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Spatio-temporal prediction of
photovoltaic power based on a
broad learning system and an
improved backtracking search
optimization algorithm

Wenhu Tang, Kecan Huang, Tong Qian*, Weiwei Li and
Xuehua Xie

School of Electric Power Engineering, South China University of Technology, Guangzhou, China

The accuracy of photovoltaic (PV) power forecasting techniques relies not only
on high-quality spatiotemporal data but also on an efficient feature-mining
methodology. In this study, a spatiotemporal power forecasting model based
on the broad learning system (BLS) and the improved backtracking search
optimization algorithm (IBSOA) is proposed. The objective is to enhance the
accuracy of PV power predictions while reducing the time-intensive training
process associated with an extensive set of broad learning system parameters.
The spatiotemporal attributes of historical data from multiple PV sites are
clustered using a self-organizing map. The clustering analysis explores the
spatiotemporal correlation among five photovoltaic (PV) power stations for
each season between 2017 and 2018. Subsequently, the IBSOA is employed to
optimize the hyperparameters of the BLS model, particularly the mapping and
enhancement nodes. By utilizing hyperparameter optimization, a BSOA-based
broad learning model is introduced to achieve superior accuracy. The results
are assessed using the proposed method in comparison with three popular
optimization algorithms: 1) genetic algorithm (GA), 2) bird swarm algorithm
(BSA), and 3) backtracking search optimization algorithm (BSOA). All scenarios
are validated and compared using PV plant data from the DKA center in Australia.
The root-mean-square error (RMSE) indicators of the proposed prediction
method are consistently lower than the worst-case scenario in each season,
decreasing by 3.2283 kW in spring, 3.9159 kW in summer, 1.3425 kW in autumn,
and 1.4058 kW in winter. Similarly, the mean absolute percentage error (MAPE)
exhibits a reduction compared to the worst case, with a decreases of 0.882%
in spring, 1.2399% in summer, 1.803% in autumn, and 1.087% in winter. The
comprehensive results affirm that the proposed method surpasses alternative

Abbreviations: BLS, broad learning system; BSA, bird swarm algorithm; BSA-BLS, bird swarm
algorithm-based broad learning system; BSOA, backtracking search optimization algorithm; BSOA-
BLS, backtracking search optimization algorithm-based broad learning system; DM, Diebold–Mariano
test; GA, genetic algorithm; GA-BLS, genetic algorithm-based broad learning system; IBSOA, improved
backtracking search optimization algorithm; IBSOA-BLS, improved backtracking search optimization
algorithm-based broad learning system; MAE, mean absolute error; MAPE, mean absolute percentage
error; MSE, mean squared error; RMSE, root-mean-squared error; RVFLNN, random vector link neural
network; SOM, self-organizing map; TOLO, topological opposition-based learning operator.
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optimization techniques, delivering high-quality power forecasts for the given
case study.

KEYWORDS

photovoltaic power forecasting, improved backtracking search optimization algorithm,
broad learning system, deep neural network, hyperparameter optimization

1 Introduction

In light of their potential environmental and economic benefits,
renewable energy sources have garnered considerable attention for
their projected influence on the future of power grids (Qian et al.,
2020). These sources offer the potential to enhance voltage profiles
and power supply quality for both energy suppliers and consumers
(Li et al., 2023a), thereby contributing to reduced power losses,
decreased pollution, and cost savings in specific scenarios. Within
the array of energy sources, the assimilation of photovoltaic (PV)
power generation into conventional power grids poses inherent
stability challenges. This is mainly attributed to the intermittent
characteristics of renewable energy sources and the variability
introduced by meteorological factors (Hu et al., 2020). Even though
meteorological and environmental elements impact photovoltaic
(PV) output, resulting in noteworthy fluctuations, the extensive
integration of PV brings forth considerable security challenges to
the power grid system (Li et al., 2023b). In such contexts, precise
PV power forecasting becomes indispensable not only for ensuring
the reliable and stable utilization of renewable energy sources
but also for minimizing the demand for additional balancing
energy and reserve power to accommodate other forms of power
generation.

The accuracy of photovoltaic (PV) power forecasting is
influenced by a multitude of factors, adding intricacy to the
prediction process. These factors encompass the forecasting
horizon (Khuntia et al., 2016), the selection of inputs in the
forecasting model (Ghofrani et al., 2015), and performance
assessment (Choi et al., 2021). To enhance accuracy, it is crucial
to undertake correlation analysis optimization (Li et al., 2015) and
employ uncertainty estimation and approximations (Zhou et al.,
2020). These processes map relationships between the input
and output through historical parameter estimation in the
development of PV power forecasting approaches. The accuracy
of these models is intricately tied to both the quantity and
quality of data, necessitating extensive datasets and meticulous
data preprocessing (Rahman et al., 2023). By integrating deep
learning, heuristic algorithms, and innovative frameworks
(Hafeez et al., 2020a), the refined approaches not only improve
accuracy but also tackle challenges related to stability and
convergence rate, contributing to the dynamic evolution of smart
grid technologies (Hafeez et al., 2020b). In recent years, deep
neural networks (DNNs) have emerged as a viable option for
PV power forecasting despite their limited nonlinear mapping
capabilities. An advantage of using DNNs lies in their capacity
to simplify high-dimensional and nonlinear problems in contrast
to physical methods (Yildiz et al., 2021) that are well-suited
for stable conditions. Hossain and Mahmood (2020) proposed
a LSTM (long short-term memory) neural network with the
synthetic irradiance forecast and algorithm, whichachieves
over 30% accuracy improvement in PV power forecasting.

Based on LSTM, with a focus on accuracy, Aslam et al. (2021)
employed the Bayesian optimization algorithm in conjunction
with LSTM for power forecasting, thereby demonstrating its
efficiency. Shaqour et al. (2022) proposed a DNN combined with
the bi-directional gated recurrent unit with fully connected layers
(Bi-GRU-FCL), which achieves faster training time and fewer
learnable parameters based on five aggregation levels based on
a dataset in Japan. Lin et al. (2020) introduced an enhanced
moth–flame optimization algorithm and applied it to optimize
the support vector machine (SVM). The results demonstrated
the strong performance of the model on both sunny and rainy
days. Fekri et al. (2021) proposed an adaptive recurrent neural
network (ARNN) prediction model for online learning. The model
dynamically adjusts its hyperparameters in response to new data,
allowing the prediction process to adapt to changing conditions.
A comparative analysis of the integrating feature engineering
(FE) and a modified fire-fly optimization (mFFO) algorithm with
support vector regression (SVR) against benchmark frameworks
highlights the superior performance in terms of accuracy, stability,
and convergence rate (Hafeez et al., 2021). In summary, the above
studies contribute to the evolving landscape of PV power and load
forecasting, showcasing diverse approaches and improvements in
accuracy through the integration of deep learning techniques and
optimization algorithms.

Building upon the aforementioned studies, it has been
demonstrated that employing appropriate optimization methods
for DNNs can result in enhanced prediction accuracy, leading
to improved forecasting outcomes. Addressing the inherent non-
linear characteristics of data (Kleissl, 2013), research efforts have
explored intelligent algorithms that do not rely on predefined
mathematical models. Oudjana et al. (2013) and Konjić et al. (2015)
conducted a comparative study involving an artificial neural
network (ANN) model for PV output forecasting against three
conventional mathematical approaches and regression models. The
findings underscored the significantly superior forecast accuracy
achieved by the ANN. Although each approach has its merits and
limitations, genetic algorithm (GA)-based optimization emerges as
the most popular and effective technique for optimizing weights
and inputs in forecasting models (Ding et al., 2011), particularly
when used in conjunction with an ANN (Deniz et al., 2016).
Pedro and Coimbra (2012) reported enhancements in their ANN-
based PV power forecasting model through GA optimization,
resulting in improved forecast accuracy. In comparison to GA,
GA-based optimization demonstrates easier convergence and
requires fewer parameter adjustments (Viet et al., 2020). At
present, particle swarm optimization (PSO) is widely used in
function optimization, according to Ahmed et al. (2020), neural
network training and parameter selection, fuzzy system control,
and other applications as a substitute for GA. Nevertheless,
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mainstream optimization algorithms such as GA and PSO often
display an increased vulnerability to getting ensnared in local
extrema (Bamdad et al., 2017). The optimization direction is
contingent upon parameter settings, thereby impacting the time
and cost of optimization. Although the convolution operation
can meet the requirements and yield a satisfactory performance,
it introduces potential issues. The local influence of the convolution
kernel poses a risk of introducing false information, and data
transformation contributes to an escalation in the complexity of
the prediction model.

Furthermore, traditional neural network prediction methods
typically employ multiple hidden layers to construct forecasting
models. Although these models efficiently learn and extract
valuable features from input data, they are characterized by
shallow architectures and limited capabilities in representing
complex nonlinear functions. As a result, these models have a
tendency to underfit complex prediction tasks, resulting in a
decline in accuracy, particularly when dealing with large-scale
data-driven problems. In contrast to DNNs, the broad learning
system (BLS), as an alternative method, enhances the generalization
performance by expanding the width of a single hidden layer
rather than improving its approximation capabilities through the
extension of deep architectures (Feng et al., 2022). Some researchers
utilize BLS as a method to enhance the accuracy of forecasting
when dealing with large-scale datasets (Chen and Liu, 2017;
Cheng et al., 2022; Zhu et al., 2022). The expanded broad structure
of BLS ensures its strong approximation capability of nonlinear
mapping (Wang et al., 2020) to ensure the accuracy of prediction
results while significantly reducing computational costs, and the
accuracy can be maintained using proper optimization techniques
(Gong et al., 2022).

It is crucial to note that the effectiveness of certain
methodology comparisons may be compromised because various
prediction models are included in the comparison sections,
each employing different hyperparameter tuning approaches
and distinct hyperparameter configurations. To uphold the
effectiveness of the comparison results, the research concentrates
on tuning hyperparameters within the same forecasting model
while allowing for adjustability in the algorithms. In the present
research, the BLS model is employed as a framework for short-
term PV power forecasting. The self-organizing map (SOM) is
introduced to evaluate the spatiotemporal correlations of five
PV stations. The backtracking search optimization algorithm
(BSOA) examined in this study demonstrated effectiveness
in addressing engineering optimization problems (Civicioglu,
2013), given that the initialization step does not demand specific
tuning. However, BSOA is not without drawbacks as it requires
substantial information in the evolution process to regulate a
correct optimization search direction. Moreover, ensuring the
population diversity poses challenges, potentially resulting in
convergence on the local optima. Consequently, the subsequent
sections detail improvements aimed at addressing the limitations
of BSOA. An improved backtracking search optimization
algorithm (IBSOA) is employed to tune the hyperparameters of
BLS. The improved backtracking search algorithm-based broad
learning system (IBSOA-BLS) method is compared to other

meta-heuristic algorithm variants, including genetic algorithm-
based learning system (GA-BLS), backtracking search algorithm-
based learning system (BSOA-BLS), and bird swarm algorithm-
based learning system (BSA-BLS), to demonstrate its superior
prediction accuracy.

Thus, the contribution of this paper includes the following:

• Employment of the BLS to predict PV power generation, which
is a computationally efficient method that consistently delivers
high forecasting accuracy compared to other neural network-
based prediction approaches.
• Evaluation of PV power spatiotemporal correlation is
conducted through a copula-based self-organizing map to
investigate the inner characteristics among the five PV stations.
• To enhance accuracy, the BSOA algorithm is improved by
addressing the selection and mutation processes to mitigate the
random optimization search problem.
• The comparison involves the BLS power forecasting model
tuned by the improved algorithm and other metaheuristic
algorithms, specifically GA, BSA, and BSOA.

The remaining sections of the paper are organized as follows:
Section 2 initiates with the definition of the broad learning system.
Section 3 introduces the enhancements to the backtracking search
optimization algorithm and evaluates the performance of IBSOA.
Section 4 outlines the IBSOA-BLS prediction model, covering data
preprocessing and clustering. Section 5 delves into the power
forecasting results using the proposed method and conducts
comparisons. Lastly, Section 6 concludes the paper.

2 Broad learning system

Random vector link neural networks (RVFLNNs) serve as
the foundation of BLS. BLS operates by extracting features
from the input data through feature mapping, subsequently
transforming these feature nodes into enhancement nodes using
nonlinear transformations, which further employs an incremental
learning method to update the output weights of these enhanced
nodes. The approach differs from traditional RVFLNN, where
input data are directly accepted and enhancement nodes are
established. In deep learning networks, improved fitting capabilities
result from the addition of extra network layers rather than
simply increasing the number of nodes. Based on RVFLNN, BLS
training facilitates swift updates and refinements to the prediction
system, contrasting with deep neural networks, where learning
time progresses monotonically. By extending the feature and
enhancement nodes, BLS improves the network performance and
model fitting capabilities. The system consists of three fundamental
components: 1) mapping feature nodes, 2) enhancement nodes, and
3) an output matrix as shown in Figure 1.

BLS training comprises two primary phases: first, the weights for
the mapping and enhancement nodes are randomly generated, and
second, the weights between the hidden layer and the output layer
are calculated. In simpler terms, during training, the sole weight
that requires acquisition is the one connecting the final output layer
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TABLE 1 Transformation function for generating enhancement nodes.

Gaussian H (W,β,M) = e(−β‖M−W‖)

Sigmoid H (W ,β,M) = 1
1+e−(W ⋅M+β)

Tribas H (W ,β,M) =max (1− |W ⋅M + β| ,0)

Tanh H(W ,β,M) = 1−e−(W ⋅M+β)

1+e−(W ⋅M+β)

Transigmoid H(W ,β,M) = 1−e−2(W ⋅M+β)

1+e−2(W ⋅M+β)

ReLUa H (W ,β,M) =max (0,W ⋅M + β)

to the hidden layer as the weights of the BLS random layer are
generated randomly. In the initial stage, BLS forwards the original
input data as mapping features, following which the structure can
be expanded using the enhancement nodes. The random feature
mapping stage distinguishes BLS from other established learning
techniques, such as the single-layer feedforward network (SLFN),
which updates its parameters through gradient descent, and the
support vector machine (SVM), which utilizes kernel functions for
feature mapping. The mapping feature nodes can be represented
as follows:

Mn = ϕ(XW fn + β fn) , n = 1,2,…,N f , (1)

where X is the input data and W f and βf are the weighting matrix
and bias of feature nodes, respectively. Via the sparse autoencoder
(Yang et al., 2021), BLS uses the mapping function ϕ to extend the
enhancement nodes. The mth group of the nodes can be expressed
as follows:

Hm = ζ(MnWem + βem) , m = 1,2,…,Ne, (2)

where ζ is the nonlinear transformation function and We and βe
are the weight matrix and bias of enhancement nodes, respectively.
Then, the output of BLS can be obtained from the following
equation:

Wm
n = [Mn ∣Hm]

†Y , (3)

where Wm
n is the output weights, † represents the Moore–Penrose

pseudoinverse of matrix, and Y is the output data.
Numerous researchers have enhanced the generation of random

mapping feature nodes to alignwith diverse industrial requirements.
Empirical experiments have shown that diverse activation functions
enable the model to acquire a range of nonlinear expression
capabilities.The commonly used transformation functions are listed
in Table 1 and the Gaussian function is used for the enhancement
node calculation in this research.

3 Improvement of the backtracking
search optimization algorithm

3.1 Backtracking search optimization
algorithm

Thebacktracking search optimization algorithm, also referred to
as BSA or BSOA, is not sensitive to the initializations of population,

so initialization can be generated randomly. Theoretically,
the BSOA usually follows the following five steps (Hassan
and Rashid, 2020):

• Initialize two populations popi,j and popoldi,j with
equations (4) and (5):

popi,j = lbj + α× (ubj − lbj) , i ∈ N, j ∈ D, (4)

popoldi,j = lbj + α× (ubj − lbj) , i ∈ N, j ∈ D, (5)

where popi,j and popoldi,j are the current and historical populations,
respectively; lb and ub are lower and upper boundaries,
respectively; α is a random number between 0 and 1; N is
the number of populations; and D is the dimension of state
variables.

• Population selection I: the historical population is updated by
equation (6) with the uniform distribution from the previous
population selection. αs1 and αs2 represent that the selection
process happens randomly. Then, a permut function is used in
equation (7) to change the order of each element in the old
population set.

pop̂i,j
old =
{
{
{

popi,j, αs1 <αs2
popoldi,j , otherwise

, (6)

pop̂i,j
old ∼ permut(pop̂i,j

old) . (7)

• Mutation: the process generates the initial form of the historical
data-based trial population by using two significant populations
popi,j and pop̂i,j

old derived from the previous steps.

popmut = popi,j + F× (pop̂i,j
old − popi,j) , (8)

where F is the population step change and is defined as 3× snd
and snd is the standard normal distribution in the numerical
range of 0 to 1. It controls the search direction of the matrix
(pop̂i,j

old − popi,j).

• Crossover: the crossover process is as shown in equation (9).
The process is divided into two steps. In the first step, an N×D
mapping mi,j matrix is generated and initialized. The matrix
is updated by means of two strategies with a ceiling function
and a random integer function randi. αs1 < αs2 represents a
probabilistic condition to indicate its randomness. Second,
the crossover population is mapped with popi,j or popmut
according to equations (10) and (11). It should be noted that
equations (10) and (11) are only applied for equation (9). At
the end of the crossover process, if the population generated
from equation (9) overflows the lower or upper boundary, the
population is reproduced via equation (12).

popci,j = popi,j +mi,d1/d2F× (pop̂i,j
old − popi,j) , (9)

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1343220
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Tang et al. 10.3389/fenrg.2024.1343220

TABLE 2 Test functions.

Function Dimension Variable range Global minimum

f1 = a(x2 − bx
2
1 + cx1 − r)

2 + s(1− t)cos (x1) + s 2 [-5, 15] 0

f2 = x1 exp(−x
2
1 − x

2
2) 2 [-2, 6] 0

f3 = [1− exp(−
1
2x2
)] 2300x

3
1+1900x

2
1+2092x1+60

100x31+500x
2
1+4x1+20

2 [0, 1] 0

f4 =
1
6
[(30+ 5x1 sin (5x1)) (4+ exp (−5x2)) − 100] 2 [0, 1] 0

f5 = 100(e
−2/x1.751 + e−2/x

1.5
2 + e−2/x

1.25
3 ) 3 [0, 1] 0

f6 = 10 sin (πx1x2) + 20(x3 − 0.5)
2 + 10x4 + 5x5 5 [0, 1] 0

f7 = 4(x1 − 2+ 8x2 − 8x
2
2)

2+(3− 4x2)2 + 16√x3 + 1(2x3 − 1)
2

+∑8
i=4
i ln(1+∑i

j=3
xj)

8 [0, 1] 0

f8 =
5x12
1+ x1
+ 5(x4 − x20)

2 + x5 + 40x
3
19 − 5x19 + 0.05x2 + 0.08x3

− 0.03x6 + 0.03x7 − 0.09x9 − 0.01x10 − 0.07x11
+ 0.25x213 − 0.04x14 + 0.06x15 − 0.01x17 − 0.03x18

20 [-0.5, 0.5] 0

mi,d1 = 1, αs1 < αs2
mi,d2 = 0, otherwise

(10)

d1 = [1,ceil (mixrate× α×D)]

d2 = randi (D)
(11)

poprei,j = R× (ubj − lbj) + lbj. (12)

Here, R is a re-scale factor of reproduction selected between 0 and
1, popci,j is the crossover population, and pop

re
i,j is the reproduction of

the population.

• Population selection II: in this stage, based on a greedy selection
mechanism, popi,j that has better fitness values is used to update
the new population popnewi,j and is formulated as follows:

popnewi,j =
{{{
{{{
{

popci,j, if f (popci,j) ⩽ f (popi,j)

popi,j, otherwise

(13)

BSOA proves effective for solving engineering optimization
problems as the initialization step does not require specific
tuning. Nevertheless, BSOA has drawbacks since it necessitates
sufficient information in the evolution process to control a correct
optimization search direction. Additionally, ensuring population
diversity is challenging, potentially leading to a convergence on the
local optima.

3.2 Data mining BSOA with a mutual
learning method

To address the limitations of BSOA, which does not consider
historical references and the representation of the characteristics
of extensive data, the research utilizes a winner tendency-
based method to improve BSOA performance. The basic idea

of topological opposition-based learning is to find the feasible
solution from an opposite direction of the search space. By
evaluating the two solutions (4) and (5) at the same time, it
provides a faster searching speed for the best solution. The
learning operator and the improved mutation operator are used
to inspect the best individual/solution in each generation and
drive the current population to approach it. Unlike BSOA, the
improvement also records the best and mean fitness of all
individuals in each iteration and uses them for next-generation
optimization.

Topological opposition-based learning operator (TOLO) is
featured by its learning behavior from the best fitness in each
generation. The learning operator is developed based on the
opposition point operator, as defined in equation (14):

popoppi,j = lbj + ubj − popi,j. (14)

It is noted that popi = [popi1,popi2,…,popij,…,popiD],
popi,j ∈ [lbj,ubj], and i and j are the sample size and dimension,
respectively. Second, based on the initialization of population in
BSOA, the TOLO updates the population by measuring the distance
of the best fitness and the current population and expresses it as in
equation (15).

poptoppi,j =
{{{{
{{{{
{

popoppi,j , if abs(popopt,j − popi,j) >

abs(popopt,j − pop
opp
i,j )

popi,j, otherwise,

(15)

where popopt,j is the best population at the jth dimension.

Improved mutation operator: unlike in BSOA, the information
about an individual in the mutation process is updated with other
historical and present data. The improved mutation operator
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TABLE 3 Test function results.

Function Algorithm Best Worst Mean Standard
deviation

f1

GA 0.8896 4.5479 1.6102 0.9245

BSA 0.7136 3.9476 1.5578 0.8789

BSOA 0.7431 4.1319 1.6972 0.9963

IBSOA 0.5340 3.1087 1.2697 0.7104

f2

GA −0.3649 −0.0231 −0.3155 0.0787

BSA −0.3621 −0.1566 −0.2747 0.0796

BSOA −0.3836 −0.1814 −0.3066 0.0806

IBSOA −0.4136 −0.2297 −0.3424 0.0635

f3

GA 1.4369 3.963 2.8991 1.0209

BSA 1.5478 3.668 2.7645 0.9222

BSOA 1.5697 4.1474 2.9663 1.0123

IBSOA 1.3191 4.0920 2.1747 0.8856

f4

GA 4.3361 4.5453 4.4154 0.1136

BSA 4.0369 4.5009 4.2893 0.1641

BSOA 4.1351 4.4336 4.2755 0.1425

IBSOA 3.9024 4.3514 4.0484 0.1371

f5

GA 2.2238e-
10

8.8802e-
10

6.2264e-
11

1.6674e-10

BSA 3.0034e-
10

7.2163e-
10

5.1728e-
11

1.7802e-10

BSOA 1.7541e-
10

7.5583e-
10

5.5026e-
11

1.9523e-10

IBSOA 1.1021e-
10

5.1771e-
10

5.1873e-
11

1.6368e-10

f6

GA 1.4513 5.6606 4.1144 1.4892

BSA 1.2891 5.2333 4.0220 1.3643

BSOA 1.3322 5.7546 4.3697 1.4089

IBSOA 0.9919 4.9315 3.8348 1.2680

f7

GA 25.7011 32.5295 28.3366 3.3445

BSA 25.6641 32.3378 28.1637 3.2247

BSOA 24.4757 33.5288 27.8207 3.1358

IBSOA 22.4100 30.2977 27.3670 3.1740

(Continued on the following page)

TABLE 3 (Continued) Test function results.

Function Algorithm Best Worst Mean Standard
deviation

f8

GA −5.8555 −3.3208 −4.8404 0.7225

BSA −6.8007 −3.7771 −5.6015 0.8124

BSOA −6.6662 −3.8388 −5.2321 0.7756

IBSOA −7.0562 −4.5478 −6.0815 0.8997

executes a procedure to mutate the present individuals by
taking the optimum and mean individuals in each iteration into
consideration.

muti = popi + F× (pop
old
i ) + α1 × (popopt − popi)

+ α2 × (popm − popi) , (16)

where α1 and α2 are random numbers between 0 and 1, popm is the
mean individual in a population, and F is the control parameter
defined in BSOA.

3.3 IBSOA performance evaluation

To evaluate the effectiveness of the proposed IBSOA, an
investigation was undertaken utilizing eight benchmark functions,
each featuring two- to twenty-dimensional inputs. Links to
these eight functions have been included in Appendix A. The
eight benchmark functions utilized in this study represent
widely employed functions and datasets for testing forecasting
scenarios. Their differentiation is grounded in similarities in
physical properties, datasets, and shapes. These testing functions
serve the purpose of parametric optimization and are featured
as representative examples of engineering problems. The test
benches used for the evaluation of each algorithm are presented
in Table 2 and the results are shown in Table 3, where f1 to f4
exhibit multiple local minima and a singular global minimum,
rendering them more representative of typical engineering
functions. f5 is evaluated on the cube shape and has asymptotic
characteristics. f6 is evaluated on the hypercube and is designed
for regression problems. f7 exhibits a high curvature in certain
variables and a lower curvature in others. The presence of
interactions and nonlinear effectsmake f8 particularly challenging in
convergence.

The overall performance from Table 3 shows that the
convergence ability of IBSOA is better than the other
algorithms when dealing with multiple local minima, asymptotic
characteristics, and regression problems. In function, defects in the
evaluation become apparent as slight changes in variables result
in significant alterations in the function output, indicating a high
curvature. In function f7, deficiencies in the evaluation become
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FIGURE 1
BLS topology.

FIGURE 2
IBSOA optimization flowchart.

evident as minor changes in variables lead to substantial alterations
in the function output, indicative of a high curvature. The increased
sensitivity poses a challenge to the performance of the improved

algorithm. The nonlinear effects of function f8 also impact the
standard deviation but still yield the best fitness compared to other
algorithms.
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FIGURE 3
Hyperparameter optimization of BLS using various algorithms during the spring season: (A) Feature node optimization, (B) Winner neuron node
optimization, (C) Enhancement node optimization.

4 PV power forecasting based on
IBSOA-BLS

4.1 Model fitness

In order to optimize the hyperparameters of BLS, they
are denoted as x1, x2, and x3, while the learning rate is

represented by η in the fitness function. To elaborate, x1
corresponds to the mapping feature nodes, x2 pertains to
the enhancement nodes, and x3 relates to the winner neuron
nodes. When the population in the IBSOA algorithm is
coded, each individual is a vector X(x1,x2,x3,η), and the
optimization problem of the model parameter can be expressed
as follows:
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FIGURE 4
PV plants clustering in Spring.

Ffitness (x1,x2,x3,η) =
∑N

i=1
(yi −Yi)

2

N

s.t.

{{{{{{{
{{{{{{{
{

1 ≤ x1 ≤ 500

1 ≤ x2 ≤ 500

1 ≤ x3 ≤ 500

0 ≤ η ≤ 1,

(17)

where N is the number of samples and yi and Yi are the predicted
and true power values of the ith sample, respectively. The main
objective of the proposedmethod is to optimize the fitness function,
and the process of optimization is listed below and displayed in
Figure 2.

Step 1. The data from the DKA PV power station have singular
value queries, and some are missing. To handle the missing data,
the data from past years (2014–2016) are considered for data
imputation.

Step 2. The self-organizing map method (Hu et al., 2019)
is employed to identify meteorological factors that exhibit
strong correlations with PV power and eliminate redundant
meteorological factors.

Step 3. The comprehensive similarity index is utilized to choose
the historical date that closely resembles the predicted date.

Step 4. The parameters, including the number of hidden layers,
training iterations, IBSOA population size, and training cycles for
the BLS model, are initialized. The IBSOA algorithm is employed to
tune hyperparameters.

Step 5.The IBSOA-BLS network structure is initially pre-trained
and subsequently fine-tuned in a reverse order. The training and
testing datasets are then utilized to generate forecasts for PV
power output.

4.2 Dataset preprocessing

The dataset obtained from the Alice Springs station at the
DKA solar power center in Australia includes PV power generation
and the corresponding meteorological measurements. The five PV

TABLE 4 PV forecasting dataset.

Season Spring Fall Summer Winter

Daytime beginning 5:35 6:30 5:50 7:10

Daytime end 18:45 17:50 19:50 18:40

No. of days 270 270 170 170

Training data 31,110 25,070 28,000 23,250

Testing data 15,300 3,000 12,330 3,600

stations operate with rated capacities of 226.8 kW, 22.6 kW, 38.3
kW, 327.6 kW, and 105.9 kW, respectively. The data span from 1
March 2017 to 1March 2018, and the resolution is at 5-min intervals.
The IZBSOA-BLS proposed in this paper aims to predict intra-hour
power outputs from 5 minutes to 1 hour ahead.

As the PV power output is zero during nighttime, the predictive
analysis focuses on the time period from 07:00 to 18:00 on the
forecasted day. In a single day, there are a total of 127 data
sampling points. Following the methodology described in the
preceding section for identifying analogous days, five historical days
similar to the forecasted period are selected as training instances.
Subsequently, the model performance is evaluated by testing it on
the 127 power values associated with the predicted days. In light of
the analysis results regarding the factors impacting PV power, the
input variables for the predictive model are defined as follows: PV
power generation on analogous days, global radiation, and diffuse
radiation. Due to the similarity in the spatiotemporal correlation of
PV power characteristics, as indicated in Figures 3 and 4, only the
results for the 226.8 kW PV station are presented. Table 4 contains
the data on power forecasting. During the data cleansing process,
linear interpolation and historical data (2014–2016) are applied and
considered to compensate for the missing parts in the 2017–2018
dataset. Consequently, 21 days at the end of each season are used
as testing data, while the remainder is designated as training data.
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TABLE 5 Computation time of model training.

Season GA-BLS BSA-BLS BSOA-BLS IBSOA-BLS

Spring 36.11 min 33.66 min 30.78 min 34.58 min

Summer 24.96 min 22.25 min 25.16 min 24.64 min

Autumn 29.55 min 27.46 min 28.87 min 27.32 min

Winter 32.49 min 33.74 min 32.36 min 33.04 min

FIGURE 5
PV plants clustering in Summer.

FIGURE 6
Multi-step power prediction evaluated with different optimization algorithm in four seasons: (A) spring, (B) summer, (C) autumn, and (D) winter.
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TABLE 6 Algorithm parameter settings.

Algorithm Configuration

GA Population size: 50, dimension: 3, lower bound: 1, upper
bound: 500, and learning rate: 0.8

BSA

Population size: 50, dimension: 3, lower bound: 1, upper
bound: 500, and frequency of flight: 10

Cognitive/social accelerated coefficient: 1.5, vigilance
behaviors: 1.2, and learning rate: 0.8

BSOA/IBSOA

Population size: 50, dimension: 3, lower bound: 1, upper
bound: 500, and learning rate: 0.8

Scale factor: 3× {0 ∼ 1}

The input variables for prediction models encompass PV power,
as well as temperature, wind speed, and solar irradiance. The self-
organizing map (SOM) is an artificial neural network inspired
by biological models of neural systems from the 1970s (Barreto,
2007). It functions as a neural network-based dimensionality
reduction algorithm, utilizing an unsupervised learning approach.
SOM is commonly used to represent a high-dimensional dataset
as a two-dimensional discretized pattern, simplifying complex
problems for easier interpretation. The employment of SOM
achieves dimensionality reduction while preserving the topological
relationships present in the original feature space (Kohonen, 2013).
SOM clusters the spatial dependence of the PV power dataset into
multiple subsets, each corresponding to their individual external
conditions. The clustered data include PV power, wind speed,
temperature, global radiation, and diffused radiation. Subsequently,
the spatio-temporal dependence of PV power is derived from the
historical PV power data within each subset.

In this research, PV spatio-temporal correlation clustering for
two seasons, spring and summer, is illustrated in Figures 3 and
4. The clustering process in this research and more clustering
results in other seasons are verified and evaluated by Zhou et al.
(2022). The time granularity is set to 15 min instead of 5 min due
to the time-consuming process of SOM clustering during MATLAB
simulation. The results of Figures 3 and 4 demonstrate that PV
samples belonging to the same cluster display analogous PV power
patterns, signifying congruent spatio-temporal correlations. Thus,
due to similar PV power characteristics, one PV station (226.8 kW
capacity) is used for model forecasting in the following analysis.

5 Analysis of results and discussion

In this research, only sunny days are considered. The results are
shown in the manner of four seasons. Each season begins at 5:35
in spring, 5:50 in summer, 6:30 in autumn, and 7:10 in winter. The
daytime ends at 18:45 in spring, 19:50 in summer, 17:50 in autumn,
and 18:40 in winter. The algorithms are executed 10 times, and the
average is taken to ensure validity; the mean values are used for
evaluation. The measured values and prediction of PV power in
different seasons are shown in Figures 5 and 6. The computational
efficiency of the algorithm-based BLS is shown in Table 5. The

simulation results are implemented and completed via MATLAB
R2023a on a PC with Intel Core i7-7700 CPU @ 3.4 GHz and
16 GB RAM. The configurations of the four algorithms are shown
in Table 6. The hyperparameter optimization processes of BLS in
spring are illustrated in Figure 7. The optimization performance of
IBSOA yields better outcomes when searching for the best fitness
within 100 iterations.This is attributed to the enhancement of BSOA,
which incorporates historical data (mean and the best fitness in each
iteration) during the selection and mutation processes to regulate
the correct optimization search direction and maintain dynamic
population diversity. The enhancement also improves the accuracy
of the forecasting model by obtaining optimized hyperparameters
for the given iteration through the enhanced search ability of BSOA.
The forecasting results illustrate that the prediction deviations of
each model are more significant during the period from 20 to
40 min compared to the deviations from12:00 to 18:00 during sunny
periods. The phenomenon can be attributed to the movement of
clouds in the earlymorning, which impacts the electricity generation
at the PVpower station, leading to increased power fluctuations and,
thus, making prediction more challenging. Notably, the proposed
IBSOA-BLS exhibits superior predictive performance compared to
the other threemodels, whileGA, BSA, and IBSOAalso demonstrate
relatively better predictive capabilities. To provide an accurate
assessment of the prediction performance of the four algorithms,
the mean square error (MSE), the root-mean-square error (RMSE),
the mean absolute error (MAE), and the mean absolute percentage
error (MAPE) are employed for a thorough analysis of each model’s
prediction effectiveness.

MSE = 1
N

N

∑
i=1
(xi − x

′
i )

2, (18)

RMSE = √ 1
N

N

∑
i=1
(xi − x

′
i )

2, (19)

MAE = 1
N

N

∑
i=1
|xi − x

′
i |, (20)

MAPE = 1
N

N

∑
i=1
|
xi − x
′
i

xi
| × 100%, (21)

where N is the sample number, x is the measured value of
power, and x′ is the prediction result. The results of the
Diebold–Mariano (DM) test are presented inAppendix B, providing
a comprehensive evaluation and indicating potential enhancements
to the prediction model.

Table 7 indicates that the predictions made by these models
exhibit slight deviations from the actual values.TheRMSE indicators
of the proposed prediction method are consistently lower than
the worst-case scenario in each season, decreasing by 3.2283 kW
in spring, 3.9159 kW in summer, 1.3425 kW in autumn, and
1.4058 kW in winter. Similarly, the MAPE exhibits a reduction
compared to the worst case, with decreases of 0.882% in spring,
1.2399% in summer, 1.803% in autumn, and 1.087% in winter. The
results demonstrate that, in general, the predictive performance
of the proposed IBSOA-BLS model surpasses that of the other
three models. The MAPE for the IBSOA-BLS model ranges from
approximately 0.769%–1.639% across four seasons, which is lower
than the results obtained by the other three models (GA-BLS, BSA-
BLS, and BSOA-BLS). The MAPE in spring reaches 1.639% due to
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FIGURE 7
1 h ahead power prediction evaluated with different optimization algorithm in four seasons: (A) Spring, (B) Summer, (C) Autumn, (D) Winter.

TABLE 7 Prediction performance under diverse algorithmic variants.

Season Error type GA-BLS BSA-BLS BSOA-BLS IBSOA-BLS

Spring

MSE (kW2) 291.9690 274.0482 217.0937 192.0663

MAE (kW) 12.0824 11.7057 10.4186 9.7997

RMSE (kW) 17.0871 16.5544 14.7341 13.8588

MAPE (%) 2.521 2.266 1.836 1.639

Summer

MSE (kW2) 276.2277 238.9034 187.5421 161.3967

MAE (kW) 11.7522 10.9294 9.6835 8.9832

RMSE (kW) 16.6201 15.4565 13.6946 12.7042

MAPE (%) 2.045 2.207 1.666 0.8051

Autumn

MSE (kW2) 174.8530 192.7016 154.9502 141.1510

MAE (kW) 9.3502 9.8158 8.8020 8.4009

RMSE (kW) 13.2232 13.8817 12.4479 11.8807

MAPE (%) 2.727 2.4971 2.215 0.924

Winter

MSE (kW2) 225.2100 225.3421 174.9377 184.9926

MAE (kW) 10.6116 10.6147 9.3525 9.6175

RMSE (kW) 15.007 15.0114 13.2264 13.6012

MAPE (%) 1.856 1.947 1.789 0.769
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power fluctuation caused by cloud motion. Despite the differences
arising from the regular and relatively low volatility in PV power
generation on sunny days, compared to the other three models,
IBSOA-BLS exhibits superior robustness, leading to prediction
outcomes that closely align with the actual values. The quantified
results of prediction errors are associatedwith four seasons. It reveals
that on sunny days with stable power fluctuations, the IBSOA-BLS-
based prediction method outperforms the other three models. All
models exhibit small RMSE andMAPE values for prediction errors,
indicating relatively accurate predictions. Among the four season
simulations, the proposed IBSOA-BLS method exhibits lower error
quantization values and superior predictive performance compared
to the other threemethods. It also demonstrates good adaptability to
environmental conditions, especially on sunny days. Additionally, it
is observed from the experimental error index values that once the
input variables and structural parameters of the prediction model
are determined, RMSE and MAPE values for GA-, BSA-, BSOA-,
and IBSOA-based BLS methods remain consistent, indicating more
accurate predictive performance for IBSOA-BLS. In contrast, when
othermethods are employed under the same conditions for multiple
predictions, the results of each prediction exhibit varying amplitudes
and lack stability. This is because the proposed method achieves
an improved accuracy by considering both the mean and the best
hyperparameters during the optimization process of IBSOA.

6 Conclusion

This paper proposes a PV power forecasting model based on
BLS and IBSOA. Compared to the three other traditional algorithms
(GA, BSA, and BSOA), which do not consider the historical
experience and the representation of the characteristics of extensive
data, IBSOA provides sufficient information during the evolution
process to regulate the correct optimization search direction and
maintain dynamic population diversity, thereby mitigating the risk
of converging on the local optima.These improvements are achieved
through enhancements to the selection and mutation processes
of BSOA. BLS, which reduces extra network layers, effectively
addresses the challenges posed by deep architecture in traditional
neural networks when dealing with large-scale data forecasting.
The SOM is utilized not only to cluster the five PV plants based
on their respective external conditions but also to capture the
spatio-temporal dependence of PV power generation under varying
conditions. The effectiveness of the forecasting model is validated
on the actual data on PV units from the DKA solar center in
Australia. Based on well-tuned hyperparameters of BLS by IBSOA,
the results indicate that the proposed PV power forecasting model
yields more reliable and accurate predictions when compared to
those produced by GA-BLS, BSA-BLS, and BSOA-BLS. The future
work will concentrate on adding rainy days in each season for
training and testing the model on more complex case studies.
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Appendix A: Optimization testbench.

f1: Branin function: http://www.sfu.ca/ssurjano/branin.html.
f2: Gramacy and lee function: http://www.sfu.

ca/ssurjano/grlee08.html.
f3: Currin et al. exponential function: http://www.sfu.

ca/ssurjano/curretal88exp.html.
f4: Lim et al. polynomial function: http://www.sfu.

ca/ssurjano/limetal02non.html.
f5: Dette and Pepelyshev exponential function: http://www.sfu.

ca/ssurjano/detpep10exp.html.
f6: Friedman function: http://www.sfu.ca/ssurjano/fried.html.
f7: Dette and Pepelyshev eight-dimensional function: http://

www.sfu.ca/ssurjano/detpep108d.html.
f8: Welch et al. function: http://www.sfu.ca/ssurjano/emulat.

html.

Appendix B: Diebold–Mariano test

The Diebold–Mariano (DM) test serves as a statistical tool for
comparing the predictive accuracy of two models in time series
analysis. Focused onmean squared forecast errors, the test evaluates
whether one model outperforms the other. By calculating the DM
test statistic, which considers the variance of the difference in mean
squared errors, it determines the superiority of one model over
the other (Diebold, 2015). A positive DM test statistic signifies
that the first input model exhibits lower mean squared forecast
errors, indicating better predictive performance. Conversely, a
negative value suggests superior performance for the second input
model. Furthermore, in conjunction with the DM test, a p-value
is frequently evaluated, which reflects the extent of extremeness
in the probability of observing a test statistic compared to the
one calculated from the sample, assuming the null hypothesis
(Montgomery and Runger, 2017) is true. The p-value is computed
by comparing theDM test value to the standard normal distribution.
The significance level, denoted by αs normally set at 0.01, 0.05, or 0.1
(McAleer andMedeiros, 2011), is a critical component in hypothesis
testing that influences the decision-making process, regarding the
null hypothesis. Before using theDMtest, it is essential to check if the
prediction errors are serially uncorrelated and of constant variance.
In this study, the DM test is performed for the prediction accuracy
by the following steps:

1. Generate predicted power errors: obtain the prediction errors
from two different models by subtracting the measured values
from the predicted outcomes.

2. Calculate squared predicted power errors: square each
prediction error to eliminate the effects of positive and
negative errors.

3. Calculate mean squared predicted power errors: find
the average of the squared predicted power errors for
each model.

4. Calculate the test statistic: the Diebold–Mariano test statistic
is calculated as the difference between the mean squared
predicted power errors of the twomodels, divided by ameasure
of the variance of this difference. The formula is expressed
as follows:

DM =
̄e1 − ̄e2

√ s2( ̄e1− ̄e2)
ND

, (22)

where D represents the DM test statistic, ̄e1 and ̄e2 are the
mean squared forecast errors for two prediction models, s is
an estimator of the variance of ̄e1 − ̄e2, and ND is the sample
number.

5. Calculate the p-value: standardize the DM value by dividing
it by its standard error υ and then compare it to the standard
normal as follows:

p = P (Z ≤ −|Z|) + P (Z ≥ |Z|) , (23)

where p represents the probability of a null hypothesis based on
measured data, Z = DM

υ
is the standardized DM value, and P is the

cumulative probability associated with Z.
It should be noted that the desired level of confidence (αs)

is set to 0.1 in this study, indicating 10% margin of error, and
it is distributed equally in the sampling distribution. If the p-
value falls below the specified significance level, it supports
the rejection of the null hypothesis, indicating a significant
difference in forecast accuracies for the compared models.
On the contrary, a higher p-value suggests that the observed
differences in prediction accuracy might be due to random
variation, which implies the need for potential adjustments or
exploration to the model DM test evaluation and interpretation for
(Table 8–Table 10).
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Nomenclature

List of variables

α Random number (0–1)

αs Significance level of the Diebold–Mariano test

̄e1 Mean squared forecast error of the first input model

̄e2 Mean squared forecast error of the second input model

βe Bias of enhancement nodes

βf Bias of feature nodes

Hm Enhancement nodes

Mn Mapping feature nodes

Wm
n Output weights of the broad learning system

We Weight matrix of enhancement nodes

W f Weighting matrix of feature nodes

† Moore–Penrose pseudoinverse of matrix

η Learning rate

p̂opi,j
old Population after selection I

ϕ Mapping function

υ Standard error of the Diebold–Mariano test

ζ Nonlinear transformation function of enhancement nodes

D Variable dimension

DM Diebold–Mariano test statistic

F Step change

lb, ub Lower and upper boundaries

N Population number

ND Sample no. for the Diebold–Mariano test

Ne No. of enhancement nodes

N f No. of feature nodes

P Cumulative probability associated with the standardized Diebold–Mariano test

p Probability of measured data regarding to null hypothesis

popci,j Population after crossover

popnewi,j Population after selection II

popoppi,j Population updated by the opposition-based learning operator

poprei,j Population after reproduction

poptoppi,j Population updated by the topological opposition-based learning operator

popmut Population after mutation

popopt,j Best population at the jth dimension

popi,j Current populations

popoldi,j Historical populations

R Rescale factor

s Variance of ̄e1 − ̄e2

x1 Mapping feature nodes of BLS

x2 Enhancement nodes of BLS

x3 Winner neuron nodes in BLS

Y i Measured power value

yi Predicted power value

Z Diebold–Mariano test statistic relative to the standard error
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