased up to 1800 s; but, after
that, the NFD temperature in the outlet remains constant as most
conditions of the problem, and the panel temperature become
constant. After 1800 s, a steady state is established in the system,
and the transient problem becomes a steady-state one with quite
limited variations in the results. The PF shape variation has a low
effect on the outlet NFD temperature, which is primarily due to the
use of PCM, which allows a considerable amount of thermal energy
in the Solar System to be used for melting PCM; as a result, PF shape
variation, which leads to the heat transfer variation between the
NFD and PCM, causes limited changes in the results. The use of
circular PFs lowers the NFD temperature in the outlet, while the use
of triangular PFs increases the outlet NFD temperature.

Figure 8 shows the transient study of the HC between the NFD
and Solar System for different circular, rectangular, triangular, and
square-shaped PFs on the NFD -containing pipes. The HC between
the NFD flow and its surrounding is also increasing up to 1800 s, after
which it reaches the steady state and takes a constant value. The
increase in the panel temperature enhances the temperature difference
in PCM, leading to a rise in the temperature gradient in the NFD and
an increase in its HC. When the NFD and panel temperatures are
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fixed, the HC also has very limited variations after 18000 s. The values
of the HC are exceedingly close in square, rectangular, and triangular
PF shapes, and the only significantly different value of the HC belongs
to the circular PF shape, in which the value of the HC is lower than
that of other PF shapes, which is evidently clear at most times. Among
various PF shapes, the triangular PF shape has the highest HC. Given
the averaging process on the local HCs to obtain the average value of
the HC, a higher surface on the PFs leads to a reduction in the average
HC on circular PFs.

Figure 9 shows the transient study of the volume fraction of PCM
for different circular, rectangular, triangular, and square-shaped PFs
on the NFD -containing pipes. The melting process of PCM starts
from the early times, and the amount of melted PCM increases over
time until after approximately 1800 s, after which the variations in the
amount of melted PCM become considerably limited. From this time
forward, the conditions of the problem get close to the steady state,
and the variations in the problem significantly decrease. From this
time forward, the amount of melted PCM remains near 73% with
small variations. Melting PCM during the daytime helps supply the
energy in the solar water heater system at night. The changes in the
shape of PFs on the pipes have limited effects on the amount ofmelted
PCM at various times, and the highest level of variations in melted
PCM upon PF shape variation is observed when the problem reaches
the steady state. At this time, the use of circular and triangular PFs is
seen to cause the minimum and maximum amount of melted PCM,
respectively. The amount of melted PCM is higher in square PFs
compared to rectangular PFs. The higher the aspect ratio of the PF, the
greater the contact between the PFs and PCM, which results in more
heat transferring from PCM to the NFD and, finally decreased
amount of melted PCM. Hence, the use of circular PFs leads to
the minimum amount of melted PCM.

Figure 10 shows the average temperature of the solar panel for
different circular, rectangular, triangular, and square-shaped PFs on the
NFD -containing pipes. Given the inclusion of PCM under the panel,
the high amount of restored energy in it, and the limited velocity of the
NFD in the pipe, PF shape variation has a low effect on the panel’s
average temperature. The panel’s temperature has an increasing trend
upon receiving solar energy, rising from the initial temperature of 293 K
to more than 332 K. The temperature trend in the panel also implies a
significant decrease in its variation after 1800 s. Given the constant
conditions of the problem, the panel temperature also remains constant,
and the problem becomes a steady-state one. Under the transient
conditions, the shape variations of PFs on the pipes have a lower
effect on the panel temperature, and the greatest variations on the
average panel temperature are seen upon PF shape variations at the
steady-state time after 1800 s when the use of triangular PFs is seen to
give rise to higher temperatures in the panel. On the contrary, the use of
circular PFs generates the lowest temperatures in the panel. The
increased cross-section of the PFs results in improved heat transfer
from the PCM to the pipe and the NFD flow, which, in turn, leads to a
greater drop in the panel temperature.

6 Conclusion

The present article performs a simulation on the effect of the use
of differently-shaped PFs on the pipes in a solar thermal panel
system. The corresponding PFs include circular, triangular, square,

and rectangular PFs placed on two pipes under the solar panel. The
two pipes are embedded in the middle of the PCM, and the study is
continued transiently until the problem reaches a steady state. The
studies on the effect of PF shapes show:

1. The minimum and maximum panel temperatures are obtained
upon the use of circular and triangular PFs, respectively, and
the corresponding variations in the panel temperature are
mostly observed after 1800 s.

2. The use of triangular and circular PFs results in the highest and
lowest amount of melted PCM in the Solar System.

3. At the study time of 2000 s, the volume percent of melted PCM
reaches approximately 73% among different cases of PF shapes,
and the variations are limited after the given time.

4. Compared to other PF shapes, the circular PF has the
minimum HC with a considerable difference. The triangular
PF has a higher value of the HC compared to the other two PFs.

5. The use of triangular, square, rectangular, and circular PFs
leads to the highest values of NFD temperature in the outlet,
respectively.
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