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Against the backdrop of carbon peaking and carbon neutrality initiatives,
industrial parks have the potential to mitigate external electricity procurement
and reduce carbon emissions by incorporating photovoltaic and energy storage
systems. However, the inherent unpredictability in photovoltaic power
generation poses notable challenges to the optimal planning of industrial
parks. In light of this, the present study proposes a robust planning model for
the distribution of photovoltaic and energy storage systems within industrial
estates, taking into account uncertainties in photovoltaic output and low-carbon
demand response. The primary objective of the model is to minimize the yearly
comprehensive cost of the industrial park. It is grounded in the carbon emission
flow theory, utilizing dynamic carbon emission factors calculated throughout the
year as the pricing basis for real-time electricity rates informed by demand
response. Subsequently, historical photovoltaic output data are employed to
formulate typical output scenarios and their probability distributions through
scenario clustering. These norms and constraints serve to bind the associated
uncertainty probabilities. Consequently, a two-stage distribution robust model
for the photovoltaic and energy storage system is established, employing a data-
driven methodology. The efficacy of the proposed model is substantiated
through a case simulation of an industrial park utilizing the CPLEX commercial
solver. This approach not only underscores the importance of addressing
uncertainties in photovoltaic power generation for industrial park planning but
also showcases a practical application of the developed model.
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1 Introduction

The total carbon emissions from the electricity industry account for more than 40% of
the total carbon emissions in society, making it a pioneer in achieving China’s dual-carbon
goals. As electricity-intensive areas, industrial estates need to urgently consider how to
reduce their carbon emissions (Han et al., 2021).

On one hand, the establishment of a solar-storage power generation system within an
industrial park, coupled with the integration of green electricity, presents an opportunity to
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mitigate carbon emissions attributable to the consumption of
externally procured electrical power. However, the uncertainty of
photovoltaic output will have a significant impact on the capacity
system of the solar-storage power generation system within the park
(Zhi et al., 2017). On the other hand, based on the traditional
price–demand response, superimposing electricity prices during
peak and off-peak periods and using the TV-viewing angle to
determine real-time electricity prices, it is believed that less
electricity consumption in the park means eco-friendly
environmental protection. However, in reality, because the
combination of generating units at each moment is different, the
carbon emissions caused by each unit of electricity produced at each
moment are different. The carbon emission profile of the power-
generating unit is decoupled from the load curve. Consequently,
there is a need to institute an eco-friendly demand response
framework rooted in a user-centric carbon perspective. This
approach is essential for effectively addressing the dual-carbon
targets. Therefore, it is of great significance to integrate the
system and configuration of solar storage in industrial estates,
taking into account the unpredictability associated with
photovoltaic systems and the demand response characterized by
low carbon emissions.

Currently, the research on photovoltaic uncertainty mainly
focuses on three methods: stochastic optimization (Zhu et al.,
2021; Li et al, 2022a), robust optimization (Gao et al., 2017; Qiu
et al., 2020; Fan et al., 2018), and distributed robust optimization
(Chen et al., 2021; He et al., 2019; Ruan et al., 2019; He et al., 2020).
Li et al. (2020) used stochastic optimization to optimize the energy
storage configuration requirements for various random scenarios,
and based on the probability distribution of each typical scenario,
the optimal configuration of grid-side energy storage was achieved.
Stochastic optimization algorithms mainly use probability to
describe the characteristics of uncertain parameters and generate
a large amount of discrete data. However, in practical situations, it is
not easy to obtain accurate probability distributions. Xue et al.
(2022) used robust optimization to constrain the disturbance of
photovoltaic output uncertainty using a box uncertainty set and
optimize the capacity configuration of solar storage in the park.
Robust optimization algorithms are complicated to determine the
description of uncertain constraint sets andmainly rely on boundary
parameters to express, often leading to either too conservative or
aggressive decisions. Yue et al. (2018) used a two-stage distributed
robust algorithm to construct an optimization scheduling model
driven by data. The worst-case optimal solution was considered, and
a column-and-constraint generation (CCG) algorithm was used to
solve the problem, improving the acceptance of clean energy by the
energy system. The distributed robust optimization algorithm
combines the advantages of stochastic and robust optimization
algorithms. It does not require accurate probability distribution
and can be driven by historical data to find the worst solutions that
meet the confidence interval’s probability distribution. It can
effectively solve problems such as power system and scheduling,
ensuring the solution’s accuracy and robustness.

Currently, with the proposal of the dual-carbon goal, many
scholars are researching how to effectively quantify the carbon
emissions of each enterprise in the electricity sector and clarify
the carbon emission responsibilities of each link. Zhang et al. (2013)
proposed an industrial park carbon emission accounting method

that uses the electricity region’s carbon emission factor to calculate
enterprises’ carbon emissions based on their location. This method
is convenient for statistics and is simple to calculate. However, the
regional carbon emission factor is slow to update, and in the face of
more and more new energy generators’ access, the accuracy and
effectiveness of this regional carbon emission factor are lacking.
Zhou et al. (2012) proposed a primary calculation method for the
carbon emission flow of the power system based on the connection
between carbon emission flow and power flow calculation. Wang
et al. (2022) proposed a real-time carbon flow calculation method
based on network power decomposition, which overcomes the
traditional method’s inability to ensure fair carbon flow
distribution and effectively solves the problem of quantifying the
decarbonization contribution of new energy. Based on the carbon
emission flow theory, the carbon flow can be clarified, and it has a
certain timeliness. Combining the theory of carbon emission flow
with calculating carbon emission factors can more accurately
quantify the carbon emissions of various links in the power
system (Li et al., 2022a).

In summary, the aim of this paper is to devise a resilient system
and arrangement for solar energy storage in industrial complexes,
taking into account uncertainties in photo-voltaic systems and
responses to eco-friendly demands. First, to tackle the matter of
ambiguous carbon emission responsibilities among electricity users
during different time intervals, a time-varying dynamic carbon
emission coefficient is established, which is built upon the carbon
emission flow theory. This dynamic carbon emission factor is then
incorporated into the demand response pricing mechanism to
achieve a response that aligns with eco-friendly objectives.
Second, an optimization objective is formulated for
comprehensive cost minimization, encompassing yearly
investment, maintenance, electricity purchase, gas procurement,
electricity sales revenue, and carbon emission costs. The model
for the industrial park’s solar energy storage system integrates
restrictions like budget constraints, grid transmission power
constraints, power balance constraints, energy storage limitations,
electricity price restrictions, and demand response constraints.

Historical data are used to obtain typical output scenarios and
their probability distributions through scenario clustering to deal
with the variability in photovoltaic output. The uncertainty
probability is constrained by both the 1-norm and the infinity
norm, and a two-stage distribution robust system model is
constructed, which is tackled using the CCG algorithm to obtain
the optimal system solution. Finally, the model’s effectiveness is
verified through an industrial park case study.

2 Regional average carbon emission
coefficient

Traditional demand response mainly starts from the electricity
perspective, using the difference between generation and
consumption as the pricing rule, mainly solving the reliability
problem caused by the system supply–demand balance. However,
in the context of dual-carbon targets, it is necessary to start from the
carbon perspective, clarify the direction of carbon emissions based
on carbon emission flow theory, and obtain the dynamic carbon
emission coefficient at different times. By superimposing the
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dynamic carbon emission coefficient on the electricity price, users
can be aware of the corresponding carbon emission level of
electricity consumption at each time to reduce carbon emissions
on the demand side.

Currently, the calculation of carbon emissions caused by the use
of electricity is generally obtained using the average within the
regional carbon emission coefficient method. The total carbon
emissions the user generates throughout the year can be obtained
from Equation 1.

EK � �eCO2 ·∑
t∈Y

Qk,t, (1)

where Ek represents the total carbon emissions of user k for the
entire year, Y represents a particular year, Qk,t represents the
electricity consumption of user k at time t, and �eCO2 represents
the average carbon emission coefficient of the region where user k is
located. The average carbon emission coefficient of the region can be
obtained by the following formula Eq. 2):

�eCO2,i �
ECall,i + ∑

j∈Z
�eCO2,j × QCall,ji( )

QCall,i + ∑
j∈Z

QCall,ji
, (2)

where �eCO2,i and �eCO2,j represent the average carbon emission
factors of the regional power grids i and j, respectively; ECall,i, QCall,i,
andQCall,ji represent the CO2 direct emissions, the total yearly power
generation, and the total electricity transmitted from the regional
power grid j to i, respectively; represents the set of regional
power grids.

The carbon dioxide emissions from power generation within the
geographical coverage of the regional power grid i can be obtained
by Equation 3.

ECall,i � MFall,i × δf,i, (3)

where MFall,I represents the total amount of fossil fuels used for
power generation within the coverage area of the regional power grid
i and δf,i represents the carbon emission coefficient of fossil fuels.

The regional average carbon emission coefficient has the
advantage of simple calculation. However, the errors generated
by this method are increasingly expanding under the current
context of large-scale integration of new energy.

With the construction of a new type of power system, the
proportion of clean energy from different units at different times
within each region also varies. For users, carbon emissions generated
at different times have significant spatiotemporal differences, and
the regional average carbon emission factor cannot sufficiently
represent these differences.

3 Time-varying dynamic carbon
emission coefficient derived from the
carbon emission flow theory across
various time periods

Currently, the calculation of carbon emissions in the electricity
industry is mainly focused on the power generation side. However,
in reality, due to the “generation follows load” characteristic of the
power system, electricity consumption on the demand side is the

leading cause of carbon emissions. Therefore, carbon emissions
generated by the power generation side should be jointly borne
by both the supply side and the demand side.

The carbon emission flow theory of the power system can label
carbon emissions based on power generation unit information, line
flow information, and network loss information, which can
effectively clarify the sources and destinations of carbon
emissions. In addition, since the theory is based on the time and
space characteristics of the flow information for carbon emission
traceability and accountability, it can effectively clarify the carbon
emissions impact caused by user electricity consumption behavior at
different times.

Nonetheless, as the carbon potential derived from the theory is
contingent on a singular node, there exists a distinct disparity in
carbon potential across different nodes. To adhere to the principle of
regional equity, it becomes imperative to compute the average
carbon potentials within a specific region. Subsequently, dynamic
carbon emission factors are calculated over time and region in
accordance with Equation 4.

eCO2,i,t �
∑
j∈Z

Lj
CO2,i,t × εjCO2,i,t( )
∑
j∈Z

Lj
CO2,i,t

, (4)

where eCO2,i,t represents the regional dynamic carbon emission
coefficient of region i at time t. LjCO2,i,t is the load at node j at time t,
and εjCO2,i,t is the carbon potential at node j determined relying on
the carbon emission flow theory. Z represents the set of nodes within
the regional power grid i.

Utilizing the dynamic carbon emission coefficient specific to the
region, the carbon emissions from an individual user at each point in
time throughout the year can be determined through the application
of the following formula Eq. 5):

Ek
CO2,i,t � eCO2,i,t × Qk,i,t, (5)

where Ek
CO2,i,t is the carbon emission generated by user k at time t

on the ith day and Qk,i,t is the load of user k at time t on the ith day.

4 Formatting the industrial park solar-
storage robust system model

4.1 Objective function

This article establishes an objective function with the minimum
yearly comprehensive cost of the park, which consists of two parts in
total. A part of it is converted into the yearly maintenance and
investment costs of the optical storage and power generation
equipment. The other part is the yearly cost of purchasing gas,
electricity, carbon emissions, and electricity sales revenue, as shown
in Equations 6–8.

minF � F1 + F2, (6)
F1 � Fyic + Fyr, (7)

F2 � Fbuye + Fbuyg − Fsellein + Fcin, (8)

where F1 and F2 are the yearly investment and maintenance
costs, respectively. Fyic and Fyr are the yearly operating cost and
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yearly investment cost. Fbuyg, Fbuye, Fcin, and Fsellein are the yearly gas
procurement, yearly electricity procurement, yearly approved
income generated from the reduction of carbon emissions, and
yearly electricity sales income, respectively.

Fyic � CpvEpv
Rpv 1 + Rpv( )Ypv

1 + Rpv( )Ypv − 1
+ CessEess

Ress 1 + Ress( )Yess

1 + Ress( )Yess − 1
, (9)

Fyc � CpvrEpv
Rpv 1 + Rpv( )Ypv

1 + Rpv( )Ypv − 1
+ CessrEess

Ress 1 + Ress( )Yess

1 + Ress( )Yess − 1
, (10)

Fbuye � ∑Ns

s�1
365 × Ps × ∑24

t�1
Pbuye
s,i,t C

e
s,tΔt, (11)

Fbuyg � ∑Ns

s�1
365 × ps × ∑24

t�1
∂2PGT

s,i,t2 + ∂1PGT
s,i,t + ∂0( )Cg

s,tΔt, (12)

Fsellein � ∑Ns

s�1
365 × ps × ∑24

t�1
Pselle
s,i,t C

se
s,t + PL

s,i,tC
le
s,t( )Δt, (13)

Fcin � ∑Ns

s�1
365 × ps × ∑24

t�1
Pbuye
s,i,t − Pselle

s,i,t( )( Δt) × φs,t × CCO2 (14)

where Cess and Cpv are the investment costs per unit capacity of
energy storage and per unit capacity of photovoltaic investment,
respectively. Epv and Eess are the photovoltaic capacity and energy
storage capacity, respectively.Rpv, Ress, Ypv, and Yess are the equivalent
yearly investment-related parameters. Ns is a set of all possible
scenarios. Ps is the probability that scenario s may occur. Pbuye

s,i,t ,
PGT
s,i,t, P

selle
s,i,t , and PL

s,i,t are the purchased power at time t on day i in
scenario s, the generated power of the gas turbine, the power sold to
the power grid, and the park load power, respectively. Cg

s,t, C
le
s,t, C

se
s,t,

and CCO2 are the real-time gas purchase price, real-time electricity
selling price for park load, real-time outgoing grid electricity price, and
unit carbon trading price at time t under scenario s. φs,t is the carbon
emission factor of the regional power grid at time t under scenario s.

Equations 9 and 10 are the calculation formulas for the
investment and operating costs, respectively, which are calculated
using the yearly equivalent investment cost calculation method.

Equations 11–13 are the yearly electricity procurement, yearly gas
procurement, and yearly electricity sales revenue calculated using the
scenario probability, respectively. Equation 14 is the carbon emission
cost calculated using the scenario probability, which is the product of
the difference between purchasing and selling electricity, the price
associated with a unit of carbon emissions, and the carbon potential.

4.2 Constraints

The constraints within the model outlined in this article
encompass both conventional and eco-friendly considerations.
Conventional constraints involve restrictions on investment costs,
grid transmission power, power balance, energy storage charging
and discharging power, state constraints for energy storage charging,
and park load electricity selling prices. The eco-friendly constraints
integrate dynamic carbon emission coefficients, utilize carbon
emission costs as pricing benchmarks, and incorporate
corresponding constraints on electricity prices.

General constraints:

Cic min ≤CpvEpv + CessEess ≤Cic_max, (15)

Pmin ≤P
grid
s,i,t ≤Pmax,

Pgrid
s,i,t � Pbuye

s,i,t − Pselle
s,i,t

∣∣∣∣∣ ∣∣∣∣∣,
⎧⎨⎩ (16)

PGT
s,i,t + Pgrid

s,i,t + Ppv
s,i,t + Pdis

s,i,t − Pch
s,i,t � PL

s,i,t, (17)
0≤Pch

s,i,t ≤ β
ch
s,i,tPch

max,

0≤Pdis
s,i,t ≤ β

dis
s,i,tPdis

max,

βchs,i,t + βdiss,i,t ≤ 1,

⎧⎪⎪⎨⎪⎪⎩ (18)

Eess
s,j,t+1 � Eess

s,j,t + βchs,i,tP
ch
s,i,t − βdiss,i,tP

dis
s,i,t,

0.1Emax ≤Eess
s,j,t ≤ 0.9Emax,

{ (19)

PGT
min ≤PGT

s,i,t ≤PGT
max,

PGT
s,i,t − PGT

s,i,t−1 ≤Ru
GTΔt,

PGT
s,i,t−1 − PGT

s,i,t ≤Rd
GTΔt,

⎧⎪⎨⎪⎩ (20)

Ceit
min <Cle

s,t ≤Ceit
max, (21)

where Cic min, Cic max, Ceit
min, and Ceit

max are the minimum
investment cost, maximum investment cost, minimum real-time
electricity procurement, and maximum real-time electricity
purchase price, respectively. βchs,i,t, βdiss,i,t, Eess

s,j,t, and Emax are the
charging state coefficient, discharge state coefficient, energy storage
capacity state, and rated maximum energy storage capacity,
respectively. Pch

max, Pdis
max, PGT

min, and PGT
max are the maximum

charging power, maximum discharge power, minimum power of
the gas turbine, and maximum power of the gas turbine, respectively.

Equation 15 represents the investment cost constraint. Equation
16 represents the transmission power constraint of the power grid
frame. Equation 17 represents the real-time electrical power balance
constraint. Equation 18 represents the energy storage state constraint.
Equation 19 represents the real-time capacity constraint for energy
storage. Equation 20 represents the constraints related to gas turbines.
Equation 21 represents the constraints related to electricity prices.

Low-carbon constraints:

Cle
s,t � Cle,pre

s,t + φs,tCCO2, (22)

PL
s,i,t � PL,pre

s,i,t 1 +∑24
t�1

εtt′ C
le
s,t − Cle,pre

s,t( )
Cle,pre

s,t

⎡⎢⎣ ⎤⎥⎦, (23)

1 − η( ) × PL,pre
s,i,t ≤PL

s,i,t − PL,pre
s,i,t ≤ 1 + �η( ) × PL,pre

s,i,t , (24)

where Cle,pre
s,t and Cle

s,t are the real-time reference electricity price
and response electricity price at time t under scenario s, respectively.
PL,pre
s,i,t and PL

s,i,t are the reference load power and response load
power at time t under scenario s, respectively. εtt′ is the price
elasticity coefficient. η and �η represent the percentage of load
that can be removed and the percentage of load that can be
added, respectively. Equation 22 is the pricing rule for electricity
prices in response to eco-friendly demands, incorporating carbon
emission factors and unit carbon emission prices as the pricing basis.
Equation 23 is an equation constraint for calculating the response
load using the mutual elasticity coefficient. Equation 24 is the
transfer load restriction constraint.

5 Driven distributional
robust framework

This article constructs a data-driven, two-stage,
distributionally robust system model to address the uncertainty
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of photovoltaic power output. The first stage is the investment and
maintenance stage, with variables represented by x, including the
system capacity sizes of photovoltaics and energy storage. The
second stage is the operation stage, intending to minimize the
operating cost, given the first-stage plan. The second-stage
variables are represented by ys, including the output of each
unit and the charging and discharging status of energy storage
in different periods during the simulated operation. The above
two-stage distributionally robust system model is expressed in the
following matrix form:

min
x∈X

Ax + max
ps∈Ωp

∑Ns

s

ps min
ys∈Y x,ξs( ) Bys + Cξs( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (25)

s.t.Dx ≤ d, (26)
Eys ≤ e,∀s, (27)
Fys � f ,∀s, (28)

Gx +Hxξs + Jys ≤ g ,∀s, (29)
Kysξs +Mys � j,∀s, (30)

where Ωp represents the set satisfied by Ps and ζs represents the
unit capacity of photovoltaic output values after scene clustering. In
Equation 25, Ax represents the yearly investment and maintenance
costs of the photovoltaic-energy storage system F1, and Bys + Cζs
represents the yearly operating cost F2 under the sth scenario.
Equation 26 represents the investment and operating cost
constraints in the first stage, and equations 27 and 28 represent
the inequality constraints and equality constraints in the second
stage, respectively. Equation 29 represents the inequality constraints
between the two-stage variables and the output of photovoltaics and
energy storage under discrete scenarios, and Equation 30 represents
the equality constraints between the second-stage variables and the
demand response.

To ensure that ps satisfies the true probability distribution, the 1-
norm and ∞-norm constraints are added, and the discrete ps value
under the scenario is subject to the following constraint set:

Ωp � ps{ }
ps ≥ 0, s � 1, ..., Ns

∑Ns

s�1
ps � 1

∑Ns

s�1
ps − p0

s

∣∣∣∣ ∣∣∣∣≤ θ1

max
1≤ s≤Ns

ps − p0
s

∣∣∣∣ ∣∣∣∣≤ θ∞

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (31)

The variables θ1 and θ∞ in the expression, respectively,
correspond to the allowed deviation values of the scene
probability under the 1-norm and the infinity-norm constraints.

According to ZHAO and GUAN (2016), under distributionally
robust system, the scene probability satisfies the confidence
constraints.

Pr ∑Ns

s�1
ps − p0

s

∣∣∣∣ ∣∣∣∣≤ θ1
⎧⎨⎩ ⎫⎬⎭ ≥ 1 − 2Nse

−2Mθ1
Ns . (32)

Pr max
1≤ s≤Ns

ps − p0
s

∣∣∣∣ ∣∣∣∣≤ θ1{ }≥ 1 − 2Nse
−2Mθ∞ . (33)

If we want to make the right-hand side of Equations 32 and 33
equal to α1 and α∞, respectively, which represent the confidence

levels of the probability uncertainty under the 1-norm and infinity-
norm constraints, we can follow the following steps:

θ1 � Ns

2M
ln

2Ns

1 − α1
, (34)

θ∞ � 1
2Ns

ln
2Ns

1 − α∞
, (35)

where the symbol M represents the number of historical data. A
transformation is then performed on the absolute value in equations
34 and 35.

Norm constraint:

∑NS

s�1
m≤ θ1, (36)

m≥ps − p0
s

m≥p0
s − ps

{ ,∀s, (37)

where m is an auxiliary variable.
Infinity-norm constraint:

ps − p0
s ≤ θ∞

p0
s − ps ≤ θ∞

{ ,∀s. (38)

6 Case study

6.1 Configuration of the
parameter scenarios

The computational model is resolved utilizing the YALMIP
toolbox in MATLAB, along with the commercial solver CPLEX.

TABLE 1 Gas turbine parameters.

∂1 ∂2 ∂3 PGT
max/kW PGT

min/kW

5.635 55*10–3 40*10–6 1,600 400

FIGURE 1
Standard daily industrial park electricity demand.
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The CCG algorithm is employed for iterative and staged problem-
solving. The industrial park in a southwestern city of China, which
includes gas turbine units, is selected as the case study. The
relevant parameters of the units are shown in Table 1. The cost
of natural gas procured by the park is 0.349 CNY per kilowatt-hour
(kWh). Figure 1 illustrates the load curve of the industrial park. In
addition, a normal distribution is used to produce errors in the
photovoltaic baseline output scenario, with the baseline value as
the mean and 0.25 times the baseline value as the variance. Then,
5,000 (K) error scenario data are generated and clustered into five
typical scenarios, as shown in Figure 2. The purchasing prices of
electricity for the park are shown in Table 2. The grid-connected
electricity price for photovoltaics is 0.35 (in CNY/kW·h), and the
parameters of the photovoltaic equipment are shown in Table 3.
The parameters of the energy storage equipment are shown in
Table 4. The dynamic carbon emission factor is calculated
according to the method in Li et al. (2022b), and the result is
shown in Figure 3. The price elasticity coefficient is selected from
DOOSTIZADEH and GHASEMI (2012).

6.2 Figure optimization result analysis

To verify the rationality of the proposed model, this paper
conducted a comparative analysis of the following
four scenarios:

Scenario 1.A solar-storage power generation system is planned for
the park using the random system to consider the photovoltaic
uncertainty without considering the eco-friendly demand response.

Scenario 2.A solar-storage power generation system is planned for
the park using the distributionally robust system to consider the
photovoltaic uncertainty without considering the eco-friendly
demand response.

Scenario 3.A solar-storage power generation system is installed
in the park using the random system to consider the
photovoltaic uncertainty and considering the eco-friendly
demand response.

Scenario 4. A solar-storage power generation system is
installed in the park using the distributionally robust system
to consider the photovoltaic uncertainty and eco-friendly
demand response.

FIGURE 2
Representative photovoltaic scenario post-clustering.

TABLE 2 Electricity purchase price of the park.

Time period Purchase electricity price (in CNY/kW·h)
Peak period 0.20

Off-peak period 0.63

Valley period 1.05

TABLE 3 Photovoltaic equipment parameters.

Parameter name Value

Unit capacity price (in CNY/kW) 1,600

Unit capacity yearly operation cost (in CNY/kW·h) 77

Service life (in years) 20

Discount rate 0.05

TABLE 4 Parameters related to energy storage.

Parameter name Value

Unit capacity price (in CNY/kW) 2,000

Unit capacity yearly operation cost (in CNY/kW·h) 5.16

Service life (in years) 10

Discount rate 0.05

Minimum charging power 0.20Emax

Maximum discharging power 0.20Emax

FIGURE 3
Graph depicting the dynamic carbon emission factor over time.
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The four scenarios were tackled using CPLEX, and the
distributionally robust algorithm used the CCG algorithm
described in Section 4 for solving. The constraints related to the
robustness degree were both set to 0.99. The probability of each
scenario in the random system was set to 0.2.

Table 5 outlines the investment scheme, yearly overall operating
expenses, yearly investment outlay, yearly maintenance expenditure,
yearly electricity procurement costs, yearly gas acquisition costs,
yearly revenue from electricity sales, and yearly carbon emission
expenses for each scenario.

Figure 4 shows that in scenarios 1 and 2, without considering the
demand response, the distributionally robust algorithm purchased
less electricity than the random system in each time period. This is
because the distributionally robust algorithm has more robustness
and plans more photovoltaic capacity to avoid the impact of the
photovoltaic output uncertainty on park operation.

Figure 5 shows that in scenarios 3 and 4, when considering the eco-
friendly demand response, the distributionally robust algorithmT
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FIGURE 4
Electricity purchase and sale in the park in scenarios 1 and 2.

FIGURE 5
Purchase and sale of electricity in the park in scenarios 3 and 4.
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purchased more electricity than the random system during the high
peak period of dynamic carbon emission factors. However, the
purchased electricity in other periods was still less than that of the
random system. Although the purchased electricity was more
significant under high carbon emission factors, the total purchased
electricity was still less than the result of the random system. This
considers the impact of purchased electricity under high carbon
emission factors on park operating costs.In general, it can be
observed that the distributionally robust algorithm incurs higher
yearly operating costs than the stochastic programming algorithm
compared to scenarios 1 and 2 and scenarios 3 and 4. Although its
economic efficiency may not be optimal, the lower ratio of energy
storage to photovoltaic capacity, compared to stochastic programming,
proves more effective in mitigating the influence of photovoltaic
uncertainties on park operations. This, in turn, reduces the
expenditure on grid electricity purchases and enhances the park’s
yearly carbon emission reduction with increased robustness.

Based on Figure 6 and Figure 7, considering the eco-friendly
demand response, the purchased electricity in scenarios 3 and 4 is
higher than that in scenarios 1 and 2 during periods of high-carbon
emission factors. However, during periods of low-carbon emission
factors, the purchased electricity in scenarios 3 and 4 is lower than
that in scenarios 1 and 2. Although the total purchased electricity in
scenarios 3 and 4 has increased, the total carbon emissions are lower
than those in scenarios 1 and 2. This is because the demand response
based on dynamic carbon emission factors reduces the purchased
electricity during periods of high carbon emissions.

In general, upon comparing scenarios 1 and 3 and scenarios
2 and 4, it is evident that the utilization of demand response based on
the dynamic carbon emission factor pricing rules results in a
reduction in the industrial park’s yearly carbon emissions
compared to traditional time-of-use electricity pricing. This
reduction is observed despite an increase in the park’s
expenditure on purchased electricity. The disparity in peak values
between dynamic carbon emission factors and electricity demand, as
illustrated in Figure 3, contributes to the overall decrease in total
yearly carbon emissions with the heightened electricity cost. This
signifies commendable eco-friendly performance.

7 Conclusion

This paper aims to propose a resilient configuration for solar
storage systems in industrial estates, taking into consideration
uncertainties in photovoltaic generation and incorporating an
eco-friendly demand response. It employs a distributed robust
algorithm to alleviate the impact of photovoltaic uncertainties on
the system through a data-driven approach. Furthermore, it
introduces an eco-friendly demand response model based on the
carbon emission flow theory, considering dynamic carbon emission
factors. The approach is validated through illustrative examples,
leading to the following conclusions:

1) The system results under the distributed robust algorithm,
compared with the results of the random programming
algorithm, show that it can reduce the impact of the
photovoltaic uncertainty on the operation of the park,
reduce the cost of purchasing electricity from the grid, and
thus reduce the yearly carbon emissions of the park. It has
better robustness while ensuring a particular economy.

2) Following the implementation of the eco-friendly demand
response model grounded in the dynamic carbon emission
factor, a comparison with the traditional time-of-use program
reveals that the demand response advocated in this paper
demonstrates a more pronounced carbon-centric bias. It
achieves a reduction in electricity procurement during
periods characterized by high carbon emission factors,
consequently effectively diminishing the overall yearly
carbon emissions of the industrial park.
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FIGURE 6
Purchase and sale of electricity in the park in scenarios 1 and 3.

FIGURE 7
Electricity purchase and sale in the park in scenarios 1 and 3.
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