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In the context of energy transition and carbon neutrality strategies, distributed
renewable energy is widely emerging on the distribution side. However, due to
the volatility and randomness characteristics of distributed renewable energy, its
full absorption poses a huge challenge to the economy and stable operation of
the power grid. Flexible resources on the demand side, represented by air
conditioners and electric vehicles, can participate in grid dispatching,
improving the economic efficiency and reliability of system operation. To this
end, this paper proposes an intraday dispatch strategy for demand-side flexible
resources based on two-stage optimization. First, based on a generalized energy
storage model, the adjustable flexibility of demand-side flexible resources is
modeled. Second, to hinder the uncertainties related with markets and demand-
side flexible resources, the rolling optimization is adopted for the optimal bidding,
thus enabling demand-side flexible resources to participate in the intraday
market with low risks of profit losses. Third, based on the bidding decision,
real-time dispatch optimization is carried out to cope with the system operation
deviation caused by forecast errors. Then, in the real-time control stage, the
dispatch instructions are decomposed to the control units to achieve power
tracking. Finally, the proposed method is simulated and verified on a test system.
The results show that by coordinating the operation of demand-side flexible
resources through two-stage optimization, the uncertainties of renewable
energy output, market price, etc. Can be effectively overcome, and the
economics of system operation can be improved.
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1 Introduction

With the widespread rise of distributed renewable energy in the distribution and
utilization side, the existing energy and power scale production and long-distance
transmission gradually to distributed/centralized production/utilization coexist
transformation, powerfully promoted the implementation of “energy transition” and
“carbon neutral” strategy (Naval and Yusta, 2021). However, due to the volatility and
randomness characteristics of distributed renewable energy, its full absorption to the power
grid economy, stable operation brings huge challenges (Ali et al., 2017). With the steady
progress of low-carbon energy transformation and power market reform, the personalized
development of user-side demand, the mature application of distributed energy technology
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and the significant deepening of distribution network application
scenarios have been promoted, and the penetration rate of flexible
resources in the power system has been continuously improved.
Promote the participation of flexible resources in power system
operation and power market Trading is a catalyst for realizing the
flexible and stable operation of power system, the industrialization of
distributed resources, the optimization of energy supply structure and
the improvement of comprehensive energy efficiency. With the
development of smart grid and the increase of flexibility demand,
the flexibility resources of the grid-load-storage side have been further
utilized to participate in the optimal operation and scheduling of the
system. The flexibility resources on the power grid side include
dynamic line expansion, flexible transmission, interconnection, etc.
(Kornrumpf et al., 2016); Load-side flexibility resources include electric
vehicles, invitation-based demand response, and auction-based
demand response (Heleno et al., 2015); The flexibility resources on
the energy storage side include pumped storage, electric energy storage,
and other forms of energy storage (heat, hydrogen) (Denholm, 2012).

With air conditioning, electric vehicles as representatives of the
demand side flexible resources output/power consumption in a

certain range is flexible and adjustable, can be used as.
Considering the demand side flexible resources present small-
scale, decentralized and heterogeneous characteristics, the power
grid needs to rely on aggregation means and coordination
optimization strategy to give full play to its flexible response
potential (Saboori et al., 2011). However, it is difficult to measure
and use the flexibility of a large number of distributed systems,
especially due to the computational complexity. Tomake the most of
the existing flexibility and lower the complexity of planning, trading
and control, it is essential to compute the total flexibility of the whole
system group and express it in a brief and compact form. Many
studies have emphasized the importance of aggregation as a key
factor for integrating a large number of flexible systems. The role of
collecting, aggregating and controlling the flexibility of a group of
systems is played by an entity called an aggregator. The aggregator
signs contracts with individual flexible energy resources, defining the
communication and control mode between the system and the
aggregator, the specific details of the flexibility offered by the
system, and how to reward the flexibility offered by the system.
Therefore, the aggregator acts as a mediator between flexible

TABLE 1 Literature review table.

Ref. Aggregate flexibility modeling Two-stage strategy Uncertainty

Riveros et al. (2015), Hu et al. (2020), Yan et al. (2022) √ × ×

Ben et al. (2020) × √ ×

Ali et al. (2017), Ju et al. (2016), Xu et al. (2017) × × √

This paper √ √ √

FIGURE 1
Two-stage optimization framework for demand-side resources.
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resources and wholesale markets, shaping individual flexibility into
tradable products.

On the basis of flexibility resource aggregation, there are many
literature on its participation in optimization operation scheduling.
Literature (Ju et al., 2016) studies how renewable energy generation
and electricity price prediction error affect the market, and proposes
a bidding strategy for demand-side flexibility resources to participate
in four different markets at the same time: bilateral contract market,
intraday market, real-time market and balancing market; literature
(Pourghaderi et al., 2018) exploits the feature that the uncertainty of
random variables decreases as the time horizon gets closer, and
develops a joint optimization model that accounts for the demand-
side flexibility resources’ bidding profit in the intraday market and
the expected reward and penalty in the balancing market, offering
insights for demand-side flexibility resources to join in different
time-scale market transactions; literature (Xu et al., 2017) presents a
stochastic scheduling model for demand-side flexibility resources
based on demand response, applies conditional value-at-risk theory
to capture the uncertainty faced by the power grid, and enhances the
operation revenue of demand-side flexibility resources through
multi-link coordinated scheduling of “source-load-storage”;
literature (Riveros et al., 2015) uses multi-scenario method to
simulate the uncertainty of intraday market clearing price and
wind power output, and improves the output stability through
coordinated complementarity of demand-side flexibility resources;
literature (Hu et al., 2020) Group management can interrupt the
adjustment capacity of load in response to short-time scale
fluctuations in net load (the difference between load and new
energy output). Literature (Yan et al., 2022) develops a model of
transferable electric load and alternative load response for the park
integrated energy system, and further develops an adjustable heat
load response model, which is then incorporated in the optimization
operation scheduling verification, which can improve the operating

economy and flexibility of the system; literature (Ben et al., 2020)
quantifies the adjustment flexibility of interruptible loads based on
load aggregators, makes interruptible have different response times
according to the nature of load aggregators, and then increases the
absorption ratio of wind power through day-to-day optimization.
Literature (Chen et al., 2018) proposed a real-time optimization
scheduling strategy based on a two-stage linear model, which
partitions the operating state space of the microgrid according to
the load condition, the state of charge of the energy storage system,
the state of charge of the energy storage system, and the operating
period of the next scheduling period under two operating modes:
grid-connected and independent. The corresponding real-time
scheduling strategy is studied. Literature (Yu et al., 2022)
constructed a microgrid model considering electric vehicles, and
considered the uncertainty of electric vehicles, and constructed a
real-time energy scheduling model for microgrids based on a
Markov chain Monte Carlo algorithm for electric vehicle
behavior probability. Some studies only consider intraday
optimization (Hosseinnezhad et al., 2016; Li et al., 2019),
literature (Li et al., 2021) starts from the perspective of power
users, comprehensively considers the economy of microgrid
operation and user satisfaction, and establishes an intraday
optimization scheduling model to optimize user satisfaction. The
model can formulate corresponding scheduling schemes according
to different user needs. Literature (Yang et al., 2018) takes an
independent microgrid as the research object, constructs a
flexibility deficiency rate index, and then establishes an intraday
optimization scheduling model for microgrids with the lowest
operating cost and flexibility deficiency rate of microgrids within
a day as the optimization objectives. The optimization results
enhance the resilience of microgrids to uncertainty (Pan et al.,
2015). Literature (Chen et al., 2019) proposes a multi-time-scale
coordinated scheduling method. This method is based on model

FIGURE 2
Scroll optimization diagram.
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predictive control. The optimization objective of the intraday
scheduling stage is to minimize the system’s overall operating
cost, taking into account the peak-valley electricity prices, the
battery life, and the randomness of wind and solar power. An
intraday economic dispatch model is constructed. A model
predictive control-based intra-day rolling optimization correction
strategy is proposed in the intra-day scheduling stage to optimize the

power fluctuations on the interconnection line and reduce them.
Literature (Xie et al., 2019) introduces blockchain technology into
microgrid scheduling, and combines it with multi-time-scale
scheduling methods to apply it to microgrid optimization
scheduling, thereby achieving economic and secure microgrid
scheduling with decentralized capabilities. The optimization
results show that this scheduling strategy can accurately obtain
data from various power generation devices in the network, and
correct the predicted information according to the real-time state
information of the microgrid, greatly improving the accuracy of
prediction. And relying on blockchain technology, it can more
securely protect scheduling information. The above studies have
achieved good results in modeling and analysis of uncertainty
factors such as wind and light resources, load, electricity price,
etc., but most of them adopt the traditional single-section open-loop
optimization method with refined time scale, which is difficult to
accurately reflect the impact of renewable energy, load prediction
error and unplanned instantaneous power fluctuation on the
coordination and control of demand-side flexible resources. The
internal equipment modeling also lacks consideration of
coupling between different time sections, which restricts the
optimization results to guide practical operation scheduling to
some extent.

Utilizing the flexibility of demand side resources (DSR) can
significantly improve the economic efficiency and reliability of
distribution system operations. In order to accurately characterize
the dispatching potential of DSR, a geometric polytope method is
employed (Wang et al., 2021), satisfying the inherent conditions of
DSR and delineating the feasible power and energy regions.
Literature (Bao et al., 2024) have proposed an aggregate model
for DSR, utilizing aggregated parameters to represent energy and
power constraints based on the DSR’s travel patterns. Literature
(Ren et al., 2023) have introduced an equivalent time-variant storage
model to describe the flexible demand aggregated from DSR. While
this method provides a more precise model for aggregated DSR, it
fails to consider the inherent uncertainties associated with DSR,

FIGURE 3
Algorithm flow chart.

FIGURE 4
Topology of IEEE 15-bus distribution network.

TABLE 2 EV Parameters.

Parameter Value

Initial SOC U(0.2, 0.4)

Desired SOC U(0.8, 1.0)

Minimum SOC U(0.1, 0.2)

Rated power (kW) N(6.6, 0.2)

Maximum capacity (kWh) N(40, 1)

Charging/discharging efficiency U(0.8, 1.0)

TABLE 3 TCL parameters.

Parameter Value

Thermal capacitance (kWh/°C) N(2, 0.2)

Thermal resistance (°C/kW) N(2, 0.2)

Rated power (kW) N(5.6, 0.2)

Performance coefficient N(2.5, 0.2)

Temperature setpoint (°C) N(22, 1)

Thermal comfort range (°C) U(1, 2)

TABLE 4 ESS parameters.

Parameter Value

ESS energy capacity (kWh) 25

ESS rated power (kW) 10

Charging/discharging efficiency 95%
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rendering it less reliable in practical applications. To address these
uncertainties, the distributional robust chance constrained (DRCC)
approach emerges as an efficient method, striking a balance between
conservatism and computational efficiency compared to robust
optimization and stochastic optimization (Zhong et al., 2021),
respectively. However, constructing reasonable robust sets in
DRCC hinders its effective applications in DSR management.

A detailed comparison between this study and other similar
recent works is provided in Table 1 to demonstrate the novelty of
this study. Compared with other works, the contributions of this
paper can be concluded as:

1) The generalized energy storage model is used to model the
adjustable flexibility of demand-side flexible resources;

2) The optimal bidding decision for demand-side flexible
resources to join the intraday market is made based on
rolling optimization, which utilizes rolling updates to
reduce the risks of profit losses cause by uncertainties
related with markets and DSRs;

3) Based on the bidding decision, real-time scheduling
optimization is carried out to cope with the system
operation deviation caused by prediction error;

4) In the real-time control stage, the scheduling instructions are
decomposed to the control units to achieve power tracking;

5) The proposed method is simulated and verified on the test
system, and the results show that by coordinating the
operation of demand-side flexible resources through two-
stage optimization, the variability of renewable energy
production, market price, etc. Can be effectively overcome,
and the system operation economy can be improved.

2 Modeling of the flexibility of demand-
side adjustable resources

The share of flexible loads in the current power system is growing,
and their flexibility and dispatchability can achieve energy time shift.
For demand-side flexible resources such as electric vehicles and air
conditioners, which have time-dependent features, they show the
same charge, discharge, and storage characteristics as energy storage.
Therefore, this paper broadens the concept of energy storage and
refers to all devices and measures that can alter the spatiotemporal
distribution of energy as generalized energy storage, including actual
devices such as electricity storage, heat storage, hydrogen storage, etc.,
demand-side reaction and control, electric vehicle charge and
discharge management, etc., and employs a generalized energy
storage model to describe the flexibility of demand-side resources
such as electric vehicles and air conditioners. In the generalized energy

FIGURE 5
Typical intraday non-dispatchable resource power curve andmarket price curve. (A) Power profiles of non-dispatchable resources. (B) Price curves.

FIGURE 6
Aggregator Bid Decision (Phase 1). (A) Bidding decisions of the whole VPP. (B) Bidding decisions of BESS aggregator. (C) Bidding decisions of EV
aggregator. (D) Bidding decisions of TCL aggregator.

Frontiers in Energy Research frontiersin.org05

Wang et al. 10.3389/fenrg.2024.1343728

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1343728


storage model, taking into account that electric vehicles, air
conditioners and other types of loads have to satisfy the user’s
comfort constraints during operation, we use time-varying power
and energy boundaries to replace the fixed boundary parameters of
the traditional energy storage model. Based on the generalized energy
storage model to characterize individual devices, we obtain the
aggregated flexibility model of demand-side flexible resources by
calculating the geometric center of all device parameters.

2.1 Generalized energy storage model

First, we introduce the generalized energy storage model, which
includes the energy storage state change equation, energy
constraints and power constraints:

ei,t � ρiei,t−1 + Δei,t + Δt · ηini · pi,t , pi,t > 0
Δt · pi,t/ηouti , pi,t < 0

{ , (1a)

e∨i,t ≤ ei,t ≤ e∧i,t (1b)
p∨i,t ≤ pi,t ≤ p

∧
i,t (1c)

In the formula: ei,t represents the energy of device i at time t; ρi
represents the energy decay coefficient of device i; Δei,t represents
the energy change of device i at time t; pi,t represents the power of
device i at time t; e∨i,t and e∧i,t respectively represent the energy
boundaries of device i at time t; p∨

i,t and p
∧
i,t respectively represent the

power boundaries of device i at time t ; ηini and ηouti respectively
represent the charging and discharging efficiency of device i at time t.

2.2 Electric vehicle

Electric vehicles, as a kind of energy storage device, can carry out
bidirectional energy transmission with the power system, which can
consume electric energy as a load, and also provide electric energy
for the power system by discharging to the grid. For a wide range of
load aggregators, electric vehicles, as a special kind of electric load,
are no different from ordinary electric loads in terms of power
demand measurement and statistics. But electric vehicles have their
special load characteristics and uncertainties caused by the user
habits of car owners. The data that load aggregators need to pay

FIGURE 7
Aggregator Power Scheduling Decision (Phase 2). (A) Scheduling decisions of the whole VPP. (B) Scheduling decisions of BESS aggregator. (C)
Scheduling decisions of EV aggregator. (D) Scheduling decisions of TCL aggregator.

FIGURE 8
Topology of IEEE 33-bus distribution network.
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attention to when managing them include the departure and arrival
time of electric vehicles, charging and discharging time, contract
parameters signed with aggregators, etc. It is also important to
consider the physical characteristics of electric vehicle batteries,
which can be illustrated from a technical perspective by the
constraint conditions of mathematical models.

2.2.1 Energy boundaries
For each electric vehicle, in order to meet the user’s charging

demand, the upper and lower limits of its energy at each moment
should be calculated (Hao et al., 2017). The upper limit of energy is
calculated based on the fastest charging trajectory, while the lower
limit of energy is calculated based on the slowest charging trajectory:

eev,max
i,t � min eevi,tai + �pevi t − tai( )Δt), �eevi }, t ∈ tai,/, tli( )({ (2a)

eev,min 1
i,t � max eev, expi − �pevi tli − t( )Δt), e evi( }, t ∈ tai,/, tli( ){ (2b)
eev,min 2
i,t � max eevi,tai − �pevi t − tai( )Δt), e ev

i
( }, t ∈ tai,/, tli( ){ (2c)

eev,min
i,t � max eev,min 1

i,t , eev,min 2
i,t( ), t ∈ tai,/, tli( ) (2d)

Where formula (2a) represents the upper limit of the electric
vehicle’s power at each moment; formula (2b) represents the power
curve corresponding to the electric vehicle charging from the lowest
power to the target power when leaving the station; formula (2c)
represents the power curve corresponding to the electric vehicle
discharging to the lowest power after arriving at the station; formula
(2d) represents the lower limit of the electric vehicle’s power at each
moment, which can be calculated by the lower limit of the electric
vehicle’s power at each moment. In the formula: eev,min /max

i,t

represents the minimum/maximum power of the electric vehicle;

tai/tli represents the time when the electric vehicle enters/leaves;
�eevi /e

ev
i
represents the upper and lower limits of the electric vehicle

battery capacity; �pev
i represents the rated power of the

electric vehicle.

2.2.2 Power boundary
For each electric vehicle, its charging and discharging power

limits are subject to both energy and rated power constraints. They
are calculated based on the plug-in states of EVs:

pev,max
i,t � min eev,max

i,t+1 − eev,min
i,t( )/Δt, �pevi } t ∈ tai,/, tli( ){ (3a)

pev,min
i,t � min eev,min

i,t+1 − eev,max
i,t( )/Δt,−�pevi } t ∈ tai,/, tli( ){ (3b)

Where formula (3a) represents the upper limit of the electric
vehicle’s power, and formula (3b) represents the lower limit of the
electric vehicle’s power. In the formula: Pev,min /max

i,t represents the
minimum/maximum power of the electric vehicle; tai/tli represents
the time when the electric vehicle enters/leaves; �Pev

i represents the
rated power of the electric vehicle.

2.2.3 Energy changes
According to the electric vehicle’s station status, initial power

when entering the station and final power when leaving the station,
the transfer power caused by the electric vehicle leaving or entering
the station can be calculated:

Δeevt+1 � eev,max
i,t+1 · xi,t+1 − xi,t( ) − eev,max

i,t · xi,t − xi,t+1( ) (4)

In the formula: Δeevt+1 represents the transfer power caused by the
electric vehicle leaving or entering the station; xi,t represents the
electric vehicle’s station status.

2.3 Air conditioning

With the application of communication control technology in
smart homes such as smart air conditioners, air conditioning can
become a controllable load with flexible and controllable working
hours, wide distribution, and easy scheduling. Dispatchers can
change the frequency of use of controllable loads at peak times
according to the daily peak electricity consumption or users
according to real-time electricity price changes, so as to reduce
the transmission pressure of the distribution system during peak
hours. The purpose of implementing demand-side management is

FIGURE 9
Aggregated bidding curves of all aggregators.

FIGURE 10
Dispatching results.

FIGURE 11
Tracking errors.
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to optimize grid dispatch without affecting the user experience of
power users. Adjustable loads, such as central air conditioning
load, decorative lamp load, etc., participate in microgrid demand
response dispatch by adjusting the load power consumption.
When time-of-use electricity prices are high, these loads can be
reduced by reducing load power to lower levels of electricity
consumption. Based on their electricity comfort, microgrid
users set electricity price thresholds and power adjustment
levels to participate in grid demand response. When the hourly
real-time electricity price is above the price threshold, the
consumption level of the load is reduced to the power level set
by the user.

2.3.1 Minimum temperature deviation -
reference power

In order to obtain the reference power of a single air conditioner,
taking the minimum temperature deviation as the objective,
considering the user comfort constraint and the building room
temperature dynamic equation, an optimization model is
established (Zhao et al., 2017). The reference power of a single
air conditioner means the power required to maintain the room
temperature at the user’s set temperature.

phvac,basei,t � argmin
Phvac
i,t{ }

t ∈ T

∑
t∈T

θi,t − θseti( )2 (5a)

θi,t � a · θi,t−1 + 1 − a( ) · θouti,t−1 − b · phvaci,t−1( ) (5b)
θi,t
min ≤ θi,t ≤ θi,tmax ,∀t ∈ τ (5c)

θmin /max
i,t � θseti ±Δθi,∀t ∈ τ (5d)
0≤ phvaci,t ≤ �phvaci,t ,∀t ∈ τ (5e)

Where, (5a) represents the optimization objective, i.e., the
deviation of indoor temperature from user temperature setting
value; (5b)-(5e) represent the constraints of the optimization
model, where, (5b) represents the discrete form of temperature
change equation, (5c) represents the indoor temperature constraint,
(5d) represents the maximum and minimum temperature
acceptable by the user, (5e) represents the power constraint. In
the formula: τ � {1, · · ·, 24}, represents the set of discrete time
points; Phvac,base

i,t represents the reference power of the air
conditioner when the indoor temperature is maintained at the
user set temperature; �Phvac

i,t represents the rated power of the air
conditioner; θseti , θi,t, θ

out
i,t ,Δθi respectively represent the user set

temperature, indoor temperature, outdoor temperature,
maximum deviation; a, b represents the coefficient of indoor
temperature change equation, which is related to equivalent heat
capacity (C), equivalent heat resistance (R), operating efficiency (η)
as follows:

a � e−Δt/ RC( ), b � Rη (5f )

2.3.2 Max, min power—power boundary
In order to obtain the maximum/minimum power limit value of

a single air conditioner, respectively taking the minimum or
maximum power consumption at each moment as the objective,
an optimization model is established. The maximum/minimum
power limit denotes the maximum/minimum power
consumption of the air conditioner without violating the
temperature constraints.

phvac,∨i,t � argmin
Phvac
i,t{ }

t ∈ τ

phvaci,t

or phvac,∧i,t � argmax
Phvac
i,t{ }

t ∈ τ

phvaci,t

s.t.: 5b( )− 5e( )

(6a)

After obtaining the minimum or maximum power consumption
at each moment, subtracting the reference power can obtain the
upper and lower bounds of the adjustable power of the
aggregation model:

phvac,min
i,t � phvac,∨i,t − phvac,basei,t (6b)

phvac,max
i,t � phvac,∧i,t − phvac,basei,t (6c)

In the formula: Phvac, min /max
i,t represents the lower and upper

limits of the adjustable power of the air conditioner.

2.3.3 Maximum and minimum temperature-
energy boundary

When the state of the aggregation model is at the upper and
lower bounds of energy, it is considered that the indoor temperature
is at the boundary of the user acceptable range. Therefore, when
calculating the energy boundary of the aggregation model, an
optimization model is established with the minimum deviation
value between the indoor temperature and the maximum/
minimum acceptable temperature as the objective:

TABLE 5 Evaluation metrics comparison.

Item The proposed method Method 1 Method 2

Trading cost ($) 3222.71 2930.72 3515.87

Imbalance penalty ($) 141.36 134.83 325.13

Operation cost ($) 341.35 287.49 785.11

Total cost ($) 3705.42 3353.04 4626.10

Max tracking error (kW) 470.41 356.29 895.56

Computation time (s) 10.12 4702.35 11.25
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phvac,−i,t � argmin
Phvac
i,t{ }

t ∈ τ

θi,t − θi,t
max( )2

or phvac,+i,t � argmin
Phvac
i,t{ }

t ∈ τ

θi,t − θi,t
min( )2

s.t.: 5b( )− 5e( )

(7a)

After obtaining the power values phvac,−
i,t and phvac,+

i,t

corresponding to the maximum/minimum temperature, the
upper and lower bounds of the energy of the aggregation model
can be obtained by substituting the following formula:

ehvac,min
i,t � ∑T−1

t�0 phvac,−i,t − phvac,basei,t( ) · Δt
1 − a( )T ∀t ∈ τ (7b)

ehvac,max
i,t � ∑T−1

t�0 phvac,+i,t − phvac,basei,t( ) · Δt
1 − a( )T ∀t ∈ τ (7c)

In the formula: Ehvac,min /max
i,t represents the minimum/

maximum power of the air conditioner.

2.4 Aggregated flexibility modeling

Aggregated flexibility modeling is a method applied in the power
sector to coordinate and optimize the scheduling of flexibility
resources. Flexibility resources are devices or users that can
adjust their electricity consumption or generation levels within a
certain range, such as energy storage, renewable energy sources,
demand response, etc. The purpose of aggregated flexibility
modeling is to combine dispersed flexibility resources into a
virtual large-scale flexibility resource, to improve its ability to
participate in market transactions and grid services.

When performing aggregated flexibility modeling, we obtain the
parameters of the aggregator by directly summing or weighted
averaging the parameters of the generalized energy storage model
corresponding to individual devices.

ρagg � ∑
i∈Φagg

ωiρi( ) (8a)

ηin/outagg � ∑
i∈Φagg

ωiη
in/out
i( ) (8b)

E∨/∧
agg ,t � ∑

i∈Φagg

e∨/∧i,t( ) (8c)

P∨/∧
agg ,t � ∑

i∈Φagg

p∨/∧i,t( ) (8d)

ΔEagg,t � ∑
i∈Φagg

Δei,t( ) (8e)

In the formula:Φagg represents the set of all devices contained in
the aggregator; ωi represents the weighting coefficient of device i in
the aggregator.

2.5 Aggregated power
decomposition strategy

The aggregated resources are composed of multiple control units
(such as EV, HVAC and ESS) that can adjust their power

consumption or generation according to external commands. In
order to achieve optimal operation of the aggregated resources, it
is necessary to determine a power plan that meets the demand
response requirements and minimizes the operation cost. This
power plan is called the aggregated power, which represents the
total power consumption or generation of all control units in a
given time period. However, the aggregated power alone cannot
specify how each control unit should adjust its power. Therefore,
after determining the aggregated power, a further step is needed to
decompose it into individual control commands for each control unit.
This step is called power decomposition, which aims to distribute the
aggregated power among different control units in a fair and efficient
way. Power decomposition is a challenging problem because it
involves many factors, such as the real-time operating status,
operating constraints, preferences and costs of each control unit.
Moreover, it needs to be solved in a short time to meet the real-time
control needs. Therefore, a heuristic algorithm is proposed to solve the
power decomposition problem. The algorithm works as follows:

1) Collect the real-time operating status of each control unit, such
as its current power consumption or generation, state of charge
(SOC), temperature, etc.

2) Calculate the upper and lower limits of the power of each
control unit according to their operating constraints, such as
maximum andminimumpower, SOC range, comfort range, etc.

3) Set the initial allocation value of each control unit to the
average of the upper and lower limits of the power. This value
represents a fair and feasible initial solution for power
distribution.

4) Calculate the remaining power to be allocated according to the
initial allocation value of each control unit. The remaining
power is equal to the difference between the aggregated power
and the sum of the initial allocation values.

5) Allocate the remaining power according to the proportion of
the power up or down capability of each control unit in all
control units. The power up or down capability reflects how
much each control unit can increase or decrease its power from
its initial allocation value. The proportion is calculated by
dividing the individual capability by the total capability. This
way, the remaining power is distributed in a proportional and
efficient way.

3 Two-stage optimization strategy

For the intraday dispatch of demand-side flexible resources,
we propose a two-stage optimization strategy, in which the first
stage optimizes the bidding decision of demand-side flexible
resources to join the intraday market based on rolling
optimization, and the second stage carries out real-time
dispatch optimization to cope with the system operation
deviation caused by forecast errors. The multi-time scale
characteristic of flexibility demand lies in the decrease in
prediction accuracy with time, and the multi-time scale
characteristic of flexibility resources lies in the trend of
flexibility supply output changing with time (Du et al., 2023).
Figure 1 shows the collaborative optimization framework for
multi-flexible resources. It is noted that this paper assumes that
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end-users are willing to participate in scheduling and
automatically respond to control signals in order to receive
monetary rewards from the aggregator, which is consistent
with many studies (Yi et al., 2021; Du et al., 2023).

3.1 Stage I: rolling optimization of intraday
market bidding

In order to adapt to the changes in the intraday operating
conditions, the rolling optimization scheduling model can
dynamically adjust and control the demand-side flexible resources
according to the real-time market prices, load forecasts, renewable
energy output and other information, and revise and update the
intraday scheduling plan. The rolling optimization scheduling
model is divided into three sub-layers according to the differences
in the scheduling time of electricity, cooling/heating and gas, which can
improve the system’s flexibility and economy. The rolling optimization
schedulingmodel adopts the predictive controlmethod, which uses the
predictive model and the system’s historical data and future input to
predict the system’s future output, and optimizes it through a certain
performance indicator within a rolling limited time interval, and
obtains feedback correction control. The rolling optimization
scheduling model is different from the traditional global
optimization, which only optimizes the performance indicator for a
limited time from that moment at each moment, and to the next
moment, this optimization time moves forward at the same time,
constantly performing online optimization. At each moment, a group
of future control actions are obtained, but only the control action at this
moment is implemented. At the next moment, a group of new controls
are re-predicted and optimized, which is also only implemented with a
new control action. Every step is feedback correction. The rolling
optimization scheduling model can be applied to the power system
with wind power and other renewable energy sources. By transforming
the objective function and constraint conditions into state space, the
rolling scheduling problem is transformed into a matrix form of
optimization problem, and a multi-unit multi-prediction period
rolling optimization scheduling mathematical model is established.
This model can effectively suppress the fluctuation of wind power
output on system operation, and improve system security and
reliability. The scrolling optimization diagram is shown in Figure 2.

In order to improve the system operation efficiency and
economy, the system operator can use the flexibility of demand-
side resources to carry out arbitrage operations in the spot market.
Arbitrage operation refers to the behavior of buying low and selling
high or selling high and buying low in different markets or different
time periods, using price differences, and thus obtaining benefits.
Due to the large uncertainty and randomness of the energy
consumption behavior of demand-side resources, which are
affected by user preferences, environmental temperature,
equipment status and other factors, and the large error of
intraday prediction, this paper only studies the bidding strategy
of demand-side resources in the intraday market. The intraday
market refers to the power market conducted on the trading day,
which is usually divided into energy market and balance market. The
energy market refers to the market with electricity as the trading
object, and the balance market refers to the market with capacity as
the trading object, which is mainly used to regulate the real-time

supply and demand balance of the system. In order to optimize the
bidding strategy, we establish a rolling optimization model with a
step length of 1h, which is executed every 1h, and as time goes by, the
optimization cycle gradually shortens. Each optimization will
produce a decision sequence corresponding to the current
moment to the end moment, but only submit the first decision
of the decision sequence to the market as the bidding decision. The
purpose of doing this is to dynamically adjust and correct according
to real-time information, and improve the accuracy and flexibility of
bidding decisions. The objectives of this optimizationmodel include:
1) minimizing market transaction costs; 2) minimizing system
operation costs. Among them, market transaction cost refers to
the cost incurred by demand-side resources in buying or selling
electricity in the energy market and balance market, and system
operation cost refers to the energy cost consumed by demand-side
resources in meeting user demand and system constraints. The
optimization decision variables are the bidding electricity in the
intraday energy market and the bidding capacity in the balance
market, and the constraints considered include system power
balance constraint and demand-side resource operation
constraint. The specific optimization model can be expressed as:

min∑T
t�t′

πIDM
t · PEX

t + πBM
t · ∑

agg∈ HVAC,EV,ESS{ }
Ragg
t + ∑

agg∈ HVAC,EV,ESS{ }
cagg · Pagg

t
⎛⎝ ⎞⎠

(9a)
s.t.: P̂

RES

t � PHVAC
t + PHVAC,base

t + PEV
t + PESS

t + P̂
Load

t

+ PEX
t ∀t ∈ t′,Τ[ ] (9b)

Eagg
t � ρaggt Eagg

t−1 + ΔEagg
t + Δt

· Pagg
t ∀t ∈ T,∀agg ∈ HVAC,EV,ESS{ } (9c)

Eagg,∨
t ≤Eagg

t ≤ Eagg,∧
t ∀t ∈ T,∀agg ∈ HVAC,EV,ESS{ } (9d)

Pagg ,∨
t ≤Pagg

t ≤Pagg ,∧
t ∀t ∈ T,∀agg ∈ HVAC,EV,ESS{ } (9e)

Pagg
t ± Ragg

t ∈ Pagg
t ∀t ∈ T,∀agg ∈ HVAC,EV,ESS{ } (9f )

In the formula: t′ represents the current time; Pagg
t represents

the planned power consumption of the flexible adjustable resource
agg at time t; P̂

RES
t is the forecast value of renewable energy at time t;

P̂
Load
t is the forecast value of non-flexible load at time t; PHAVC,base

t is
the baseline of air conditioning load at time t; PEX

t is the exchange
power between the system and the market at time t, i.e., the bidding
power; cHVAC, cEV and cESS respectively represent the unit power
dispatch cost of the aggregated resources of HVAC, EV and ESS. It is
noted that the dispatching range of this paper only involves a low
voltage zone, like a community, which has little influences on the
operation of the distribution system, thus the system operation
constraints are not considered in the optimization model.

3.2 Stage II: real-time dispatch optimization

Real-time scheduling optimization refers to selecting
appropriate scheduling algorithms and strategies based on the
task information in the real-time system, such as deadlines,
priorities, resource requirements, etc., to ensure that the system
can complete various real-time tasks in a timely manner. Real-time
scheduling optimization has two methods: static scheduling and
dynamic scheduling. Static scheduling means determining the
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execution order of tasks in advance, while dynamic scheduling
means deciding the execution order of tasks dynamically
according to the actual situation. The purpose of real-time
scheduling optimization is to improve the system’s timeliness,
reliability and efficiency, and avoid system failures or disasters
caused by task timeouts. The difficulty of real-time scheduling
optimization lies in how to balance the system’s indicators such
as throughput, response time, resource utilization, etc., and how to
deal with the uncertainty factors of the system, such as task arrival
time, processing time, interrupt occurrence time, etc.

On the one hand, the rolling optimization of intraday market
bidding is based on the renewable energy output and load
forecast information 1h ago, so the bidding decision will cause
system operation deviation due to the existence of forecast error;
on the other hand, the resolution of the bidding decision is 1h,
while the operation status of devices such as air conditioners and
electric vehicles is changing rapidly, and they must be dispatched
at shorter time intervals. Therefore, based on the first stage
optimization, we carried out the second stage optimization,
i.e., real-time dispatch optimization. The step size of real-time
dispatch optimization is 15min, and the optimization period is
1h. The objective of real-time dispatch optimization is to
minimize the cost of power adjustment, the decision variable
is the power adjustment amount of various adjustable resources,
and the constraints include real-time power balance constraint,
power adjustment amount constraint, adjustable resource
operation constraint. The specific optimization model is:

min ∑
τ∈ 1,2,3,4{ }

∑
agg∈ HVAC,EV,ESS{ }

cagg · Pagg
t − Pagg

τ|t( )2 (10a)

s.t.: PRES
τ|t � PHVAC

τ|t + PHVAC,base
τ|t + PEV

τ|t + PESS
τ|t + PLoad

τ|t
+ PEX

t ∀τ ∈ 1, 2, 3, 4{ } (10b)
Eagg
τ|t � ρaggτ|t E

agg
τ−1|t + ΔEagg

τ|t + Δτ

· Pagg
τ|t ∀t ∈ T,∀agg ∈ HVAC,EV,ESS{ } (10c)

Eagg,∨
τ|t ≤Eagg

τ|t ≤ Eagg,∧
τ|t ∀t ∈ T,∀agg ∈ HVAC,EV,ESS{ } (10d)

Pagg ,∨
τ|t ≤Pagg

τ|t ≤Pagg ,∧
τ|t ∀t ∈ T,∀agg ∈ HVAC,EV,ESS{ } (10e)

ΔP∨
agg ≤P

agg
t − Pagg

τ|t ≤ΔP∧
agg ∀t ∈ T,∀agg ∈ HVAC,EV,ESS{ }

(10f )
In the formula: τ represents a sub-period within the period t; Pagg

τ|t
represents the planned power consumption of the flexible adjustable
resource agg in the sub-period τ within the period t; ΔP∨

agg and
ΔP∧

agg respectively represent the minimum/maximum real-time
adjustment power of the flexible adjustable resource; PRES

τ|t is the
renewable energy output in the sub-period τwithin the period t; PLoad

τ|t
is the non-flexible load in the sub-period τ within the period t.

3.3 Algorithm flow

The overall flow of the algorithm is shown in Figure 3. First, the
adjustable flexibility of demand-side flexible resources is modeled
based on a generalized energy storage model. Then, the optimal
bidding decision for demand-side flexible resources to participate in
the intraday market is made based on rolling optimization. Next,
based on the bidding decision, real-time dispatch optimization is

carried out to cope with the system operation deviation caused by
forecast errors. Finally, in the real-time control stage, the dispatch
instructions are decomposed to the control units to achieve
power tracking.

1) Establish a storage model for demand-side flexible resources.
This model can describe the power, energy, state and
constraints of demand-side flexible resources, reflecting
their adjustable flexibility range. This model can be used to
evaluate the potential value and risk of demand-side
flexible resources.

2) Optimize the bidding of demand-side flexible resources in the
intraday market. This optimization problem is a stochastic
programming problem, considering the impact of uncertain
factors such as market price, load forecast, renewable energy
forecast, etc., as well as the constraints of the storage model and
market rules of demand-side flexible resources. The objective
function is to maximize the expected income of demand-side
flexible resources. By using a rolling optimization method, the
bidding decision can be dynamically updated to adapt to
market changes.

3) Optimize the real-time dispatch of demand-side flexible
resources. This optimization problem is a robust
programming problem, considering the possible prediction
errors and system deviations in actual operation, as well as the
constraints of the storage model and dispatch rules of demand-
side flexible resources. The objective function is to minimize
the system operation cost and deviation penalty. By using a
real-time optimization method, the dispatch plan can be
timely adjusted to improve the system operation stability.

4) Decompose the real-time control of demand-side flexible
resources. This process is to decompose the dispatch plan
to each control unit, such as air conditioners, electric vehicles,
energy storage devices, etc., and make them execute power
control according to the dispatch instructions. This process
needs to consider the characteristics and communication delay
of control units, and ensure the power tracking accuracy and
control effect.

The above optimization model belongs to a convex
programming model, which can be solved efficiently with the
help of commercial solvers (such as Gurobi, Cplex).

4 Example analysis

The proposed method was tested on the IEEE 15-bus
distribution network, where the electric vehicle aggregator was
located at node 5, the air conditioner aggregator was located at
node 10, the energy storage aggregator was located at node 15, the
wind farm was located at node 8, and the photovoltaic power station
was located at node 12. The topology of the IEEE 15-bus distribution
network is shown in Figure 4. The electric vehicle aggregator
consisted of 500 electric vehicles, whose charging behavior was
characterized by arrival/leaving time, rated power, initial/
expected/minimum SOC and capacity. The arrival time and
leaving time of electric vehicles followed Gaussian distribution.
The air conditioner aggregator consisted of 500 air conditioners,
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with parameters including heat capacity, heat resistance, rated
power, performance coefficient, temperature setting value and
temperature dead zone. In order to simulate various user
preferences and equipment specifications, the parameters of
individual electric vehicles and air conditioners were sampled
from probability distributions. The energy storage aggregator
aggregated 200 residential energy storage systems. The
parameters for EVs, TCLs and ESSs are given in Tables 2–4,
respectively. The data of non-flexible loads and renewable
generations in our simulation is all derived from the literature
(Zheng et al., 2022).

Figure 5 shows intraday non-dispatchable resource power curve
and market price curve for a typical day. Figure 5A illustrates the
power curves of non-dispatchable load, PV and WT. Figure 5B
illustrates the energy prices in intraday market, and regulation prices
in balancing market.

4.1 Stage I: rolling optimization of intraday
market bidding

In stage I, aggregators play a pivotal role in shaping the energy
landscape. They embark on a meticulous journey of decision-
making, one that begins with the careful analysis of hour-ahead
forecast data and the prevailing market prices for demand-side
flexible resources. Armed with this critical information, they
make calculated determinations regarding the quantity of energy
to bid into the market. This collective effort culminates in the
submission of consolidated bids, commonly referred to as Virtual
Power Plant (VPP) bids, to both the energy market and the balance
market. This strategic move is illustrated in Figure 6, which provides
a visual representation of the intricate bidding decisions that
transpire in this initial stage.

In Figure 6, the green curve serves as a guidepost,
representing the load baseline–a fundamental reference point.
For instance, for an electric vehicle aggregator, its load baseline
reflects the comprehensive power trajectory required to charge
each electric vehicle to its maximum capacity at the highest
possible power output. On the other hand, for an air
conditioner aggregator, the load baseline aligns with the
cumulative power trajectory necessary to maintain the indoor
temperature of each room at the predefined set point. Comparing
these load baselines with market dynamics unveils a fascinating
strategy. When market prices soar, particularly during the
periods from 9:00 to 13:00 and 22:00 to 24:00, all aggregators
exhibit a remarkable shift in behavior–they either capitalize on
surplus generation or significantly reduce their demand.
However, when prices hit their lowest points, typically from 1:
00 to 5:00, a unified decision emerges as all aggregators opt to
increase their total demand.

Additionally, it is worth noting that each aggregator prudently
sets aside a portion of its flexibility for a strategic purpose. This
reserved flexibility is a valuable asset, as it enables aggregators to
position themselves for pursuing higher profits in the intricate
landscape of the balance market. The decisions made by these
aggregators in this initial stage are nothing short of ingenious.
They harness the inherent flexibility within demand-side
resources to maximize their profits, providing an exemplar of

how sophisticated market strategies can effectively manage and
optimize energy resources, ultimately contributing to a more
resilient and responsive energy ecosystem.

Therefore, in the first stage, aggregators can fully leverage the
flexibility of demand-side resources, seamlessly transitioning
between buying and selling roles. They strategically sell
electricity when prices are high and purchase it when prices
are low, thereby achieving arbitrage opportunities.
Concurrently, they prudently reserve a portion of their
flexibility to earn rewards for providing regulation services in
the balance market.

4.2 Stage II: real-time dispatch optimization

To mitigate the deviations arising from prediction errors
associated with non-dispatchable resources, a significant
recalibration of power distribution occurs during the second
stage of our approach, as depicted in Figure 7. In this stage, each
aggregator fine-tunes its power allocation based on the original
operational plan established in the first stage.

As illustrated in Figure 7, each aggregator aligns its
adjustments with the initial operational plan from the first
stage. The magnitude of these adjustments is precisely opposite
to the direction of deviation caused by the prediction error, and it
closely matches the total prediction error magnitude. This
deliberate adjustment strategy results in the remarkable
cancellation of the majority of deviations stemming from
prediction errors.

Consequently, the actual power consumption profiles of the
aggregators closely align with the bidding quantity curve they
initially submitted to the market. This synchronization between
actual power consumption and market bids ensures that the
deviations caused by prediction errors are effectively neutralized,
contributing to a highly accurate and reliable power delivery system.
The second stage serves as a crucial mechanism for achieving this
synchronization, enhancing the overall performance and stability of
the energy grid.

4.3 Test on IEEE 33-bus distribution network

To further validate the effectiveness of the proposed method, we
conducted tests on a larger system. As shown in Figure 8, the test system
is an IEEE 33-bus distribution network. Where the electric vehicle
aggregator was located at node 12 and 30, the air conditioner aggregator
was located at node 5 and 16, the energy storage aggregator was located
at node 9 and 27, the wind farm was located at node 14 and 24, and the
photovoltaic power station was located at node 21 and 32.

Figure 9 shows the aggregated bidding curves of all aggregators.
During the time period from 1:00 to 6:00, characterized by lower
electricity prices, aggregators exhibit a tendency to increase their
electricity purchases. Consequently, the purchased electricity
quantity experiences a slight uptick when compared to the pre-
optimization scenario. This strategic approach aligns with the
objective of capitalizing on favorable pricing conditions to secure
more power. Conversely, in the time frame from 20:00 to 24:00,
where electricity prices are notably higher, aggregators lean towards
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reducing their electricity purchases or even selling excess power. As
a result, the purchased electricity quantity significantly decreases in
comparison to the pre-optimization state. This decision reflects the
aggregators’ shrewd maneuvering in response to lucrative market
conditions, as they aim to curtail expenses during peak
pricing hours.

Figure 10 shows the dispatching results of aggregators.
Compared to the 15-bus system, the 33-bus system
encompasses a more extensive array of demand-side flexible
resources. This increased diversity translates into a higher
degree of system flexibility, bolstering its capability to contend
with the fluctuations in renewable energy generation and load
uncertainties. Consequently, in contrast to the 15-node system,
the 33-node system exhibits a smaller disparity between the post-
optimization total power curve and the reference power curve.
This reduction in error signifies enhanced power tracking
performance, ultimately leading to greater reliability in
power delivery.

Figure 11 compares the tracking errors with and without
dispatching conducted in stage II. It can be observed that the
tracking errors caused by uncertainties of renewable generations
and loads are greatly reduced with the help of aggregators’
coordination in stage II. Figure 11 provides a comprehensive
view of tracking errors, offering a valuable perspective on the
impact of aggregators’ collaborative efforts aimed at adjusting
their respective power profiles in response to uncertainties. These
uncertainties primarily stem from the unpredictability of renewable
generation outputs and load variations. The remarkable reduction in
tracking errors, as depicted in the figure, underscores the
significance of aggregator cooperation when facing the challenges
posed by these uncertainties. In essence, aggregators come together
in stage II with the shared objective of achieving a more precise
alignment between power generation and consumption. By
harnessing their collective expertise and leveraging real-time data,
aggregators enhance their ability to make dynamic adjustments in
response to the ever-changing conditions of renewable energy
generation and load patterns. This coordinated approach allows
for a finer level of control over the power resources within the
system. As a result, tracking errors are substantially curtailed,
ensuring that the actual power generation and consumption
closely follow the intended trajectories. This heightened level of
precision not only bolsters the reliability of power delivery but also
contributes to the overall resilience of the energy grid. In summary,
Figure 11 serves as compelling evidence of the positive impact of
aggregator collaboration in addressing the uncertainties
associated with renewable energy and load fluctuations,
ultimately leading to a more robust and dependable energy
distribution system.

4.4 Algorithm comparison

In order to validate the efficiency of the proposed method and
prove the superiority over other methods, this section compares the
proposed method with another two methods. Method 1 (Ben et al.,
2020) also adopts the two-stage scheduling framework, but utilizes
explicit models for all individual DSRs. Method 2 adopts a simple
aggregation model to represent the aggregate flexibility of DSRs,

which ignores the time-coupling constraints of DSRs. All methods
are evaluated based on the same simulation setup introduced at the
beginning of section 4.

According to Table 5, the proposed method yields similar costs
but achieves a 99.8% reduction in computation time compared to
method 1. While method 1 employs explicit models regarding DSRs,
allowing it to theoretically obtain optimal results compared to other
methods, its computational complexity significantly increases with
the number of DSRs. Consequently, the time required for solving the
optimal dispatching time may exceed the limits of real-time
operation. In contrast, the proposed method employs aggregation
modeling to effectively reduce computational complexity.
Additionally, it outperforms other aggregation-based methods.
Method 2, due to substantial modeling errors stemming from
disregarding the time-coupling constraints of DSRs, may produce
dispatching plans that deviate significantly from the actual flexibility
of DSRs. Consequently, method 2’s dispatching plans may lead to
substantial tracking errors during disaggregation, resulting in
significant imbalance penalties. Compared to method 2, the
proposed method can achieve approximately a 20% reduction in
total cost. In conclusion, the proposed method demonstrates
improvements in both computational efficiency and cost-
effectiveness.

5 Conclusion

This paper proposes a two-stage optimization-based
scheduling strategy for demand-side flexible resources
participating in the intraday power market. The strategy
consists of two stages: bidding optimization and real-time
scheduling. In the bidding optimization stage, firstly, the
generalized energy storage model is used to measure the
adjustable flexibility of demand-side flexible resources, and
describe their charge and discharge features and constraints;
secondly, the rolling optimization method is used to optimize
the bidding amount of demand-side flexible resources in the
intraday market, so as to maximize their profits; in the real-
time scheduling stage, firstly, the target output of demand-side
flexible resources is determined according to the bidding
optimization results; secondly, considering the impact of
uncertain factors such as renewable energy production and
market price, real-time scheduling optimization is carried out to
minimize the system operation cost and deviation; then, the output
commands of demand-side flexible resources obtained by real-
time scheduling optimization are decomposed to each control unit,
and power tracking is achieved by controllers; finally, through
simulation verification on the test system, it is proved that the
proposed two-stage optimization scheduling strategy can
effectively coordinate the operation of demand-side flexible
resources, overcome the interference of uncertainty, and
improve the economic operation of the system.
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