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In order to improve the operating benefits of the distribution network and reduce
the energy consumption costs of small–micro-industrial parks, an electricity
market clearing considering small–micro-industrial parks is proposed based on
the Stackelberg game. First, an optimal operating model of multiple stakeholders
is established for integrated energy suppliers, the electricity market, and
small–micro-industrial parks. In this model, an optimal electricity supply
model for integrated energy suppliers is established with the goal of
maximizing the operating benefits. A market clearing optimization model is
established for the electricity market with the goal of maximizing the social
surplus profit. In addition, an energy utilization optimization model is established
for the small–micro-industrial parks with the goal of minimizing the energy
procurement costs. Second, with the electricity market as the leader, the
integrated energy suppliers and the small–micro-industrial parks as the
followers, a leader–follower game strategy is proposed based on the
Stackelberg game theory to achieve the maximizing benefits for multiple
stakeholders. Finally, the simulation indicates that the proposed strategy can
find the best profit point during the game process and achieve a balance between
supply and demand.
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1 Introduction

In recent years, small and micro-enterprises have developed rapidly in Zhejiang
Province, China. In order to facilitate the prosperous development of such enterprises,
Zhejiang Province has standardized and renovated the existing small–micro-industrial
parks (SMIPs) based on the actual operation. However, the SMIPs do not dispatch enough
power generation and energy storage (ES) devices, which results in a low capacity to
withstand the operating risks. With the rapid development of SMIPs, the demand for
electricity trading between SMIPs and distribution networks (DNs) is constantly increasing.
On one hand, trading electricity with the DNs can help the SMIPs withstand operating risks.
On the other hand, an optimal trading electricity strategy can help the SMIPs save operating
costs. Then, how to optimize the electricity trading between the DNs and SMIPs is currently
a highly important issue.

As the electricity market (EM) continues to open up, operators and agents in the DNs
gradually participate in the competition within the EM (He et al., 2021). As a user-side
autonomous system, SMIPs can participate in power trading in the EM under the
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management of operators (Davoudi and Moeini-Aghtaie, 2022),
which can deepen the hierarchical structure of the EM trading
framework (Pownall et al., 2021). Meanwhile, agents, as the link
between SMIP operators and the EM, directly affect the energy costs
of these parks. Talaeizadeh et al. (2022) explored the procurement of
flexibility services in the power system by the collaboration between
distribution system operators and transmission system operators.
With the coordination among the operators, the flexibility sources
were exploited to procure flexibility services. Anwar et al. (2022)
introduced an electricity market and investment suite-agent-based
simulation, which modeled the evolution of the electricity
generation mix under various market structures while explicitly
capturing the aforementioned investment factors and imperfect
information. To improve power generation profits, Yuan et al.
(2022) proposed an optimized scheduling model for cascade
hydropower plants, simultaneously participating in both the day-
ahead spot market and the daily contract market. Considering the
characteristic that natural gas can blend with hydrogen, Ding et al.
(2023) proposed a multi-agent electricity–heat–hydrogen trading
model by taking hydrogen produced on the load side. Tan et al.
(2022) treated carbon as a direct trading object and proposed an
internal multi-energy trading mechanism, which adopts an auction
based on the demands for cooling, heating, electricity, and carbon.
To further explore the multi-energy coupling capacity and carbon
reduction potential of the integrated energy systems, Yang et al.
(2023) proposed a cooling–heat–electricity–gas collaborative
optimization model of integrated energy systems given a ladder
carbon trading mechanism and multi-energy demand response. Li
et al. (2023) proposed a medium-term multi-stage distributionally
robust optimization scheduling approach for a price-taking of
hydro–wind–solar complementary systems in the EM. A multi-
agent deep reinforcement learning approach combining the multi-
agent actor–critic algorithm with the twin delayed deep
deterministic policy gradient algorithm was proposed by Chen
et al. (2022), and the proposed approach can handle the high-
dimensional continuous action space and aligns with the nature of
peer-to-peer energy trading. Yang et al. (2022) analyzed the impact
of different bidding decisions on the distribution of wind farm
revenues in a process where the interest of two markets is played
against each other. Khaligh et al. (2022) introduced a stochastic
agent-based model for the coordinated scheduling of multi-vector
microgrids considering interactions between electricity, hydrogen,
and gas agents. Considering the power loss, flexible load demand,
and other operating indicators to maximize the user and supplier
benefits, the real-time transaction electricity price model of the user
side and the power supply side was constructed by Lyu et al. (2022).
In the EM trading that SMIPs participate in, how to coordinate the
benefit relationship between agents and operators (Green and
Newman, 2017), increasing the profit of agents while reducing
the electricity costs for the operators (Zare et al., 2015), has
become a hotspot in the research direction of the EM.

In EM trading, the optimization goals of multiple stakeholders
are different (Yu and Hong, 2016), but there exists a coupling
relationship among the optimization models (Mahdavi et al.,
2018). Finding a point of balanced benefits has become a key
factor for the stability of the alliances in EM trading (Cao et al.,
2021). Stackelberg game theory is frequently employed as an
effective tool in solving optimization problems within the

electricity market (Du et al., 2022). To solve the inherent conflict
among the players, a Stackelberg game-based technique is proposed
by Haghifam et al. (2020). To achieve comprehensive optimal
benefits for different stakeholders, Liu et al. (2018) established a
two-layer optimization model considering the involvement of
different stakeholders, and the stakeholders achieve the
maximization of the overall benefits by aggregating the
generation units within microgrids. However, in this method, the
electricity price during the trading process is a fixed time-of-use
price, which cannot reflect the flexibility of EM trading. Cherukuri
and Cortes (2020) proposed a bidding iterative auction mechanism
in the EM but did not analyze the factors affecting the electricity
price of the agents. Furthermore, the operation of the generation
units can only be optimized after obtaining the market clearing
results, so it has lower flexibility. A trading model based on the
Stackelberg game model is proposed by Wei et al. (2022) to balance
the interests of the supply side and demand side and reduce the
carbon emissions. To solve the problems of environmental pollution
and conflict of interests among multiple stakeholders in the
integrated energy system, Wang et al. (2022) proposed a novel
collaborative optimization strategy for a low-carbon economy in the
integrated energy system based on the carbon trading mechanism
and Stackelberg game theory. Envelope et al. (2022) proposed a
Stackelberg game-based optimal scheduling model for
electro–thermal integrated energy systems, which seeks to
maximize the revenue of the integrated energy operator and
minimize the cost of users. Pu et al. (2023) constructed a two-
stage supply chain consisting of a manufacturer and a retailer based
on a dual-credit policy, considering three different power structure
models, namely, the vertical Nash game model, the manufacturer
Stackelberg game model, and the retailer Stackelberg game model,
and explored the operational strategy issues of new energy vehicle
enterprises under the dual-credit policy. Zhang et al. (2022) took the
integrated energy system operator as the leader and each integrated
energy system as the follower to construct the Stackelberg operation
model, and the proposed model is constructed and solved by the
double mutation differential evolution algorithm. Hua et al. (2023)
proposed a framework of local energy markets to manage this
transactive energy and facilitate the flexibility provision, the
decision-making, and interactions between a DN operator, and
multiple microgrid traders are formulated as the Stackelberg
game-theoretic problem. Fattaheian et al. (2022) applied the
Stackelberg game to model the incentivizing resource scheduling
optimization under post-contingency conditions, and a strong
duality condition is used to re-cast the preliminary bi-level model
into a one-level mathematical problem. The pricing mechanisms in
existing research are mainly day-ahead fixed pricing mechanisms; as
SMIP types participate in market trading in the future, fixed pricing
strategies will not be able to adapt to the increasingly flexible EM. In
this context, it is highly necessary to study the dynamic pricing
strategies for EM trading to enhance the economic operation of the
multiple stakeholders in the power system.

In light of the abovementioned strategies, an EM clearing
considering SMIP is proposed based on the Stackelberg game.
The main contributions of this paper are summarized as follows:

(1) To improve the DN operating benefits, as well as reduce the
energy costs of SMIPs, an optimal operating model for
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multiple stakeholders in the EM clearing is established, which
contains an optimal electricity supply model for integrated
energy suppliers (IESs), a market clearing optimization model
for the EM, and an energy utilization optimization model for
the SMIPs.

(2) To characterize the benefit relationship among multiple
stakeholders, with the EM as the leader and the IESs and
SMIPs as the followers, a leader–follower game model based
on the Stackelberg game is proposed to maximize the benefits
for multiple stakeholders.

(3) To find the balanced benefits, an iterative optimization
method is proposed to solve the leader–follower game
model. In addition, by the iterative optimization among
the multiple stakeholders, the best profit point during the
game process can be found, and a dynamic optimal pricing
strategy for EM trading is obtained.

The remainder of this paper is organized as follows: an EM
clearing framework for multiple stakeholders is proposed in
Section 2; an optimized operating model for multiple
stakeholders in the EM clearing is introduced in Section 3; in
Section 4, a leader–follower game strategy is proposed for
multiple stakeholders; in Section 5, the case study is analyzed;
and the conclusion is given in Section 6.

2 The EM clearing framework for
multiple stakeholders

The EM clearing framework for bilateral bidding between IESs
and SMIPs is shown in Figure 1. The IESs have their own scheduling
strategies and market quotation–bidding strategies. The SMIPs offer
quotations to the market through an agency and engage in
bidding with IESs.

At the beginning of the first quotation, the IESs and SMIPs
declare the prices to the market side, and then the declared prices are
processed according to the quotation clearing mechanism. The price
clearing data are prepared by the evaluation of the market benefits. If
the equilibrium of benefits does not meet the standard, the IESs and
SMIPs will carry on a re-quote based on the latest clearing results.
When the equilibrium of benefits meets the standard, the final
clearing data will be exported and transmitted to the IESs
and SMIPs.

3 The optimal operating model for
multiple stakeholders

The optimal operating model for multiple stakeholders in the
EM clearing contains an optimal electricity supply model for IESs, a
market clearing optimization model for the EM, and an energy
utilization optimization model for the SMIPs.

3.1 The optimal electricity supply model
for IESs

The electricity supply of IESs should consider the income from
selling energy Fsell, trading costs with external electricity grids Futil,
and various energy supply costs. The energy supply costs include the
natural gas fuel cost Ff and the equipment maintenance cost Fom.
The optimal electricity supply model is as follows:

maxF � Fsell − Ff + Futil + Fom( ). (1)
The IESs can earn profits by selling the produced electricity and

heat to SMIPs. The price and power of the sold energy are obtained
based on the electricity market clearing. Then, the income from
selling energy Fsell is given as follows:

FIGURE 1
EM clearing framework.
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Fsell � ∑T
t�1
Pel t( )Ce t( ) +∑T

t�1
Qhl t( )Ch t( ), (2)

where Pel(t) and Qhl(t) represent the electricity power and heat
power, respectively, at time t under the response to the demand of
the SMIPs. Ce(t) and Ch(t) represent the electricity prices and heat
prices, respectively, at time t cleared by the EM. T represents the
optimization time.

IESs can arbitrage through trading with external grids. When the
electricity price of the power grid is low, the IESs purchase the
electricity and sell electricity when its price is high, and then the
profits can be obtained. The trading costs with the external
electricity grid Futil is given as follows:

Futil � ∑T
t�1
Putil t( )Cutil t( ), (3)

where Putil(t) is the interactive power between the IESs and the
external electricity grid at time t. When Putil(t) > 0, it means that the
IESs purchase electricity from the external electricity grid. When
Putil(t) < 0, it means that the IESs sell electricity from the external
electricity grid. Cutil(t) is the interactive electricity price between the
IESs and the external electricity grid at time t.

The energy provided by IESs is divided into two categories. The
first category is wind turbines (WTs) and photovoltaic (PV) power
generation, and this type of energy does not need to be purchased.
The second category is gas turbines and gas boilers, which burn
natural gas to generate electricity and heat, respectively. For this
category, the purchasing cost of natural gas needs to be included in
the cost, which is called fuel cost. The fuel cost Ff is given as follows:

Ff � Cgas

L
·∑T
t�1

PGT t( )
ηGT

+[ QGB t( )
ηGB

⎤⎦, (4)

where Cgas is the price of natural gas and L is the low calorific
value of natural gas, which represents the heat released by burning a
certain volume of natural gas. PGT(t) and QGB(t) represent the
output powers of the gas turbine and gas boiler at time t,
respectively. ηGT and ηGB represent the efficiencies of the gas
turbine and gas boiler, respectively.

The distributed energy equipment in the system needs
maintenance, and the equipment maintenance cost Fom is given
as follows:

Fom � ∑I
i�1
∑T
t�1
ξi

SPDGi t( ), (5)

where I is the number of power generation equipment. ξi
S is the

cost coefficient of the ith power generation equipment. PDGi(t)
represents the supply power of the ith power generation
equipment at time t. In the IES optimization model, the
constraints of various parameters are given as follows:

(1) Constraints on electricity and heat power balance

Pel t( ) � ∑I
i�1
PDGi t( ) + PGT t( ) + Putil t( ), (6)

Pel t( ) � Le t( ) + PEDR t( ), (7)

Qhl t( ) � Qout
WH t( ) + Qh

GB t( ), (8)
Qhl t( ) � Lh t( ) + QHDR t( ). (9)

Formulas 6, 7 are the constraints on electricity power balance,
and Formulas 8, 9 are the constraints on heat power balance. Le(t)
and Lh(t) represent the original electricity and heat loads of SMIPs at
time t, respectively. Q(t) is the heat power recovered from the gas
boiler at time t. PEDR(t) and QeHDR(t) represent the electricity and
heat load responding to the demand of SMIPs at time t, respectively.

(2) Constraints on the output of distributed energy generation
equipment

PDGi,min ≤PDGi t( )≤PDGimax, (10)

where Pi min(t) and Pi max(t) represent the upper and lower limits
of the power of the ith distributed energy equipment, respectively.

(3) Constraints on the power exchange with the external
electricity grid

P sell
max ≤Putil t( )≤P buy

max , (11)

where P sell
max and P buy

max are the upper limits of the power sold to
and bought from the external electricity grid by the IESs,
respectively.

(4) Constraints on the power of energy equipment participating
in the electricity market clearing

Pk,e
′ t( )≤Pk,e t( ), (12)

Qs,h
′ t( )≤Qs,h t( ), (13)

where P’
k,e(t) andQ

’
s,h(t) represent the powers cleared in the EM

for each electric and thermal unit at time t, respectively. Pk,e(t) and
Qs,h(t) represent the actual power generated by each electric and
thermal unit at time t, respectively.

3.2 The energy utilization optimization
model for the SMIPs

The energy utilization optimization model of SMIPs takes
minimizing the energy purchase cost as the objective function. In
addition to paying the energy purchase fee Fsell to the IESs, SMIPs
can also obtain income compensation FDR by reducing a certain
amount of load through demand response. Therefore, the objective
function is established as follows:

minFuser � Fsell − FDR, (14)

Fsell � ∑T
t�1

Le t( ) + PEDR t( )[ ] · Ce t( ) +∑T
t�1

Lh t( ) + QHDR t( )[ ] · Ch t( ),

(15)

FDR � ∑T
t�1

vePEDR t( )[ ] +∑T
t�1

vhQHDR t( )[ ], (16)

where ve and vh represent the reduction compensation
coefficients for the electricity and heat demand response of
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SMIPs, respectively. For the demand response to SMIPs, various
constraints need to be considered as follows:

(1) Constraints on the income of SMIPs

The benefits of users after demand response FDR
user should be

greater than the benefits before the response F0. The mathematical
formula is

FDR
user ≥F0. (17)

(2) Constraints on the power of load transfer

During the optimization process, the SMIPs can participate in
price-based demand response. Thus, the power of electricity and
heat load transfer cannot exceed the limit value PEDR

max and
QHDR

max. The mathematical formula is

PEDR t( )≤Pmax
EDR, (18)

QHDR t( )≤Qmax
HDR. (19)

3.3 The market clearing optimization model
for the EM

The EM aims at maximizing the social surplus profit, which
reflects the balance of benefits between the supply and demand. The
maximum social surplus profit in this paper consists of the profit
surplus of IESs and profit surplus of the users. The objective function
of the model is established as follows:

maxH � ∑T
t�1

Hemo t( ) +Huser t( )[ ], (20)

Hemo t( ) � ∑K
k�1

Ce t( ) − Ce,min t( )( )Pk,e
′ t( )[ ]

+∑S
s�1

Ch t( ) − Ch,min t( )( )Qs,h
′ t( )[ ], (21)

where Hemo(t) and Huser(t) represent the surplus profits of the
IESs and the surplus profits of SMIPs at time t, respectively. K
represents the number of electricity power generation equipment. S
represents the number of heat power generation equipment.
Ce,min(t) and Ch,min(t) represent the lower limits of the electricity
and heat bidding prices of the IESs, respectively. Ce,max(t) and
Ch,max(t) represent the upper limits of electricity and heat
bidding prices of SMIPs, respectively.

The price and power of the electricity and heat cleared by the EM
need to be constrained to ensure that the clearing data are within a
reasonable range. The formulas are as follows:

Pe,min
′ t( )≤P′

e t( )≤Pe,max
′ t( ), (22)

Qh,min
′ t( )≤Q′

h t( )≤Qh,max
′ t( ), (23)

Ce,min t( )≤Ce t( )≤Ce,max t( ), (24)
Ch,min t( )≤Ch t( )≤Ch,max t( ), (25)

where P′k.e(t) represents the electricity power cleared by the
EM. Q′s.h(t) represents the heat power cleared by the EM.

P′e,min(t) represents the essential need of electricity load.
Q′s.h(t) represents the essential need of heat load. P′e,max(t)
represents the electricity load after the demand response.
Q′h,max(t) represents the heat load after the demand response.
To solve the proposed optimal electricity supply model for IESs,
the energy utilization optimization model for the SMIPs, and the
market clearing optimization model for the EM, an improved
particle swarm optimization algorithm (Xiao et al., 2017) is
utilized to conduct the optimization.

4 The leader–follower game strategy
for the multiple stakeholders

4.1 The leader–follower game model for the
multiple stakeholders

To characterize the benefit relationship among multiple
stakeholders, a leader–follower game model based on the
Stackelberg game is proposed in this paper to maximize benefits
for multiple stakeholders. In the proposed leader–follower game
mode, there are three stakeholders: the EM, SMIPs, and the IESs.
The EM is the leader in the game, while the SMIPs and IESs are
followers. The SMIPs and the IESs respond to the decisions of the
EM and adjust the strategy according to their objective functions.
The EM aims to maximize social surplus profits, and the strategy
set includes clearing electricity power, heat power, and energy
prices to the SMIPs and the IESs. The IESs aim to maximize
operating benefits, and the strategy set includes energy equipment
output, external grid trading amount, and energy storage
management. The SMIPs aim to minimize energy procurement
costs, and the strategy set includes the electricity loads for the
demand response and heat loads for the demand response. The
interactive framework of the leader–follower game is shown
in Figure 2.

For the Stackelberg equilibrium of a non-cooperative game,
when Eq. 26 is satisfied, it indicates that the game has reached
equilibrium. At this point, the followers make the best response
according to the strategy of the leader. In addition, each stakeholder
cannot obtain more profits by changing their own strategy set.

Emar Imar, Femo
* , Luser

*[ ]≤Emar Imar
* , Femo

* , Luser
*[ ]

Euser Imar
* , Femo, Luser

*[ ]≤Euser Imar
* , Femo

* , Luser
*[ ]

Eemo Imar
* , Femo

* , Femo[ ]≤Eemo Imar
* , Femo

* , Femo
*[ ]

⎧⎪⎨⎪⎩ , (26)

where Emar represents the profits of the EM. Euser represents the
profits of the SMIPs. Eemo represents the profits of the IESs. Luser,
Femo, and Imar represent the strategy sets for the SMIPs, the IESs, and
the EM, respectively. L*user, F*emo, and I*mar represent the optimal
strategy sets for the SMIPs, the IESs, and the EM, respectively.

4.2 The solution process of the
proposed method

To solve the proposed method, an iteration search method
proposed by Chuang et al. (2001) is employed to find the Nash
equilibrium point. The solution of the proposed scheduling model is
summarized as follows:
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Step 1. The strategies of all the stakeholders are initialized as Dold =
[I0mar, L

0
user, F

0
emo], and the profits of all stakeholders are

calculated as Fold = [E0
mar, E

0
user, E

0
emo].

Step 2. The scheduling model for each stakeholder is solved based
on the exchanged game strategies from other stakeholders.

Step 3. The game strategy of each stakeholder is updated as Dnew =
[I1mar, L

1
user, F

1
emo], and the operating cost of all stakeholders

is calculated as Fnew = [E1
mar, E

1
user, E

1
emo].

Step 4. The operating cost difference of Fnew and Fold is calculated. If
the cost difference is smaller than its threshold, the
procedure is terminated, and the new strategies Dnew is

output. Otherwise, Dold is reset as Dnew, and Step 2 onwards
is repeated.

5 Case study

5.1 Basic data of the case study

This paper conducted a simulation analysis of the day-ahead EM
clearing with SMIPs as an example. TheWT and PV forecast data, as
well as the electricity and heat load power of users, are shown in
Figure 3. Table 1 shows the time-of-use energy prices of the
electricity and gas grids. Table 2 shows the parameters for IESs
and SMIPs.

FIGURE 2
Leader–follower game interaction framework.

FIGURE 3
Loads and renewable energy outputs.
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In order to analyze the advantages of the proposed method,
three scenarios are set up. In scenario 1, the objective function of the
operation is maximizing the profits of IESs, electricity and heat
prices are fixed, and users do not participate in the demand
response. In scenario 2, the objective function of the operation is
still maximizing the profits of IESs, but the user side will actively
respond according to the change in energy prices. In scenario 3, the
EM, IES, and SMIP carry out the operation with the proposed
strategy of this paper, and the power and price of energy are
determined by market clearing through market-side quoting
and bidding.

5.2 Analysis of the case study

Table 3 shows the operation results of the three scenarios. It
shows that under the proposed method, there have been varying
degrees of improvement in social surplus profits, profits of the IESs,
and profits of the SMIPs, with the most notable increase in social
surplus profits.

Compared to scenario 1, in scenario 2, the social surplus increase
in the profits of the IES decrease slightly, and the energy purchase
costs for SMIPs decrease significantly. This is because through price-
based demand response, the user side can peak-shave and valley-fill
to smooth the electricity and heat load curves, thereby obtaining
extra compensation benefits. As the load demand curve becomes

smoother, the arbitrage space obtained by IESs through energy
storage will be correspondingly reduced, leading to a decrease in
profits. As the load demand becomes flat, the marginal cost of the
energy equipment output is reduced, and the social surplus profits
increase. In scenario 3, the profits of all stakeholders increase
significantly, and the energy purchase costs of SMIPs have been
reduced. This is because under the guidance of the EM mechanism,
the energy trading price between IESs and SMIPs is determined
based on the clearing of the supply and demand relationship at each
moment. Thus, the price can better reflect the degree of energy
surplus or scarcity within the SMIPs. The proposed method can also
increase efficiency in energy storage arbitrage and trading with the
external electricity grid, as well as improve the precision of user
demand response.

Figure 4 shows the convergence diagram of profits for each
stakeholder in scenario 3. It well reflects the game process
between various stakeholders throughout the entire iteration
process, and finally, equilibrium is achieved at about
80 iterations, which takes 16.3 min. In the game process, the
declared energy power and prices from other stakeholders are
constantly cleared by the EM. In addition, the EM, as the leader in
the entire game process, shows a gradual upward trend in its
profits. The SMIPs and IESs adjust their own strategy sets
continuously and rationally based on the clearing results of
the EM. The SMIPs and IESs, as followers, also engage in
game interaction at the same time and finally reach

TABLE 1 Time-of-use energy price for electricity and gas grids.

Time Trading price with the electricity grid/¥ Trading price with the heat grid/¥

1:00–7:00 0.38 0.21

8:00–10:00 and 23:00–24:00 0.85 0.33

11:00–22:00 1.32 0.41

TABLE 2 Parameters of the IESs and SMIPs.

Equipment type Parameter Value Equipment type Parameter Value

Gas turbine Maximum output power 1,000 kW Gas boiler Heating efficiency 0.89

Minimum output power 50 kW Maintenance costs 0.023 kW/¥

Electricity generation efficiency 0.3 PV Rated power 500 kW

Heat generation efficiency 0.345 Maintenance costs 0.03 kW/¥

Maintenance costs 0.025 kW/¥ WT Rated power 600 kW

Gas boiler Rated power 200 kW Maintenance costs 0.035 kW/¥

TABLE 3 Comparison of the three scenarios.

Scenario Social surplus
profit/¥

Profit of the
IES/¥

Cost of
SMIP/¥

Operation and maintenance
costs of each unit/¥

Energy storage
scheduling cost/¥

1 5,642 3,631 8,021 1,034 1,615

2 6,354 3,171 7,365 996 1,170

3 8,324 4,886 6,832 728 665
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convergence. When the leader and two followers reach the
Stackelberg equilibrium, their strategy sets no longer change.

The energy clearing prices are shown in Figure 5. The electricity
clearing price in the EM peaks from 18:00 to 22:00. During this
period, the PV output is low, and the demand for electricity load is
high. To meet the demand, the IES will utilize more gas turbines. At
the same time, the gas turbines have the highest marginal cost
among all units, so their prices are the highest. Meanwhile, the
demand response from the SMIPs is low, and the electric load
demand curve is flat. Therefore, the EM will clear the electricity
generated by gas turbines at high prices. The heat clearing price in
the EM shows a significant peak from 00:00 to 04:00. Therefore,
during this period, the output of gas boilers needs to be scheduled to
meet the heat needs of the SMIPs. The cost of gas boilers is higher

than that of other heat sources, so the heat clearing price in the EM
shows a short-term peak.

Figure 6 shows the comparison of the before and after demand
response of the SMIPs under the proposed strategy. It indicates that
the fluctuations in electricity and heat loads have been significantly
reduced, and the effects of peak-shaving and valley-filling are
obvious. SMIPs respond more accurately to the energy price in
the EM clearing, which brings a lot of hidden benefits to the DN.
After the demand response, the electricity and heat load curves are
smoothed within an appropriate range, and the energy purchase
costs on the user side are reduced. At the same time, the energy
supply pressure of the IESs is eased.

The final optimized electricity and heat power of the IESs are
shown in Figures 7, 8. According to the following optimization

FIGURE 4
Convergence diagram of profits for each stakeholder.

FIGURE 5
Energy clearing prices.
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results, several key time periods with obvious characteristics
are analyzed:

1) From 0:00 to 9:00, the electric load demand is low. During this
period, the electricity clearing price of the EM is low, so the
SMIPs follow the price-based demand response and increase
electricity usage when the electricity price is low. The output of
the WT is relatively high, and only a minimal amount of gas
turbine output is needed to supplement the electricity supply
alongside the WT. At the same time, the energy prices of the
upper-layer electricity and gas grids are relatively low.
Therefore, with the complete consumption of the WT, the
IESs can use a small amount of gas turbine power while

purchasing electricity from the external electricity grid.
Then, the electrical energy is stored under the premise of
meeting the electrical load demand.

2) From 10:00 to 13:00, the electricity load demand is at its peak.
During this period, the electricity clearing price in the EM is
relatively high, so the SMIPs follow a price-based demand
response and reduce electricity consumption. The output of
the PV increases, the output of the WT is very low, and the
output of gas turbines needs to be increased to meet the
electrical load. At the same time, the energy prices of the
electricity and gas grids are relatively high. With the complete
consumption of the WT, the IESs need to increase the output
of the gas turbines to meet the load demand. If the load

FIGURE 6
Demand response of SMIPs.

FIGURE 7
Optimized electricity power of the integrated energy supplier.
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demand failed to be met, electricity needs to be purchased from
the external electricity grid, and the battery power is released to
complete the supply.

3) From 17:00 to 22:00, the electricity and heat load demands are
both high. During this period, the electricity and heat clearing
prices in the EM are relatively high, so users follow a price-based
demand response and reduce electricity and heat usage. The
outputs of theWT are very high, the outputs of the PV decreased
significantly, and the output of the gas turbines needs to be
increased to meet the electrical load demand. The heat outputs of
the waste heat boiler are relatively high and can basically meet the
heat load demands of SMIPs. During this period, the energy prices
of the electricity and gas grids are both relatively high. Therefore,
with the complete consumption of the WT, IESs can choose to
increase the output of gas turbines to meet the electrical load
demand. If the load demand is still unable to be met, electricity
needs to be purchased from the external electricity grid, and the
battery power is released to complete the electric load supply.

6 Conclusion

In order to improve the flexibility of SMIPs to participate in
market trading, a Stackelberg game-based EM clearing is proposed for
multiple stakeholders in DNs. First, an optimal operating model for
multiple stakeholders is established, which contains an optimal
electricity supply model for the IES, a market clearing optimization
model for the EM, and an energy utilization optimization model for
the SMIPs. With the EM as the leader, and the IESs and the SMIPs as
the followers, a leader–follower gamemodel is proposed to achieve the
maximizing benefits for multiple stakeholders. Finally, an iterative
optimization method is proposed to find a point of balanced benefits
of multiple stakeholders. The proposed strategy can enhance the
benefits of all participating stakeholders and achieve a balance
between supply and demand. It should be noted that the

uncertainty of WTs, PVs, and loads in the operation is not
considered. In the future, considering the uncertainty, the real-time
quoting and clearing will be conducted in the EM.
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