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In the context of “dual carbon” goals, governments need accurate carbon
accounting results as a basis for formulating corresponding emission
reduction policies. Therefore, this study proposes a combined carbon
emission prediction method for urban regions, considering micro-level
enterprise electricity consumption data and macro-level regional data.
Considering the different applicability of prediction methods and the
requirements for the data volume, a region-level carbon emission prediction
method based on the long short-term memory neural network is proposed,
which takes into account the micro-level electricity–carbon coupling
relationship. Additionally, a region-level carbon emission prediction method
based on the Stochastic Impacts by Regression on Population, Affluence, and
Technology (STIRPAT) is proposed, considering the macro-level
economic–carbon coupling relationship. The generalized induced ordered
weighted averaging method is employed to assign differential weights to
micro- and macro-prediction values, yielding regional carbon emission
predictions. An empirical analysis is conducted using a key city in the eastern
region as an example, analyzing the main influencing factors and predicting
carbon emissions based on relevant data from 2017 to 2021, and the accuracy of
the models is analyzed and validated.
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1 Introduction

In response to the global climate change challenge, an increasing number of countries
are taking measures to reduce carbon dioxide emissions (Shi et al., 2022). China, as one of
the largest emitters of carbon dioxide, has committed to achieving carbon neutrality by
2030 and reaching peak carbon emissions by 2060 (DENG et al., 2022; Jiang et al., 2023). To
accomplish this dual-carbon goal, China has implemented a series of measures. Carbon
emission prediction serves as a guiding factor for industrial energy consumption and
structural adjustments with the aim of achieving these goals.

Carbon emission prediction technology provides technical support to governments in
formulating carbon reduction policies, and research related to carbon emissions is

OPEN ACCESS

EDITED BY

Bin Zhou,
Hunan University, China

REVIEWED BY

Zheng Lan,
Hunan University of Technology, China
Xiong Wu,
Xi’an Jiaotong University, China

*CORRESPONDENCE

Hengjun Zhou,
zhou1309236286@qq.com

RECEIVED 23 November 2023
ACCEPTED 23 January 2024
PUBLISHED 09 February 2024

CITATION

Zhou H, Qi F, Liu C, Liu G and Xiao G (2024),
Predicting combined carbon emissions in urban
regions considering micro-level enterprise
electricity consumption data and macro-level
regional data.
Front. Energy Res. 12:1343318.
doi: 10.3389/fenrg.2024.1343318

COPYRIGHT

© 2024 Zhou, Qi, Liu, Liu and Xiao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 09 February 2024
DOI 10.3389/fenrg.2024.1343318

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1343318/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1343318/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1343318/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1343318/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1343318/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1343318/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1343318&domain=pdf&date_stamp=2024-02-09
mailto:zhou1309236286@qq.com
mailto:zhou1309236286@qq.com
https://doi.org/10.3389/fenrg.2024.1343318
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1343318


constantly evolving. Karlsson et al. (2020) applied a participatory
integrated assessment methodology to plan the development of the
construction sector and estimated net-zero carbon emissions by
2045. Ofosu et al. (2020) used a novel gray prediction model to
forecast carbon dioxide emissions in the cement industry in China.
Hosseini et al. (2019) employedmultiple linear regressions to predict
carbon dioxide emissions in Iran in 2030 under different scenarios.
LUO et al. (2023a) demonstrated that traditional prediction
methods are less effective than machine learning methods in
dealing with nonlinear signals, such as carbon emissions data. Yi
et al. (2017) conducted research on carbon emission prediction in
the construction industry by applying the fuzzy cuckoo search
algorithm to optimize support vector machine models. Zhang
et al. (2022) proposed a comprehensive material–energy–carbon
center, using the concept of a “hub” for carbon flow tracking and
carbon accounting in the steel industry production processes. Liu
et al. (2022) reviewed the existing annual carbon accounting
methods, focused on new developed real-time carbon emission
technologies and their current application trends, and presented
a framework for the latest near-real-time carbon emission
accounting technologies that can be widely used. The
aforementioned methods focus on macro-level analysis at the city
and provincial levels, while there is limited research on micro-level
carbon emission prediction for prefecture-level cities and districts.

Research on the factors influencing carbon emissions is of great
significance for the current carbon statistics and policy guidelines.
Therefore, it is essential to identify the main influencing factors
among numerous factors, extract reliable data indicators, and
eliminate redundant information as a reasonable basis for
predicting carbon emissions in prefecture-level cities and
districts. Wang and Zhao (2018) analyzed the factors influencing
residential carbon emissions in different regions of China using an
improved Stochastic Impacts by Regression on Population,
Affluence, and Technology (STIRPAT) algorithm. Li and Wang
(2019) employed the logarithmic mean Divisia index (LMDI)
decomposition model to analyze the factors affecting urban
carbon emissions and found that the economic scale is the main
driver of carbon emission growth in China. Cheng et al. (2023)
conducted a macro-level analysis of industrial carbon emissions in
China by introducing the time-varying parameters of the LMDI
decomposition method with five factors. Li et al. (2023) used the
DEMATEL-ISMmethod to identify 23 influencing factors of carbon
emissions in prefabricated buildings and calculate the significance
and relationships among these factors.

Carbon emissions from electricity production account for more
than 40% of the total carbon emissions in our country’s society,
making it one of the main targets for carbon reduction efforts (Li
et al., 2022). However, traditional methods for calculating carbon
emissions, such as the emission factor and material balance
methods, have been found to be inaccurate and unsuitable for an
accurate estimation of carbon emissions. These methods fail to
provide meaningful data support and guidance.

In summary, we propose a city–regional composite carbon
emission prediction method that considers micro-level enterprise
electricity data and macro-level district data. Considering the wide
coverage and the real-time nature of micro-level enterprise
electricity consumption data, we utilize these data to identify key
carbon-emitting enterprises. These enterprises are then classified

based on their respective industries, and the industrial and regional
carbon emissions are calculated accordingly. The dynamic time
warping (DTW) technique is employed to assess the association
strength among different industries, residential areas,
transportation, and regional electricity carbon emissions. We
establish a micro-level regional carbon emission prediction model
based on long short-term memory (LSTM) networks, which yields
micro-level predictions of regional carbon emissions. Considering
the accuracy of macro-economic data, we construct a regional
carbon emission prediction model based on the human Impact
Population, Affluence, and Technology (IPAT) equation and the
STIRPAT approach. The STIRPAT model provides the estimates of
regional carbon emissions. To combine the predictions from the
macro- and micro-levels, we introduce the generalized induced
ordered weighted averaging (GIOWA) combination forecasting
method. By fitting and learning the accuracy of predictions at
different timescales for both macro- and micro-levels, we achieve
the precise predictions of regional carbon emissions. In this study,
we focus on a key city in the eastern province as the empirical object,
analyzing and validating the accuracy and applicability of the
proposed city–regional carbon emission prediction and
influencing factor analysis methods.

FIGURE 1
Regional carbon emissions forecasting framework.
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2 Framework for predicting combined
carbon emissions in urban areas
considering micro-level enterprise
electricity data and macro-level
regional data

In this research, the regional administrative divisions within a
city form the defined boundary for carbon emissions accounting. By
recognizing the limited availability of data for forecasting carbon
emissions at the sub-city level and the scarcity of analyses on the
influencing factors and theoretical foundations for regional-level
carbon emission predictions, we propose a framework for predicting
composite carbon emissions in urban regions by considering the
integration of micro-level enterprise electricity data with macro-
level district data. The specific framework, as illustrated in Figure 1,
consists of three modules.

Module 1: Screening and organizing regional micro-level energy
data to establish carbon emission calculation models for various
industries, residential areas, and transportation. Utilizing DTW, we
calculate the associations among carbon emissions from different
industries, residential areas, transportation, and regional electricity
carbon emissions. Key electricity-consuming industries are
identified using box plots. The LSTM model is employed to train
a mapping network that reflects the relationship among strongly
correlated industries, residential areas, transportation, and the total
regional carbon emissions, enabling the prediction of carbon
emissions at the regional level.

Module 2: Constructing a macro-level regional carbon emission
prediction model based on the IPAT equation and the STIRPAT
approach. Variables such as the population density, per capita
regional GDP, energy consumption structure with strong
correlations, and the energy intensity in strongly correlated
industries are selected as extended variables for the STIRPAT
model. The coefficient values for each variable are computed
using ridge regression analysis.

Module 3: Establishing a GIOWA combination model. Initial
weights are set based on the errors among micro-level predictions,
macro-level predictions, and actual data. The results from themicro-
level and macro-level predictions are combined using
weighted averaging.

3 Calculation of urban regional
carbon emissions

The data for carbon emissions in various provinces and cities in
China are based on publications, such as the China Urban Statistical
Yearbook and the China Energy Statistical Yearbook, released by the
National Bureau of Statistics. These statistics include energy
consumption and carbon emission data for various industries,
cities, and sectors. However, they may not provide detailed
information on the energy usage and carbon emissions for
specific regions within each city or for key enterprises. This poses
significant challenges for Chinese city governments in developing
energy saving and emission reduction plans and optimizing
industrial structures.

The main causes of urban carbon dioxide emissions are energy
consumption and the combustion of fossil fuels. Industrial

enterprises are the major consumers in most urban sectors,
followed by residential areas (Nie and Kemp, 2014). By obtaining
information on the electricity usage from power grid companies and
energy consumption data from government departments, we can
establish an association model for “electricity consumption–energy
consumption–carbon emissions” in energy-consuming enterprises.
We can also build a predictive model for carbon emissions in specific
regions based on electricity consumption by key enterprises. This
model can provide forecasts for urban regional carbon emissions.

3.1 Calculation of urban area
carbon emissions

3.1.1 Calculation of carbon emissions from energy-
consuming enterprises in urban areas

Industrial fossil fuel consumption is the primary contributor to
urban area carbon emissions. The carbon dioxide generated from
energy consumption is quantified for energy-intensive enterprises
within urban areas using the measurement method outlined in the
Guidelines for National Greenhouse Gas Inventories by the
Intergovernmental Panel on Climate Change (IPCC). The main
formula for calculations within urban regions is given as follows:

Cm � ∑N

j�1∑n

i�1Ei,jkici. (1)

In the equation, Ei,j represents the energy consumption of the jth
enterprise in the ith type of energy in a specific industry. The
coefficient ki corresponds to the conversion factor of the ith
energy type into standard coal. The parameter ci represents the
carbon emission coefficient of the ith energy type. Considering the
difficulty in obtaining actual energy data for enterprises, we selected
electricity, natural gas, and crude oil as the main energy sources for
estimation purposes. Referring to the national standard GB/T 4754-
2017, Classification of National Economic Industries, energy-
consuming enterprises can be categorized into industries such as
manufacturing, construction, wholesale, and retail industries.

3.1.2 Calculation of carbon emissions from
residential users in the region

In recent years, heat dissipation from residential buildings has
decreased. Electricity has become the primary energy source,
accounting for approximately 20%–30% of energy consumption
in this sector, and along with natural gas, it has witnessed a
significant increase (Luo et al., 2023b). The proportion of
traditional fossil fuel consumption in residential energy
consumption has gradually decreased, while the consumption of
liquefied petroleum gas remains relatively stable. Therefore, the
calculation formula for the main energy consumption in
residential buildings can be divided into electricity, liquefied
petroleum gas, and natural gas, and it is given as follows:

Cc � ∑N

i�1eiki. (2)

In the equation, Cc represents the carbon dioxide emissions
resulting from residential energy consumption. The variable ei
denotes the usage of different energy types, where e1 corresponds
to electricity usage, e2 represents natural gas usage, and e3 stands for

Frontiers in Energy Research frontiersin.org03

Zhou et al. 10.3389/fenrg.2024.1343318

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1343318


liquefied petroleum gas usage. The coefficient ki corresponds to the
carbon emission factors for each energy type.

3.1.3 Calculation of carbon emissions from
regional transportation

The carbon emissions calculation for urban regional
transportation energy consumption can be approached using a
“bottom-up”method. The specific calculation formula is as follows:

Croad � ∑
i
ViDiCiρiEi, (3)

where Croad represents the carbon dioxide emission of road traffic in
the urban area, kg; Vi is the number of vehicles using fuel i; Di is the
average driving distance of vehicles using fuel i, km; Ci is the fuel
consumption of vehicles using fuel i, kg; ρi is the default heating
value of fuel i; and Ei is the carbon dioxide emission factor of fuel i.

Taking into consideration the intricate and interconnected
nature of urban rail transit networks across different cities, it is
currently challenging to define the carbon accounting boundaries
precisely for rail transit. However, the carbon emissions from rail
transit constitute a relatively small proportion of the overall urban
carbon emissions. Therefore, allocating the carbon emissions from
rail transit to individual regions can be considered negligible
compared to emissions from industrial and residential sectors.
Consequently, the carbon dioxide emissions from road
transportation in urban regions can be utilized as a
representation of the transportation-related carbon emissions
within a given region.

3.2 Method for predicting regional carbon
emissions considering micro-level
electricity data

The micro-prediction method is based on micro-data and plays
a leading role in prediction. Micro-data are measured on a monthly
basis, which is timelier in reflecting the changes in industrial energy
consumption and predicting industrial carbon emission trends
compared to macro-data, which is measured on an annual basis.
On the other hand, the calculation method of micro-carbon
emissions can reflect the changes in key carbon-emitting
industries within the industry, facilitate the government to
formulate reasonable carbon reduction policies, and urge key
carbon-emitting enterprises in various industries to rectify their
emission levels.

3.2.1 Association degree analysis based on DTW
Different industrial structures and energy structures will lead to

different main carbon emission sources in the region. The analysis of
the main energy consumption and industrial structure in the region
can estimate the carbon emission of the region more quickly, while
the carbon emission of each industry is mainly affected by the
carbon emission due to the power consumption of the industry (Li
and Wang, 2019). Therefore, the correlation between the industry
and the total regional carbon emissions can be characterized by
calculating the correlation between the industry and the region.

The carbon emissions from the energy usage of industry,
residential and transportation, and regional electricity generation

are expressed as follows: Ci = {Ti (1), . . ., Ti(t), . . ., Ti(n)}, Cc = {Tc

(1), . . ., Tc(t), . . ., Tc(n)}, Croad = {Troad (1), . . ., Troad(t), . . .,
Troad(n)}, Cz = {Tz (1), . . ., Tz(t), . . ., Tz(n)}; by calculating the
Euclidean distance of two sets of data, the distance matrix, Dsi, is
formed. Taking the distance matrix between the manufacturing
industry and the regional carbon emissions as an example, the
respective element of the matrix Dsi is calculated as follows:

d n,m( ) �
���������������
Ci n( ) − Cz m( )( )2

√
, (4)

where Ci(n) and Cz(m) are the nth data in the ith industry carbon
cluster and the mth data in the regional carbon cluster, respectively.

An optimal bending path is searched in the matrixDsi so that the
sum of the elements on the path is the minimum (Peng et al., 2023).
We complete the quantification of similar characteristics, as shown
in Eq. 5:

DDTW Tt, Tit( ) � min ∑L

r�1d ωr( )( ), (5)

where ωr (n,m) represents the coordinate of the rth element in the
bending path; L is the number of elements in the bending path,
requiring max(m, n)≤L≤mn − 1; d(ωr) is ωr, corresponding to
d(n,m). From Eq. 5, the similarity of power carbon emissions
between various industries and regions is calculated, and the
DTW similarity dataset of power carbon emissions from various
industries and regional power carbon emissions is established.

To screen for key regional electric power consumption
industries, we put forward the quartile box chart method. This
uses industry power carbon emissions and regional electric power
carbon emissions with a DTW set of four quartiles and the four-
quartile value correlation strength threshold (LIU et al., 2021). The
generalization ability of sample correlation identification can be
improved by taking the quartile and the four-quartile value
correlation strength threshold and dividing them by timing data
fluctuations and dynamic change. The specific formula is as follows:

Ldtw � Ld + 3Lq � Lu + 3 Lu − Ld( ), (6)

where Ldtw is the threshold; Lu and Ld are the upper and lower
quartiles in the DTW value, respectively; and Lq is the difference
between the lower quartile and the upper quartile.

The industries with the greatest influence on regional carbon
emissions were selected through the upper- and lower-quartile box
chart method. The historical energy consumption data for the

FIGURE 2
Schematic diagram of the long short-term memory
(LSTM) structure.
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industry were used as the training set for the regional carbon
emission prediction model.

3.2.2 Prediction method based on the LSTM
An LSTM network used as a carbon emission prediction method

is good at processing long sequence data. The energy use data on key
industries and historical regional carbon emission data are selected
as samples, and the mapping model from “industry energy use data”
to “regional carbon emissions” can be obtained through training.

The LSTM network structure consists of the input layer, hidden
layer, and output layer. As shown in Figure 2, we send the input
information on Ct−1, ht−1, and xt to the forgetting gate and memory
gate processing, select the forgotten information in Ct-1, and screen
the information to be retained in ht−1 and xt.

A schematic representation of the internal structure of the LSTM
is given in Figure 2. It should be noted that the LSTM structure
shown in Figure 2 is only used for a schematic illustration, and the
specific level and network number should be adjusted according to
the fitting situation.

Assuming that the forgetting gate of each LSTM unit is ft in time
t, the memory gate is it and gt, the output gate is ot, and the hidden
layer state amount is ht, the update of each gate in time t is given
as follows:

ft � σ(Wf · ht−1, xt( ) + bf( )
it � σ(Wi · ht−1, xt( ) + bi( )
gt � tanh Wg( · ht−1, xt( ) + bg( )
ot � σ(Wo · ht−1, xt( ) + bo( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

where Wf, Wi, Wg, and Wo are the weight matrices of the input
sequence ht−1 and xt under each gate, respectively. After processing
by the forgetting gate and memory gate, the output signal is
generated by the processing of information on the output gates
Ct, ht−1, and xt:

ht � ot · tanh ft · ct−1 + it · gt( ). (8)

3.3 Carbon emission prediction methods
considering macro-regional data

Macro-prediction methods are based on macro-data and have a
stronger robustness in prediction. Macro-data, measured on an
annual basis, can reflect the changes in energy consumption
across various industries over the years and have a lower
probability of missing data, making it more reliable than micro-
data and their predictions. On the other hand, macro-carbon
emission prediction can reflect the total carbon emissions of
various industries, and compared to micro-carbon emission
prediction methods, it can, to some extent, reflect the carbon
emission impact of non-key industries.

3.3.1 Predictive model based on the
extended STIRPAT

The STIRPAT model introduces multiple-index independent
variables on the basis of the IPAT equation to analyze the influence
of regional economic indicators, human factors, and the industrial
structure on the development of regional carbon emissions.

The STIRPAT model is proposed because of IPAT equality,
which is stochastic and scalable. The STIRPAT model, constructed
based on the IPAT equality, is expressed as follows:

I � a × Pb × Bc × Td × e, (9)
where I is the environmental load; P is the population size; B is the
economic level; T is the technical level; and b, c, and d are the index
items of P, B, and T, respectively. In order to study the factors
influencing carbon emissions in urban areas and realize the
implementation of energy conservation and emission reduction
in urban areas in the future, we extend the STIRPAT model. In
these extensions, regional carbon emissions represent the
environmental load I, the population density represents the
population size P, and the per capita regional GDP represents the
economic level B. For the technical level T, we decompose it into the
strong correlation industry energy consumption structure G (strong
correlation industry energy consumption accounts for the
proportion of regional energy consumption) and the strong
regional correlation industry energy intensity E (strong
correlation industry energy consumption and regional GDP
ratio). The extended STIRPAT model can then be represented
as follows:

ln I � ln a + b lnP + c lnB + d lnG + f lnE + ε, (10)
where lna is a constant term; ε is a random error term; and b, c, d,
and f are the estimated coefficients of population density, per capita
regional GDP, strongly related energy consumption structure, and
energy intensity of strongly related industries, respectively. To solve
the problem of multicollinearity in the regression process of each
variable, the ridge regression algorithm was used to solve the
problem (Cao et al., 2022).

3.3.2 Ridge regression algorithm
Ridge regression adds a regular term to the loss function of the

multivariate linear regression, expressed as the L2 paradigm of the
coefficient ω (i.e., the square term of the coefficient) multiplied by
the regularization coefficient α. The full expression for the loss
function of ridge regression is as follows:

min Xω − y
���� ����22 + α ω‖ ‖22. (11)

The solution is obtained by finding the derivative of the loss
function, obtaining the following expression:

ω � XTX + αI( )−1XTy. (12)

3.4 The GIOWA combination
prediction model

Because the combined prediction method of fixed weights
cannot reflect the advantage at every time point in the prediction
timescale, the ability to learn a model is only limited to the model
itself; so, we introduce the GIOWA combination prediction
method (Cao et al., 2022). According to the fitting accuracy
learning error characteristics of the results of each individual
term prediction method, we obtain deeper and more detailed
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learning from the model. The prediction results of each single-
term prediction method at each moment are optimized with the
optimization criteria of the minimum sum of errors, the
minimum sum of the absolute value of error, and the
minimum error minimum, which allow us to obtain
combined predicted carbon emissions closer to the real
carbon emissions.

For carbon emission prediction, m single-term prediction
methods are used. It should be noted that xt is the measured
carbon emission at time t; xit is the predicted carbon emission at
time t in the timescale; git is the λ power error at time t in the
timescale; gt = xt

λ− xit
λ; and λ = l in this paper. LetW = (w1, w2, . . .,

wm) and T be the weight of the m single-term prediction method in
the combined prediction method:

ait �
1 − xt − xit

xt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ xt − xit

xt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣< 1

0
xt − xit

xt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣≥ 1.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i � 1, 2,/, m, t � 1, 2,/N.

(13)

Here, ɑit is the prediction accuracy of time point t within the
timescale of the i-monomial prediction method. If ɑit ∈ [0,1], then ɑit
is the induced value of predicted carbon emission xit. An
m-monomial prediction method constitutes m two-dimensional
arrays ((ɑ1t, ɑ1t), (ɑ2t, ɑ2t), . . ., (ɑmt, ɑmt)), and ɑ1t, ɑ2t, . . ., ɑmt

are the combined prediction models obtained by the optimization
criteria of different error types.

At λ = 1, the GIOWA combined prediction model is the induced
ordered weighted arithmetic mean (IOWA) combined
prediction model.

x̂t � ∑m

i�1wixit, t � 1, 2,/, N. (14)

The a-index (it) of the conventional weighted arithmetic average
at time t is the subscript of the prediction accuracy, expressed
as follows:

fw 〈a1t, x1t〉, 〈a2t, x2t〉,/, 〈amt, xmt〉( ) � ∑m

i�1wixα−index it( ). (15)

Then, Eq. 15 is the predicted carbon emission based on the
combination of IOWA operators generated at time t by a1t, a2t, . . .,
amt. By combining the microscopic and macroscopic prediction
results and using the GIOWA combination calculation method, the
combined prediction results can minimize the sum of error squares,
realize the fit with the actual value, and then realize the prediction.

Combination prediction not only inherits the timeliness
characteristics of micro-prediction but also inherits the strong
robustness of macro-prediction. The learning of the error
characteristics based on the fitting accuracy of various single-item
prediction methods at different time points in the timescale has a
deeper andmore detailed understanding of themodel. The optimization
criteria for the prediction results of each single-item prediction method
at each time point are present to minimize the sum of squared errors,
absolute sum of errors, absolute value of errors, and extreme difference
of errors, to obtain a combination prediction of carbon emissions that is
closer to the actual carbon emissions. Compared to traditional carbon
emission prediction methods, heterogeneous data sources are more
extensive and reflect the energy consumption situation of industries
more comprehensively, which inevitably makes the results of combined
prediction models more accurate.

4 Results

4.1 Microscopic regional carbon emission
prediction based on the LSTM algorithm

This paper takes the state-level new district of an eastern city as the
empirical object (hereinafter referred to as region J) to obtain the energy
consumption data on the energy-using enterprises in the region from
2020 to 2021, and the region J energy data are obtained from the
enterprise survey. Through the proposed carbon emission calculation
model, the carbon emissions of energy enterprises in region J are
calculated, and the total carbon emission of the region is characterized.

Seven energy sources in region J were selected to calculate their
carbon emissions: raw coal, natural gas, gasoline, diesel, liquefied
petroleum gas, petroleum coke, and electricity. The total carbon
emission from 2017 to 2021 and the carbon emissions of energy-
using enterprises are shown in Figure 3. Through Eqs 1-3 and using
these seven energy sources and carbon emissions data as training
samples for the LSTM, the parameters in the equations are
calculated to realize the LSTM in the next prediction.

FIGURE 3
Area J. calculation results of enterprises, housing, transportation,
and the total carbon emissions.

TABLE 1 Total carbon emission of enterprises in various industries in the
region J, 2020–2021.

Trade Carbon emission
(Mt CO2)

2020 2021

Manufacturing industry 5.2759 5.4377

Realty industry 1.2963 1.3281

Electric power and heat supply industry 0.9659 0.9926

Wholesale and retail 9.0354 8.3341

Construction business 3.2759 3.4373
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As shown in Figure 3, the carbon emissions of region J from
2017 to 2021 have increased slowly at first, from 2019 to the
maximum point, and then decreased sharply in 2020. As region J
is one of the largest modern industrial clusters, with developed
manufacturing, steel and petrochemical industries, and large
energy consumption, the carbon emissions of energy enterprises
account for approximately 58% of their total carbon emissions.
The carbon emissions of housing and transportation account for
approximately 20% and 17% of the total carbon emissions in the
region, respectively. With the outbreak of COVID-19 in 2020, the
production capacity of region J energy enterprises decreased, and the
energy consumption decreased, resulting in a temporary decline in
region J carbon emissions.

The total carbon dioxide emissions of the construction industry
are equal to the sum of all the fuel combustion carbon emissions
within the industry boundary and the corresponding emissions
generated by the electricity and heat purchased by the enterprise,
excluding the corresponding emissions used for transport vehicles.
The total carbon dioxide emission of the cement production
enterprise is equal to the sum of all fuel combustion emissions,
process emissions, electricity and heat purchased by the enterprise,
and the corresponding emissions of the electricity and heat output of
the enterprise. The carbon emission of the transportation industry is
mainly divided into two parts: road transportation and urban
transportation. Residential carbon emissions are composed of the
daily carbon emissions of residents using natural gas in their daily
lives and the houses themselves. It should be noted that, except for
the transportation industry, the carbon emissions of automobiles
used for transportation purposes in other industries belong to the
carbon emissions of the transportation industry, rather than being
included from the carbon emissions of the industry.

The proportion of the carbon emissions of region J energy-using
enterprises in the total carbon emissions of the region is significant. In
order to analyze the impact of region J industries on the regional
carbon emissions, the energy-using enterprises are divided into
different industries, according to the national standard GB/T 4754-

2021, Industry Classification of National Economy, and the carbon
emissions of various industries are counted, as shown in Table 1.

Table 1 lists the key enterprises in the industries with high-
electricity carbon emissions from 2020 to 2021. Among them,
manufacturing and wholesale and retail occupied 14% and 22%
of the carbon emissions of energy enterprises, respectively, while
power, heat supply, real estate, and other industries accounted for a
relatively low proportion.

The results of screening strongly correlated industries using
DTW correlation analysis and employing the upper quartile box plot
method are shown in Table 2. According to Table 2, the correlation
of region J carbon emissions for industries and regions,
manufacturing, wholesale and retail, construction, housing, and
transportation are the strong correlation indicators of region J
carbon emissions. Therefore, the carbon emission data on each
indicator and region in the first 21 months of 2020–2021 in region J
were selected as the training set, and the data on the last 3 months
from 2020 to 2021 were selected as the test set and by Eqs 7, 8
modeling under LSTM as a prediction algorithm.

To demonstrate the feasibility of using the LSTM algorithm at
the micro-level, we introduce the comparative experiment of the

TABLE 2 Correlation between region J and various industries.

Trade Correlation degree Correlation/threshold

Manufacturing industry 290 0.88

Realty industry 337 1.03

Electric power and heat supply industry 343 1.05

Wholesale and retail 250 0.76

Construction business 318 0.97

Residence dwelling 260 0.79

Transportation 280 0.85

TABLE 3 Comparison of the prediction methods between the LSTM
and PSO.

Algorithm type Average error value (%)

LSTM 0.53

PSO 0.65

FIGURE 4
Prediction results of carbon emissions in region J, August and
December 2021.
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particle swarm algorithm, using the average error value to evaluate
the superiority of the LSTM algorithm at the micro-level.

Through Table 3, we found that the fitting effect of the LSTM
algorithm is better than that of the particle swarm algorithm. In
order to ensure the superiority of the algorithm, we set the iterations
of the same as 200 iterations.

Through the LSTM model, the mapping network of the data on
strongly related industries, residential, and traffic carbon emissions
to the region was obtained, and the carbon emissions of region J in
2022 was predicted. The predicted results are shown in Figure 4.

Compared with the true carbon emission value obtained
through the carbon emission calculation method given in the
IPCC guideline, the average error of the trained prediction model
in this paper is 0.53% and the prediction error is 0.35%, which
verifies the effectiveness and feasibility of the proposed carbon
emission prediction method in urban areas.

4.2 Calculation of the macro-regional
carbon emission prediction based on the
STIRPAT algorithm

The macro-data in this article are sourced from statistical
yearbooks of various regions; therefore, the macro-data are
divided on an annual scale. The STIRPAT algorithm, as an
extensible random environmental impact assessment model, has
excellent prediction results in terms of the elastic impact of human
factors on the environment. In this paper, using the STIRPAT
algorithm, the fitting and prediction of regional carbon emissions
are realized based on the variables of the per capita GDP data,
population data, and the calculated energy consumption structure
and energy intensity of strongly related industries.

We obtain the region J per capita GDP data and population data
from 2017 to 2022 and calculate the energy consumption structure,
energy intensity, and other variables of strongly related industries.
All variables were diagnosed by least-common squares collinearity,
and all the variance inflation factors (VIFs) did not exceed the
tolerance value of 10, indicating that there was no problem of
collinearity among the variables.

According to Eqs 11, 12. Ridge regression was fitted based on the
extended STIRPAT model. The results of the ridge regression
analysis are shown in Figure 5. In the ridge plot, the value range
of the ridge parameter k is set as (0,10), and the interval is 1. When
k � 2, the regression coefficient of each variable is locally stable, and
the estimated ridge regression coefficient of k � 2 is selected as the
correlation coefficient of the variable.

According to Eqs 9, 10. The STIRPAT model between the
available carbon emissions and the variables is given as follows:

ln I � 0.0185 lnP + 0.0781 lnB − 1.1353 lnG
+0.0111 lnE + 0.6552

.

Applying a significance test to each variable, all variables passed
with a level of 5% and showed a good fit. From the coefficient
analysis, for every 1% increase in the energy consumption structure

FIGURE 5
Ridge regression analysis process.

FIGURE 6
Region J carbon emission prediction results, 2017–2021.

FIGURE 7
Three forecasts and actual carbon emission results.
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of region J strongly related industries in the region, the carbon
emissions of the region will increase by 0.0459%, with the most
significant impact on the carbon emissions. For every 1% increase in
the population, per capita GDP, and the energy intensity of strongly
related industries in region J, carbon emissions will increase by
0.0185%, 0.0781%, and 1.1353%, respectively. Therefore, based on
the ridge regression analysis, the carbon emission of region J from
2017 to 2021 is predicted by the STIRPAT algorithm, and the
prediction results are shown in Figure 6.

Compared with the true carbon emissions value obtained
through the carbon emission calculation method in the IPCC
guideline, the prediction error of the proposed prediction model
in this paper is 1.05%, which verifies the effectiveness and feasibility
of the proposed carbon emission prediction method in urban areas.

4.3 Calculation based on the GIOWA
combination prediction

The GIOWA combination method has high flexibility and
adaptability. The partial weights can be adjusted and
reconfigured according to the requirements. The weight is
adjusted according to the prediction results and the degree of
error to maintain the effectiveness and adaptability of the
predicted carbon emission portfolio. The micro-forecast is based
on energy consumption data, such as enterprise-level electricity
consumption, while the macro-forecast is based on the regional
economy and population. There are differences between the two
benchmarks and nonlinear links. The GIOWA combination
prediction method is used to achieve a more accurate prediction
of regional carbon emissions.

The initial weight of the micro-forecast data and macro-
prediction is set according to the degree of error between micro-
and macro-data. Therefore, the initial weight for the micro-forecast
ratio is 0.75, and the macro-layer ratio is 0.25. Based on Eqs 13–15,
the GIOWA combination prediction is shown in Figure 7 shows the
result of calculating the GIOWA combination and comparing the
microscopic and macroscopic prediction curves.

The prediction effect of the combined prediction value is much
better than that of the micro-prediction effect and the macro-
prediction. The errors for each prediction are shown in Table 4.

Compared with the macro-prediction error, the combined
prediction is reduced by 0.88%, improving the accuracy of
83.81%, reducing the micro-prediction error by 0.185%, and
improving the accuracy of 52.11%. The feasibility and validity of
the combined prediction are verified.

The initial weight of the combined prediction will be updated in
real time, based on the historical data. The micro-prediction and
macro-prediction error will not always be constant. With 5 years as a

sample set, each year should update the micro- and macro-
prediction method and calculate the corresponding error value.
Selecting the smallest error value prediction method and
obtaining the prediction value, through the error value
comparison combination prediction initial weight, enables the
reduction of the prediction error.

5 Conclusion

Considering the limited carbon emission calculation data in the
regional areas of most cities, the regional carbon emission
generalization is weak when calculating using the carbon
emission accounting method in the IPCC guidelines. The method
discussed here considers the forecast of urban regional combined
carbon emissions based onmicro-enterprise electricity consumption
data and macro-regional data. The empirical analysis is based on a
state-level new district of an eastern city, and the main conclusions
are given as follows:

By calculating the DTW value of power carbon emissions in
various industries and regions, it is found that the total carbon
emission of manufacturing, wholesale and retail, construction,
housing, and transportation accounts for approximately 87% of
the total power carbon emission of a key city in eastern China, which
is the main carbon emission source of region J. Compared with the
true carbon emission value calculated by the IPCC carbon emission
accounting model, the test average error in the proposed regional
carbon emission prediction model is 0.53%, and the prediction error
is 0.35%, which verifies the feasibility of the microscopic
prediction model.

Using the STIRPAT model to analyze the factors influencing
region J carbon emissions, maintaining the slow growth of the
economy and population, and reducing the proportion of the
energy consumption of high-carbon emission industries in the
whole city can effectively reduce the regional carbon emissions,
which, at the same time, reduces the proportion of energy
consumption in the city of high energy consumption and high-
carbon emission industries in the city and increases the proportion
of low carbon emissions and low-energy consumption enterprises.
Compared with the true carbon emission value calculated by the
IPCC carbon emission accounting model, the proposed carbon
emission prediction error based on the STIRPAT model is 1.05%,
which verifies the feasibility of the macroscopic prediction model.

The prediction error value can be greatly reduced. In addition,
the error value of the micro-prediction value and the macro-
prediction value is used as the preset initial weight reference of
the GIOWA combination, and the combined prediction is made.
The prediction error is reduced to 0.17%, which is far lower than the
error value of the micro-prediction model and macro-prediction
model, which further verifies the feasibility of the combined
prediction model.

There are still the following shortcomings in this study:
There is limited sample data and a single source of data.

Therefore, in subsequent research studies, the collection methods
of data will be further expanded, and the same data from different
sources will be screened and screened again. An increase in the
regional case analysis and select regions with different geographical
conditions for research and analysis at the geographical level will be

TABLE 4 Three categories of prediction and their error values.

Classification Error value (%)

Macro-forecast value 1.05

Micro-predicted value 0.35

Combined predictive value 0.17
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seen. At the climate level, we will classify and predict the four
seasons of spring, summer, autumn, and winter and will further
refine the data scale.

This study has a lack of algorithm comparison experiments. In
the subsequent research process, other carbon emission prediction
methods will be selected for comparisons, and a more
comprehensive comparative analysis will be conducted from the
aspects of the error rate, robustness, etc., in order to obtain the best
prediction results.
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