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Given the problem that the existing series arc fault identification methods use
existing features such as the time-frequency domain of the current signal as the
basis for identification, resulting in relatively limited arc detection solutions, and
that themethods of directly extracting current signal features using deep learning
algorithms have insufficient feature extraction, a new series arc fault detection
method based on denoising autoencoder (DAE) and deep residual network
(ResNet) is proposed. First, a large number of training samples are obtained
through sliding window and data normalization methods, and then high-
dimensional abstract feature data are obtained from the fault and normal
samples collected in the experiment through denoising autoencoders,
converted into grayscale images, and processed in pseudo-color. The single-
channel grayscale images are mapped into three-channel color values, and
finally, the three-channel values are input into the constructed deep residual
network for deep learning training. In the 152 super high-level ResNet, the arc
fault recognition rate can reach 99.7%. For loads that have not participated in
ResNet network training, the recognition rate can also reach 97.6%.
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1 Introduction

Long-term operation of electrical equipment and lines is prone to outstanding problems
such as insulation damage, line breakage, and poor electrical contact. In major fire
accidents, fires caused by electrical faults become more and more frequent, of which
nearly 50% of the fire accidents are caused by arc faults (Yang et al., 2016). Arc faults can be
divided into parallel type, series type, and grounding type. Among them, parallel and
grounding arc faults will generate large short-circuit currents or leakage currents to the
ground, and circuit breakers and leakage protectors can be used to prevent such faults (Liu
et al., 2017). The series arc fault is difficult to be detected by the existing protection
equipment due to the small fault current and the complex and changeable fault waveform
affected by the load.

In the early series arc fault detection, arc faults were detected through physical
quantities such as arc light, arc sound, and electromagnetic radiation generated by the
arc (Charles, 2009). To apply somemethods of this type to detect arc faults, the sensor needs
to be placed near the fault to achieve reliable detection. However, due to the randomness of
the location of the arc fault and the complexity of the environment where the power line is
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located, its practicability is poor. At present, some methods of this
type are mostly used for arc detection at fixed points such as switch
cabinets and distribution boxes. The methods of detecting series arc
faults by using changes in the electrical characteristics of the current
when an arc fault occurs are almost independent of the location of
the fault, and therefore methods of this type have attracted
increasing attention. Currently, detection methods based on fault
arc current characteristics can be divided into the following three
types: 1) The first category of methods is based on fault arc current
characteristic detection indicators (Lu et al., 2017; Zhao et al., 2020).
The methods of this type use the time domain and frequency
domain characteristics of the fault current signal to construct
time domain and frequency domain detection indicators and
then use the threshold judgment methods to realize the detection
of series arc faults. Bao and Jiang. (2019) used the characteristics of
the significant increase in the kurtosis value of the fourth-order
cumulant when a series arc fault occurs and the electromagnetic field
coupling generated by high-frequency current to present a pulse
signal to construct dual criteria for the kurtosis threshold and the
pulse number threshold. Methods based on fault arc current
characteristic detection indicators are subjective when
constructing detection indicators and the methods of using
threshold judgment have limitations. In practical applications, the
anti-interference ability is weak and it is easy to miss or misjudge. 2)
The second category of methods is based on manually extracting
fault arc current characteristics and using deep learning algorithms
to identify arc faults (Qu et al., 2019; Cui et al., 2021; Gong et al.,
2022; Jiang et al., 2022). Some methods of this type extract the time-
frequency domain characteristics of the current from the current
signal to construct a characteristic phasor and then use the
characteristic phasor as input to use the algorithm to detect arc
faults. Long et al. (2021) used Fourier coefficients, Mel cepstral
coefficients, and wavelet features as input quantities and used an
optimized neural networkmodel to realize the identification of series
arc faults. Liu and Li. (2019) trained a Gaussian mixture model
optimized based on the genetic algorithm by extracting arc fault
feature vectors and then obtained the maximum probability
classification based on the input feature vectors for arc fault
detection. The above detection methods use existing
mathematical methods to extract apparent features from normal
and fault current waveforms and analyze the difference between the
two in one or more apparent features to detect series arc faults. The
advantage is that the classification process is more intuitive, but
there is subjectivity in extracting features manually and cannot
reveal the deeper fault characteristics of the arc. In practical
applications, there are various load types and connection
methods, and the insufficient stability of arc fault identification
also limits the detection methods. 3) The third category of methods
uses the current data as the input of the arc fault detection algorithm
and uses the algorithm to automatically learn the fault arc current
characteristics and perform arc fault detection (Wang et al., 2018;
Wang et al., 2022; Zhou et al., 2020). Yu et al. (2019) directly took the
current signal as input and used the improved AlexNet neural
network to automatically mine the characteristics of the current
signal to achieve series arc fault identification for resistive, inductive,
and resistive-inductive loads. This method directly uses the one-
dimensional current sequence as the input of the deep learning
algorithm to extract features from the data. It cannot fully utilize the

advantages of the deep learning algorithm and cannot extract deeper
fault characteristics of the arc. Chu et al. (2020) collected high-
frequency signals of series fault arcs, took advantage of the deep
learning algorithm in image recognition to convert the sampled one-
dimensional current sequence into a gray value image, and used a
multi-layer convolutional neural network for feature extraction to
achieve load classification and detection of series arc faults. This
method uses grayscale value images as input, and the arc fault
characteristic information carried by grayscale images is limited.
Since the information contained in current data is large and messy,
and considering the presence of interference factors such as noise in
actual situations, it is very difficult to directly extract features from
current data. At present, the methods of using deep learning
algorithms to extract effective characteristic information of
current from current data to realize series arc fault identification
still require further research.

Given the subjectivity of manually extracting arc fault features,
and the problem of insufficient feature extraction when using
current data as the input of deep learning algorithms, this
paper proposes a series fault arc detection method based on
denoising autoencoders (DAE) and deep residual networks
(ResNet). The main contributions of this paper are summarized
as follows:

1) Using sliding window and data normalization methods to obtain
a large number of training samples, and using denoising
autoencoders to denoise the sample data and obtain high-
dimensional abstract feature data from them. Compared with
traditional autoencoders, denoising autoencoders can effectively
filter out the noise and avoid the degradation of series arc fault
identification caused by noise.

2) Converting the feature data into grayscale images and
achieving image enhancement through pseudo-color
processing. Compared with the one-dimensional current
sequence, the images obtained through pseudo-color
processing significantly improve the identification of
different loads under normal and fault conditions. The
feature information it carries is also richer.

3) Input the feature images into deep residual networks with
depths of 18, 50, and 152 respectively for deep learning
training. The residual block structure of the residual
network can effectively alleviate the degradation problems
that occur in deep networks. The use of deep residual
networks can achieve a more comprehensive extraction of
deep fault features from fault feature images.

4) Test the generalization ability of DAE-ResNet and compare
the accuracy and generalization ability with other existing
detection methods.

2 Experimental setup and experimental
data analysis

2.1 Arc experimental device

The overall structure of the arc experimental devices is shown in
Figure 1, which is mainly composed of a 220V power frequency AC
power supply, a current transformer, a load, an arc generator, a data
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acquisition module, and a computer. The arc generator is made
according to the international UL1699 standard, including movable
pointed copper electrodes, fixed flat graphite electrodes, insulating
rods, metal slide rail bases, and stepper motors.

The experimental process is as follows: after the power supply
and the load to be tested are turned on, the stepper motor is
controlled to move the copper electrode to generate a stable
combustion arc, the main circuit current is collected by the
current transformer, and the AD7606 high-precision, 16-bit ADC
and STM32 single-chip microcomputer are used to complete the
analog-to-digital conversion and after data collection, upload fault
and normal current data to a computer for further analysis.
Considering the practical benefits, the sampling frequency of the
current transformer should not be too high, and the lower frequency
will cause the burial of the fault information, which will bring
difficulties to arc identification. Taking a comprehensive
consideration, 256 points are sampled per current cycle, that is,
the sampling frequency is set to 12.8 kHz. According to the current
waveform characteristics of the load, it can be divided into two types:
linear and nonlinear loads. The current waveform of a linear load is
an ideal sine wave, and the current waveform of a nonlinear load is a
non-sinusoidal wave with periodic distortion. Considering the
parallel use of loads and the difference in the location of the

main circuit and branch circuit where the fault arc is located, the
arc experimental scheme shown in Table 1 is designed.

2.2 Characteristic analysis of fault
arc current

Figure 2 shows the current waveforms before and after the
occurrence of arc faults measured under different loads. Due to the
ionization of the air between the arc gaps, the molecular motion is
intensified. According to electromagnetic theory, a large number of high-
frequency pulse signals will be generated in the time-domain current
signal. Since the generated random characteristics will be affected by
external factors such as temperature, humidity, electrode material, etc.,
different current waveforms will be obtained in each experiment. After a
series arc fault occurs in a purely resistive load, the current waveform
appears to have ‘zero breaks’, and the symmetry of the positive and
negative half cycles of the waveform decreases. Obvious random high-
frequency signals appear in the fault waveform of eddy current loads.
The normal waveform of the computer load is typically nonlinear.

Observing the normal and fault currents of each load, it is found
that the nonlinear load will also produce an obvious ‘zero-break’
phenomenon during normal operation, which makes it easy to

FIGURE 1
Circuit diagram of series arc experiment.

TABLE 1 Load types for arc experiments.

Load properties Serial number Load nature Load type Power(W) Fault location

Linear 1 Resistance Electric kettle 1,600 Main circuit

Nonlinear 2 Vortex Induction cooker 1,300 Main circuit

3 Rectify Laptop 100 Main circuit

Linear and Nonlinear 4 Rectify &Resistance Laptop + Electric kettle 1600W + 100 Laptop branch

5 Rectify &Resistance Laptop + Electric kettle 1600W + 100 Main circuit
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confuse the normal and fault states. The normal load and fault
current spectrum of the kettle and the induction cooker are shown in
Figure 3. It has been observed that the higher harmonics generated
by a non-linear load (induction cooker) during normal operation are
similar to those generated by a linear load (electric kettle) under fault
conditions. To sum up, due to the existence of nonlinear loads such
as switching power supplies, it is impossible to distinguish between
normal and faulty states with a single feature in both the time and
frequency domains.

3 Denoising autoencoder

3.1 Autoencoder

Autoencoder (AE) is a special neural network that can reconstruct
the original input data through error backpropagation without

supervision to automatically extract complex nonlinear features from
the original input data. It has been widely used in intrusion detection,
radiation source identification, picture, and video anomaly detection,
and other fields.

AE consists of an input layer, a hidden layer, and an output layer,
which are connected by two neural networks: the encoder fEN and
the decoder fDE, as shown in Figure 4. The input sample X of AE and
the output reconstruction sample Y have the same dimension, while
the dimension of the hidden layer data Z is generally smaller than
the two. During training, AE first maps the input sample X to the
hidden layer through the encoder fEN to obtain its encoded feature
value Z, as shown in Eq. 1.

Z � fEN Χ( ) � σ Χ ·WEN + bEN( ) (1)
where is the encoder activation function,WEN is the encoder weight
matrix, and bEN is the encoder bias.

FIGURE 2
Current waveforms before and after series arc fault.

FIGURE 3
Current spectrum before and after series arc fault.
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After the encoding is completed, the decoder fDE is used to
reconstruct the data of the hidden layer encoded feature Z, as shown
in Eq. 2, WDE and bDE represent the activation function, weight
matrix, and bias of the decoder, respectively.

Y � fDE Z( ) � δ Z ·WDE + bDE( ) (2)
The learning objective of AE is to minimize the deviation

between the reconstructed sample Y and the original input
sample X, which can be expressed as shown in Eq. 3.

argminL Y ,X( ) (3)

When the reconstructed data of the autoencoder is different
from the original input, it is necessary to use a loss function to
formulate a penalty method. The commonly used mean square error
loss function is shown in Eq. 4. The reduction of the reconstruction
error needs to be achieved by gradient descent on the parametersW
and b of the encoder and decoder.

L Y ,X( ) � X − Y‖ ‖22 (4)

After the autoencoder is trained, the data contained in the
hidden layer is the nonlinear feature extracted from the
original input data.

3.2 Denoising autoencoder

For machine classification learning algorithms, if the input data
contains unseparated noise and is considered a categorical feature of the
data, it may cause overfitting of the classification algorithm, resulting in
a decrease in the classification effect and generalization ability of the
algorithm. The traditional AE can achieve better results after iterative
training, but it cannot reduce noise, so a denoising autoencoder needs to
be introduced to improve the generalization ability of the model.

As shown in Figure 5, the denoising autoencoder is based on AE,
adding random deactivation regularization to the input layer or by
superimposing noise in the input samples as the input X9 of
traditional AE. This paper chooses to implement DAE by
superimposing noise in the original input, as shown in Eq. 5.

The learning objective of DAE is to minimize the deviation
between the reconstructed output sample Y and the original
input X without superimposed noise.

X′ � X + NFXN

XN ~ N 0, 1( ){ (5)

Among them, X9 is the original input data of superimposed
noise, NF is the noise superposition factor, and XN obeys the
standard normal distribution. After the above processing, the
features learned by DAE from the input of superimposed noise
are robust and can retain more relevant information in the latent
space of the data, while filtering out irrelevant content such as noise.

4 Data preprocessing

4.1 Batch data acquisition and data
normalization

Since the normal or fault current signals obtained by the fault arc
experiment have a large similarity in each cycle, if each cycle is an
experimental sample, all the normal or fault samples of a single load
have great similarity, and it is easy to cause the overfitting and
generalization ability of the learned model to decrease. For this
reason, this paper uses the sliding window to process the

FIGURE 4
Schematic diagram of autoencoder principle.

FIGURE 5
Principle of denoising autoencoder.

FIGURE 6
Sliding window algorithm processing process.
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experimental data of the arc. While obtaining the batch data, it can not
only capture the local features but also retain the time dependence of the
time series data. The acquisition form is shown in Figure 6. The sliding
window size T is a power frequency period, and the sampling frequency
corresponding to this paper is 256 points. If the original data length is t,
at most t-T+1 subsequence samples can be obtained.

4.2 Data normalization

Because the current values collected by different loads are quite
different, the minimum value is less than 1A, and the maximum value
can reach ten or even dozens of amperes. For neural networks and deep
learning, if the value of a certain input dimension is high, it will cause
the neural network to over-bias such features in learning, so it is
necessary to standardize the data. Commonly used data standardization
methods include maximum and minimum standardization, zero mean
standardization, and maximum value standardization. This paper uses
the maximum and minimum normalization to normalize the data, as
shown in Eq. 6.

x′ � x−xmin

xmax − xmin
(6)

Among them, x and x’ are the sample data before and after
normalization, respectively, and xmax and xmin are the maximum
and minimum values of the sample, respectively. After the
maximum and minimum normalization, the input current data of
DAE is converted to a dimensionless value in [0,1], which avoids the
influence of input volume during training of DAE and deep learning.

4.3 DAE feature extraction

Thenormal and fault current signals of each load are collected forfive
power frequency cycles. According to the sliding window data processing

method above, 1,280–256 + 1 total of 1,025 samples can be obtained for
each load’s normal and fault conditions. The cases correspond to
5,125 samples respectively, and the total number of samples is 10,250.
Input the normalized sample data into DAE for training, and set the
dimension of the hidden layer of DAE to 50, each sample can get 50-
dimensional deep features with values between [0, 1], and expand it to [0,
255] In the interval, the characteristic grayscale images corresponding to
normal conditions and arc faults can be drawn, as shown in Figure 7.

5 Deep residual network fault
identification

Computer vision recognition is similar to the visual sense of the
human eye, and its ability to distinguish color images is much higher
than that of grayscale images. In order to extract more arc fault
features from the feature map, the grayscale images obtained are
image-enhanced with false colors. Input the grayscale image into the
three primary color channels of red, green, and blue (RGB) with
different changing characteristics, and then synthesize the RGB
values output by each channel to obtain the pseudo-color image
corresponding to the grayscale image, as shown in Figure 8.

5.1 Convolutional neural network

Convolutional Neural Network (CNN) is a representative
method in deep learning. It is constructed by imitating the
biological vision mechanism and has a good representation of
learning ability. Two-dimensional CNN is often used in the field
of computer vision (CV) and image processing. It contains two
dimensions, height, and width, and extracts image features through
multi-layer convolution operations. A typical CNN consists of
convolutional layers, pooling layers, and fully connected layers, as
shown in Figure 9.

FIGURE 7
Grayscale images before and after a series arc fault. (A) Grayscale image when the load is working normally; (B) Grayscale image when a series are
fault occurs.
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The convolutional layer is used to extract local features. First, the
inner product of the overlapping part of the input layer data information
and the two-dimensional convolution kernel is calculated, and then the
feature output value is obtained by passing it through a nonlinear
activation function, as shown in Eq. 7. As shown, the activation function
usually adopts a rectified linear unit (ReLU), which can clear the output
of some neurons to speed up the training speed.

xki � g wk
i *X

k−1 + bki( ) (7)

Among them, xki is the ith feature map of the kth layer; wk
i is the

ith convolution kernel matrix of the kth layer; Xk−1 is the output of

the kth layer of the network; bki is the kth layer convolutional layer
the bias value of; g (·) is the ReLU activation function, and the
expression is as shown in Eq. 8.

ReLU x( ) � max 0, x( )
x ∈ −∞,+∞( ){ (8)

The pooling layer is located after the convolution layer and
has two main functions. One is to reduce the dimension of the
extracted high-dimensional features to improve the operation
efficiency and avoid overfitting; the other is to ensure the

FIGURE 8
Pseudo-color images before and after arc fault. (A) The pseudo-color mapwhen the load is working normally; (B) Pseudo-colormap corresponding
to a series arc fault.

FIGURE 9
Typical 2D CNN structure diagram.
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invariance of the features and improve the generalization ability
of the model.

Yk
i,j( ) � pool m,n( )∈Ri,j X

k−1
m,n( )( ) (9)

In Eq. 9, Yk
(i,j) is the value of the kth pooling layer at (i, j); pool (·)

represents the pooling rules, including maximum pooling, random
pooling, and average pooling; Ri,j is the receptive field at (i, j);Xk−1

(m,n) is
the corresponding input at the receptive field (m, n). After the
convolution and pooling processing, the features of the pooling layer
are further extracted by the fully connected layer to output the model
results. Finally, the normalized exponential function Softmax is used to
complete the multi-classification task of the data.

5.2 Deep residual networks

The typical methods of deep learning cannot reflect its “depth”.
When the network depth is deepened, the gradient will gradually
disappear in the backpropagation. In addition, deep learning still has
the problem of degradation. With the deepening of the network
accumulation layer, its performance begins to decline, resulting in
the performance of the shallow networks being better than that of
the deep networks. The error of the degenerate network on both the
training set and the test set is high, which shows that the degradation
problem is not caused by overfitting.

To solve the problem of gradient disappearance in deep learning,
and hope to increase the number of network layers and also improve the
accuracy of the model, based on the architecture of CNN, He et al. (He
et al., 2016) proposed a deep residual network. ResNet learns from the
cross-layer connection idea of a high-speed network and introduces
residual building block (RBB), skips the convolution block through
shortcut connection to avoid gradient disappearance, and makes the
input X of the neural network pass through identity mapping λ: X→ X
is short-circuited to the output Y of the parameterized layer, and the
parameterized layer gets the corresponding residual map f: X → Y-X.

The residual block structure is shown in Figure 10, CONV
represents the convolutional layer. BN represents de-mean
normalization to reduce the difference between different features.
The left and right pictures are the standard residual block and the
residual block with the downsampling layer, respectively. Compared
with CNN, the parameterized layer learns the direct mapping
between input and output f: X → Y, and learns the residual
mapping f: X → Y-X of the two can effectively reduce the
difficulty of network learning, breaking the convention that the
output of the nth layer of the traditional neural network can only be
used as the input of the n+1st layer. By constructing the residual
network, the training depth of ResNet can reach hundreds or
thousands of layers, and the network performance will not
be degraded.

5.3 ResNet network training and
testing results

After extracting the normal and fault arc features using the
previous data processing method and DAE, a total of 10,250 samples
were obtained, of which 8,000 samples were used as the training set
of ResNet, and 2,250 samples were used as the test set. Each sample is
a 1 × 50-dimensional RGB three primary color image, which is cut
and reorganized into 5 × 10-dimensional, and then the 5 × 10-
dimensional graphics of three RGB channels are used as the input of
ResNet. The network learning depth of ResNet is set to 18, 50, and
152 layers respectively (referring to the convolution layer and the
fully connected layer, excluding the pooling layer), and its structure
deployment is shown in Table 2, where Block represents a residual
block with three convolutional layers. The computational costs of
ResNet with different depths are shown in Table 3.

When the training depth of ResNet is 18 layers, the error rate
and network loss function value of the model on the test set are
shown in Figure 11. It is observed that both the network error rate
and the network loss function value gradually decrease with the
increase in training times. When the training times reach 60, the
correct rate of ResNet judging the series arc fault is over 98%.
Increasing the number of model training, and when the training

FIGURE 10
Residual block structure diagram in ResNet.

TABLE 2 The network structure of ResNet.

Network depth

18 layers 50 layers 152 layers

CONV [ 7 × 7, 64 ]

Block-1 3 × 3, 64
3 × 3, 64

[ ] × 2
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 3
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 3

Block-2 3 × 3, 128
3 × 3, 128

[ ] × 2
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 4
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 8

Block-3 3 × 3, 256
3 × 3, 256

[ ] × 2
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 6
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 36

Block-4 3 × 3, 512
3 × 3, 512

[ ] × 2
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 3
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 3

Frontiers in Energy Research frontiersin.org08

Wang et al. 10.3389/fenrg.2024.1341281

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1341281


reaches about 120, the fault identification accuracy rate increases to
98.9%. It can be seen that the error rate of network judgment is still
decreasing when the number of model training is increased, but the
convergence speed is relatively slow at this time.

At different training depths of 18, 50, and 152, the error rates of
ResNet on the training and test sets are shown in Figure 12. The
batch size of the dataset used for training (BatchSize) is 50, which
means that there are 50 groups of data involved in each training.
Epoch is used to represent the number of traversal training for all
data. For 1 Epoch, the training set and test set correspond to 160 and
45 iterations, respectively. Observing Figure 12, it is found that the
error rate decreases significantly at each Epoch, and when the
number of training reaches about 400, the correct rate of the
training set under the three training depths is all higher than
98.9%. When the training depth is 152, the training set accuracy
rate is the highest, reaching 99.5%. On the test set, the correct rates of
ResNet with training depths of 18, 50, and 152 reached 98.9%,
99.3%, and 99.7%, respectively, and the super-high-level ResNet
with 152 layers had the highest correct rate. By increasing the
number of training sessions at each depth, the accuracy no

longer improves significantly but converges to the
aforementioned values. It can be seen that even if the training
depth of ResNet has reached the super-high level of 152, its accuracy
on the training set and test set can be gradually improved, and there
is no degradation of deep learning.

5.4 Generalization ability test of DAE-ResNet

Considering the variety of loads in practice, it is difficult to take
into account all possible loads in deep learning training. In this
regard, the training set and test set are adjusted as follows and
ResNet is retrained: keep the previous processing methods such as
DAE, sliding window, and pseudo-color processing unchanged, so
that the training set only contains the loads numbered 1,2,4, and five
in Table 1; the test set only contains the load numbered three in
Table 1. In short, the load of the test set does not participate in the
network training of ResNet at all to examine the generalization
ability of the DAE-ResNet method to the load outside the training.

After the above dataset is adjusted and the model is retrained,
the training results of ResNet on the training set and test set are
shown in Figure 13. It has been observed that when the load does not
participate in network training but participates in network testing,
ResNet has a very high accuracy rate on the training set, and the
accuracy rate reaches and converges to 100% after 320 training
sessions. Although the performance on the test set is not as good as
the training set, after about 100 training sessions, ResNet with a
training depth of 152 can still reach and converge to a fault
recognition rate of 97.6%. It can be seen that the DAE-ResNet
method still has a high fault recognition rate for loads other than the
training set, has strong generalization ability for different loads, and
has good performance in practical applications.

The method in this paper is compared with existing support
vector machine (SVM), support vector machines optimized by
particle swarm optimization (PSO-SVM), neural networks

TABLE 3 The computational cost of ResNet.

Network depth 18 layers (B) 50 layers (B) 152 layers (B)

Computational cost 1.8 3.8 11.3

FIGURE 11
ResNet error rate and loss function value.

FIGURE 12
The error rate on the training set and test set.
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optimized by particle swarm optimization (PSO-BP), random
forests (RF), and convolutional neural networks. Among them,
SVM adopts radial basis kernel function, BP is set to four layers,
and the maximum depth of RF is 5. The time-domain features used
include current kurtosis, higher-order cumulant, current variance,
and the current rate of change, and the frequency-domain features
include harmonic factor, total harmonic distortion rate, frequency
centroid, and sub-band energy ratio, and the wavelet transform is
used in the time-frequency domain to analysis and extract its wavelet
entropy. Each recognition method is tested in the two situations
above: one is that each load is included in the training set, and the
other is that the load to which the test set belongs is not included in
the training set. The recognition results of each arc detectionmethod
are shown in Table 4. The BNNmethod has a better recognition rate
in the common training mode, but when the load of the test set does
not participate in the network training, the fault recognition rate is
low. The fault recognition rate of the method in this paper is better
than other types of recognitionmethods in both cases, and it also has
a good generalization ability for untrained loads.

6 Conclusion

Most of the existing arc identification methods are based on the
time-frequency domain characteristics of arc current. Due to the
subjectivity of manually extracting arc fault characteristics, it is
impossible to reveal the deeper characteristics of fault arcs. Using

current data as input to deep learning algorithms has the problem of
insufficient feature extraction. In this regard, this paper uses DAE
combined with ResNet to identify series arc faults:

1) The sliding window is used to obtain batch samples from the
normal and fault arc signals obtained in the experiment, which
effectively avoids the overfitting and reduced generalization
ability of the deep learning algorithm caused by the similarity
of the samples. And normalize them to avoid the feature bias
caused by the deep learning network over-biasing such features
in learning due to the high value of a certain input dimension.

2) The powerful feature self-extraction ability of denoising
autoencoders is used to extract high-dimensional abstract
features from normal and fault arc current signals. The time-
frequency domain features of fault arc current are no longer used,
and the subjectivity of manual feature extraction is avoided.

3) Convert the feature values obtained by DAE into grayscale
images. Since deep learning has a high resolution for image
color, the grayscale image is processed with pseudo-color to
generate an RGB three-channel pseudo-color image, and the
three-channel image is used as the input of the deep learning
network. They are input to ResNet networks of different depths
for training. The recognition rate of ResNet at different network
depths is above 98.9%, and the arc recognition rate reaches 99.7%
at a super high-level depth of 152 layers. For loads that do not
participate in ResNet network training, the recognition rate can
also reach 97.6%, showing good generalization ability.

FIGURE 13
Recognition rate of loads not involved in training.

TABLE 4 Comparison of different arc identification methods.

Serial number Detection method All loads participate in training (%) Test load does not participate in training (%)

1 SVM 88.27 75.46

2 PSO-SVM 95.02 89.73

3 PSO-BP 93.47 88.93

4 RF 97.73 91.37

5 BNN 98.04 94.17

6 Wavelet entropy -SVM 96.89 93.46

7 DAE-ResNet 99.70 97.60
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4) The method in this article is combined with the existing
support vector machine (SVM), support vector machine
optimized by particle swarm algorithm (PSO-SVM), neural
network optimized by particle swarm algorithm (PSO-BP),
random forest (RF), and convolutional neural network.
Identification methods for comparison. The fault
identification rate of this method is better than other types
of identification methods in both cases when each load is
included in the training set and when the load in the test set is
not included in the training set, and it also has good
generalization ability for untrained loads.

7 Prospect

As people pay more attention to electrical fires, arc fault
detection technology has received more and more attention from
the country and industry. This paper proposes a series fault arc
detection method based on denoising autoencoders (DAE) and deep
residual networks (ResNet). It avoids the subjectivity problem of
manual extraction of arc fault features and uses a deep residual
network to more comprehensively extract deep fault features from
fault feature images. However, there are still many challenges worthy
of further research for practical applications. Here is a brief prospect:

1) Since there is no public data set of arc fault, this paper used a
self-built data set in the research. However, the lack of an
authoritative public data set has a huge impact on the research,
comparison, and application of arc fault detection technology.

2) Although the practicality of the model has been taken into
account during the design process and the computational
complexity of the model has been reduced as much as
possible by controlling the network scale, the network
model proposed in this article still requires a relatively large
amount of calculations and requires high computing power of
the MCU in the circuit protection device.

3) The current research on arc fault detection technology is based
on the research of a single detection point. However, in actual
scenarios, many lines are interconnected and contain multiple
detection points. How to synthesize the information of these
detection points to improve the overall accuracy of series arc
fault detection will be a very meaningful research direction.
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