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Through quantitative modeling, the study established a dynamic supply and
demand system from freight demand, renewable energy production,
alternative new energy, renewable energy consumption and carbon dioxide
emissions to assess the impact of demand-side and supply-side changes on
energy decarbonization. The results indicate that adjusting the freight volumes of
railway and aviation, renewable energy electricity supply, and the use of
alternative new energy sources have varying degrees of impact on
decarbonization in transportation. Through interventions on the demand side
of freight volumes, CO2 emissions from transportation decrease to levels below
those before the intervention-induced fluctuations, while consumption of
renewable energy increases to levels above those before the adjustment.
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1 Introduction

Freight transportation could be one of the major contributors of global greenhouse gas
emissions. Despite the crucial role in maintaining global supply chains and promoting
economic development, reducing carbon emissions from freight transportation has become
a global challenge in addressing climate change and achieving sustainable development
goals. Especially in G20 countries, the carbon emissions from freight transportation are
staggering due to the huge economic scale and population size. Therefore, to address climate
change and achieve sustainable development goals, G20 countries need to consider various
interventions to reduce carbon emissions in transportation. Interventions related to
demand and supply are considered important ways to reduce carbon emissions from
freight transportation, including demand-side management, the use of electricity sourced
from renewable energy and the promotion of alternative new energy applications. However,
the impact of the intervention measures could be uncertain, so it could be of significance to
explore the impact in the decarbonization process of freight transportation.

Based on panel data covering G20 countries, this research constructs a scenario system
by using panel vector autoregressive model (PVAR) to integrate important indicator
variables of demand, supply and decarbonized transportation. The aim would be
studying the impact of scenario with demand and supply-side intervention measures
for freight transport on decarbonized transportation.
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2 Literature review

The existing research has employed quantitative analysis of
panel data to evaluate the dynamic connections and interactions
between carbon emissions and interventions related to demand and
supply. Arvin et al. (2015) explored the interrelationships and
connections between variables such as transportation density,
urbanization level, and carbon dioxide emissions by using the
PVAR model. The study suggests that the government could
encourage research and development in biofuel technology to
reduce CO2 emissions and focus on improving the service
efficiency of the transportation system. Habib et al. (2021)
estimated the dynamic connections between variables such as
transportation intensity, transportation freight volume, and road
carbon emissions using panel models. The results indicate a
unidirectional relationship between freight transportation and
CO2 emissions. Furthermore, as the largest carbon emitter, the
G20 countries should promote environmentally friendly technology
and foster the development of renewable technologies. Li et al.
(2022) discovered with the PVAR model that transportation
efficiency and structure have a mutually reinforcing effect, while
interventions could be made by adjusting transportation
configurations to reduce energy consumption.

Neves et al. (2019) used PVAR analysis of panel data from
OECD countries to suggest that policymakers should encourage the
use of alternative energy sources to decarbonize the transportation
sector. However, the use of electricity in the transportation sector
could not have a significant impact on CO2 emissions. The study
proposes that the possible reason would be the CO2 emissions saved
by the transportation sector through the use of alternative energy
sources are compensated by the increase in CO2 emissions
generated in the electricity generation process. Research from
Ajanovic and Haas (2016) also support this interpretation, where
the environmental benefits associated with the use of electricity in
the transportation sector could be only achieved when using
renewable energy sources for electricity generation. Carfora et al.
(2022) analyzed the PVAR model of EU member states and found
that the most effective interventions would be to encourage the
abandonment of fossil fuels, while to replace oil and coal with
renewable energy sources. Furthermore, Petruška et al. (2022)
estimated the short-term relationship between variables such as
energy consumption and energy produced from renewable sources
using the generalized method of moments (GMM). The results
confirm the positive effect of renewable energy production on
transport decarbonization, where the increase in the share of
renewable energy leads to a reduction for CO2 emissions.

3 Analysis framework andmethodology

3.1 Dataset construction

For data collection and classification, the WDI (World
Development Indicators) database was employed in this study.
However, due to objective factors, a significant number of
countries had missing data for variables. Therefore, a thorough
trade-off between the number of countries and the size of the dataset
was made to guarantee a balanced panel data and a long enough

research period. After the extended period of adjustments and
attempts, the focus of the study was narrowed down to the
G20 nations from 1995 to 2015, during which energy
transformation, freight transport innovation, and decarbonized
transportation underwent rapid development. The decision to
select this time frame was based on careful consideration of the
research objectives. The panel data set was chosen for analysis due to
the advantages of time-series and cross-sectional data, which allow
for the utilization of more information in examining the dynamic
relationships of the research.

3.2 Proxy measures for variables

After conducting initial research, a pool of 17 indicators were
identified as potential variables. However, due to incomplete
sequences for some of the indicators, a further screening process
was conducted to ensure the balance of the panel data.

3.2.1 Demand side intervention
As the primary methods of freight transportation, railway and

air transport offer efficient completion of transport tasks while
meeting the diverse requirements of various types and scales of
transportation. Both modes of transport exhibit high efficiency in
terms of speed and capacity, while also covering a broad range of
areas spanning countries and regions. Under the conditions, large-
scale cargo transportation undertaken by railway and air
transportation predominates due to cost-effectiveness. Therefore,
goods transported by railway (RailTrGood) and freight transported
by aircraft (AirTrFre) could be indicative of the demand for freight
transportation. Intervention on the demand side could reduce
carbon emissions during transportation by adjust freight volumes.

3.2.2 Supply side intervention
The utilization of electricity derived from renewable energy

sources and the adoption of alternative new energy sources
would exert the intervention effect on freight transportation from
the supply side. Electricity generated from renewable energy sources
(such as wind, solar and hydro power) could reduce carbon
emissions significantly during transport. The adoption of
alternative new energy sources such as electric locomotives and
hydrogen fuel cells could enable more environmentally friendly
transportation. Thus, Electricity production from renewable
sources (EleProRe) and Alternative and new energy (AltNuE)
would be key factors driving decarbonization of freight
transportation and could be used as proxy variables for the
supply side intervention.

3.2.3 Decarbonized transportation
To reduce the reliance on fossil fuels, decarbonized

transportation necessitates the utilization of renewable energy
sources such as wind and solar power. The increase in
consumption of renewable energy sources would facilitate the
growth and transformation of decarbonized transportation,
thereby achieving emission reduction targets. Additionally,
carbon dioxide, as a primary greenhouse gas, could be one of the
major causes of global climate change. The key to decarbonized
transportation would lie in reducing carbon dioxide emissions
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during the process. Therefore, Renewable energy consumption
(ReEneCon) and CO2 emissions from transport (CO2EmTra)
could be used as important indicators to measure decarbonized
transportation.

3.3 PVAR model formulation

The Panel Vector Autoregression (PVAR) model was first
introduced by Holtz-Eakin et al. (1988). The model could
be characterized by elaborate structure and capacity to
capture diverse aspects of the data by modeling research
variables as endogenous variables while treating each variable
as a function of the lag value of all variables in the system.
(Holtz-Eakin et al. 1988). Therefore, to examine the dynamic
relationship from freight transport demand and supply factors
to the context of decarbonized transportation, the PVAR model
would be used to investigate and elucidate the research.
Moreover, the PVAR presentation format provides the
intuitive representation of the interactions between variables
in the transport system.

From the theoretical perspective, the PVAR model utilized for
the purpose of analysis could be characterized as follows:

Yit � Ci + ∑m
p�1

ApYi,t−p + Ξit

As t represents the t th period (t � 1, 2, ..., Ti), i indicates the i th
nation (i � 1, 2, ..., N) and the lag length would be expressed
by p � 1, 2, ..., m.

Yit �
Y1it

Y2it

..

.

Y6it

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Yi,t−1 �

Y1i,t−1
Y2i,t−1
..
.

Y6i,t−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, . . . , Yi,t−p �

Y1i,t−p
Y2i,t−p

..

.

Y6i,t−p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Yit would be represented by a column vector of dimensions 6 × 1,
incorporating six proxy variables: RailTrGood, AirTrFre, EleProRe,
AltNuE, ReEneCon and CO2EmTra. The lag term of Yit, denoted as
Yi,t−p, reflects the value of variable which p time periods prior from
the i th nation.

Ci represents a column vector with dimensions of 6 × 1, which
contains the constants as intercept for the model:

Ci �
C1i

C2i

..

.

C6i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A1 �
α11

1( ) α12
1( ) / α16

1( )

α21
1( ) α22

1( ) / α26
1( )

..

. ..
.

1 ..
.

α61
1( ) α62

1( ) / α66
1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, . . . ,

Ap �
α11

p( ) α12
p( ) / α16

p( )
α21

p( ) α22
p( ) / α26

p( )
..
. ..

.
1 ..

.

α61
p( ) α62

p( ) / α66
p( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ap refers to a matrix with dimensions of 6 × 6, representing
coefficients in the analysis for a lag length of p periods.

Ξit �
ε1it
ε2it
..
.

ε6it

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ξit refers to a column vector with dimensions of 6 × 1, representing
the forecast disturbances and errors in the analysis. Each component
of Ξit would be independent and serially uncorrelated.

Integrated with the framework of the analysis, the quantification
of the freight transportation demand side, supply side, and
decarbonized transportation components within the system in
the scenario could be expressed as follows:

Demand side:

RailTrGoodit � Ci + ∑m
p�1

ApRailTrGoodi,t−p + Ξit

AirTrFreit � Ci + ∑m
p�1

ApAirTrFrei,t−p + Ξit

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Supply side:

EleProReit � Ci + ∑m
p�1

ApEleProRei,t−p + Ξit

AltNuEit � Ci + ∑m
p�1

ApAltNuEi,t−p + Ξit

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Decarbonized transportation:

ReEneConit � Ci + ∑m
p�1

ApReEneConi,t−p + Ξit

CO2EmTrait � Ci + ∑m
p�1

Ap CO2EmTrai,t−p + Ξit

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4 Analysis and results

4.1 Unit-root tests

Ensuring the stationarity of variables could be crucial before
beginning the analysis process. If non-stationarity would be present
in the variable sequence, the estimation of the model would deviate
from the principles of asymptotic theory, potentially leading to distorted
subsequent analysis results. Moreover, non-stationary variables may
result in spurious regression estimates. In order to guarantee the
dependability of the analysis findings, a Fisher-type examination,
predicated on the Augmented Dickey-Fuller test, would be utilized
to scrutinize the presence of unit roots in the six variables extracted from
the panel data. After undergoing unit-root testing, all the variables
(RailTrGood, AirTrFre, EleProRe, AltNuE, ReEneCon, and
CO2EmTra) chosen for incorporation into the PVAR model were
found to have rejected the null hypothesis. (Please refer to the
Supplementary Appendix for the test results due to space constraints).

4.2 Lag order selection

The selection of lag order could be a critical step that impact the
estimation outcomes of the model. To determine the reasonable lag
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order, relevant information criteria would be commonly employed.
Based on the 1 to 4 lag values of the variables, the first to third order
PVAR models were evaluated and considered as reasonable choices.

Based on the data presented in Table 1, the determination
coefficients for each lag were comprehensively evaluated. In
accordance with the selection criteria proposed by Andrews and
Lu (2001), the first order PVAR model was deemed to be a relatively
reasonable choice, given that it had the lowest MBIC, MAIC and
MQIC among the criteria for 1 to 3 lags. Therefore, the subsequent
analysis and estimation focused on the PVARmodel with first order.

4.3 PVAR and GMM estimation

In order to estimate the models, the initial four lag periods were
utilized as instruments. The outcomes presented in Table 2 suggest that
the regression analysis indicates a notable level of significance for the

variables examined. Specifically, the lag term of EleProRe and AltNuE
exhibited a considerable level of significance at the 1% and 5% levels
respectively. Moreover, the statistical significance of RailTrGood,
AirTrFre, and ReEneCon was demonstrated at a 10% significance level.

The subsequent phase of the analysis involves addressing missing
data and enhancing estimation accuracy through the implementation of
the Generalized Method of Moments (GMM) instruments
recommended by Holtz-Eakin et al. (1988). As noted by Hall
(2004), the utilization of GMM facilitates the automatic exclusion of
observations without valid instruments and the imputation of missing
values. Consequently, the effective sample size could be expanded,
thereby improving the estimation efficiency of the model.

Table 3 indicates that the variable parameters estimated through
the use of GMM exert a relatively stronger influence compared to
presented in Table 2. The lagged term of RailTrGood andAltNuE has
the enhancement of 5% and 1% significance level for CO2 emissions
from transport respectively.

TABLE 1 Lag order selection.

Selection order criteria
Sample: 1996–2014

No. of obs 779

No. of panels 41

Ave. no. of T 19

Lag CD J J p-value MBIC MAIC MQIC

1 −209.1619 124.2613 0.13563 −594.8039 −91.73872 −285.236

2 −34.6457 79.80007 0.2472966 −399.5767 −64.19993 −193.1981

3 −5.6876 42.86961 0.2002697 −196.8188 −29.13039 −93.62949

TABLE 2 PVAR estimation.

Variables (1) (2) (3) (4) (5) (6)

RailTrGood AirTrFre EleProRe AltNuE ReEneCon CO2EmTra

L.RailTrGood −0.346 −0.00793** −3.58e-07 1.40e-07 −3.15e-07 2.22e-06*

(0.329) (0.00343) (1.18e-06) (5.88e-07) (7.81e-07) (1.28e-06)

L.AirTrFre 16.75 0.122 3.92e-05 6.71e-05 5.84e-05 −0.000188*

(18.54) (0.191) (7.56e-05) (4.71e-05) (3.74e-05) (0.000106)

L.EleProRe 27,150 861.1*** −0.193* −0.0207 0.0142 0.464***

(34,154) (246.4) (0.110) (0.0629) (0.0752) (0.162)

L.AltNuE −81,552* −325.5 −0.482*** 0.130** −0.0758* 0.653**

(43,078) (247.1) (0.169) (0.0522) (0.0397) (0.262)

L.ReEneCon −132,850*** −1,155*** 0.516*** 0.169*** 0.532*** −0.184*

(35,951) (300.1) (0.110) (0.0595) (0.120) (0.0954)

L.CO2EmTra −40,482* −700.1*** −0.0390 0.0243 −0.0909 −0.133

(24,274) (239.5) (0.0616) (0.0533) (0.0580) (0.0831)

Observations 779 779 779 779 779 779

Standard errors in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
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TABLE 3 PVAR with GMM estimation.

Variables (1) (2) (3) (4) (5) (6)

RailTrGood AirTrFre EleProRe AltNuE ReEneCon CO2EmTra

L.RailTrGood −0.171 −0.00569* −6.32e-07 2.62e-07 −3.52e-07 3.23e-06**

(0.284) (0.00293) (1.12e-06) (5.66e-07) (7.45e-07) (1.29e-06)

L.AirTrFre 10.17 0.000404 2.89e-05 5.39e-05 3.87e-05 −0.000217*

(15.56) (0.160) (7.76e-05) (4.62e-05) (3.73e-05) (0.000111)

L.EleProRe 16,336 909.4*** −0.177 −0.000900 0.0102 0.442***

(30,063) (204.0) (0.113) (0.0621) (0.0740) (0.168)

L.AltNuE −84,653** −57.77 −0.527*** 0.149** −0.0683* 0.744***

(36,918) (108.0) (0.174) (0.0630) (0.0378) (0.282)

L.ReEneCon −120,335*** −1,090*** 0.468*** 0.167*** 0.509*** −0.123

(32,218) (259.8) (0.106) (0.0630) (0.114) (0.106)

L.CO2EmTra −22,213 −490.6*** −0.0616 0.00232 −0.0664 −0.0850

(20,958) (187.2) (0.0638) (0.0533) (0.0560) (0.0944)

Observations 902 902 902 902 902 902

Standard errors in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 4 Granger causality.

Equation\Excluded chi2 df Prob > chi2

RailTrGood

AirTrFre 0.427 1 0.513

EleProRe 0.295 1 0.587

AltNuE 5.258 1 0.022

ReEneCon 13.950 1 0.000

CO2EmTra 1.123 1 0.289

ALL 23.617 5 0.000

AirTrFre

RailTrGood 3.763 1 0.052

EleProRe 19.865 1 0.000

AltNuE 0.286 1 0.593

ReEneCon 17.622 1 0.000

CO2EmTra 6.870 1 0.000

ALL 29.394 5 0.000

EleProRe

RailTrGood 0.319 1 0.572

AirTrFre 0.139 1 0.709

AltNuE 9.173 1 0.002

ReEneCon 19.609 1 0.000

CO2EmTra 0.932 1 0.334

ALL 25.888 5 0.000

(Continued on following page)
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4.4 PVAR granger causality wald test

Following the estimation of the aforementioned process, the
investigation of the influence of past values of one variable on the
identification and prediction of another variable could be performed
through Granger causality analysis (Granger, 1969), thereby
providing insight into the interdependence between the variables.
The examination of the relationship between the variables could
serve as a valuable quantitative foundation for the analysis of
decarbonized transportation and related proxy variables.

Tables 4, 5 indicate the results that reveal the causal relationships
among the variables in the model system.

From the perspective of Demand side: RailTrGood could
Granger-cause the CO2EmTra at 5% significance level while
CO2EmTra could not be observed Granger-cause the RailTrGood.
Single direction causality could be existed from the goods
transported by railway to CO2 emissions from transport. A two-
sided causality could be indicated as AirTrFre could Granger-cause
CO2EmTra at 10% significance level while CO2EmTra could be
observed Granger-cause the RailTrGood at 1% level.

From the perspective of Supply side: A single way causality could
be observed from electricity production from renewable sources to
CO2 emissions from transport, which EleProRe could Granger-
cause the CO2EmTra at 1% significance level. Similarly, AltNue

TABLE 4 (Continued) Granger causality.

Equation\Excluded chi2 df Prob > chi2

AltNuE

RailTrGood 0.214 1 0.643

AirTrFre 1.365 1 0.243

EleProRe 0.000 1 0.988

ReEneCon 7.001 1 0.008

CO2EmTra 0.002 1 0.965

ALL 11.388 5 0.044

ReEneCon

RailTrGood 0.223 1 0.637

AirTrFre 1.075 1 0.300

EleProRe 0.019 1 0.891

AltNuE 3.270 1 0.071

CO2EmTra 1.409 1 0.235

ALL 7.171 5 0.208

CO2EmTra

RailTrGood 6.217 1 0.013

AirTrFre 3.813 1 0.051

EleProRe 6.908 1 0.009

AltNuE 6.991 1 0.008

ReEneCon 1.355 1 0.224

ALL 19.777 5 0.001

Panel VAR-Granger causality Wald test.

Ho, Excluded variable does not Granger-cause Equation variable.

Ha, Excluded variable Granger-causes Equation variable.

TABLE 5 Stability condition.

Eigenvalue stability condition

Eigenvalue

Real Imaginary Modulus

0.6073936 0 0.6073936

−0.4,945,063 0 0.4,945,063

0.0121,435 −0.4,474,897 0.0121,435

0.0121,435 −0.4,474,897 0.0121,435

0.1,457,892 0 0.1,457,892

−0.0572,217 0 0.0572,217
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could Granger-cause the CO2EmTra at 1% significance level while
CO2EmTra could not be observed Granger-cause AltNue. Moreover,
AltNue could Granger-cause the ReEneCon at 10% significance level
while ReEneCon could relatively more significantly Granger-cause
the AltNue at 1% level.

4.5 Stability condition

As noted by Abrigo and Love (2016), the causal effects that
explain the relationship among PVAR variables could not be
elucidated without identifying the constraints on the parameters.
Consequently, it would be of considerable importance to assess the
stationarity of the PVARmodel prior to conducting procedures such
as IRF and FEVD analysis. By satisfying the stationarity condition, it
would become possible to derive meaningful interpretations for IRF
and FEVD analysis in the following stage.

According to the findings presented in Table 5; Figure 1, it could
be concluded that the PVAR model meets the criterion for stability.
The result could be supported by the observation that all of the
eigenvalues are situated within the interior of the unit circle, as well
as the fact that the modulus of the companion matrix for the
variables is less than 1.

FIGURE 1
Roots of the companion matrix.

FIGURE 2
Overall IRF.
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4.6 Impulse response function (IRF)

The Impulse Response Function (IRF) plot depicts the response
pattern and trajectory of the delayed impact of the target variable
under the assumption of independent shocks with a standard
deviation of one from other variables (Abrigo and Love, 2016).
Thus, the analysis could reveal the influence and directionality of the
effects from demand-side and supply-side interventions on the
decarbonization of the transportation through the impact on
proxy variables.

4.6.1 Scenario of supply side intervention
Figure 2 illustrates the Impulse Response Function (IRF)

analysis that applies 200 Monte Carlo simulations and spans a
time horizon of 10 periods, thereby providing the overview of the
interplay and response patterns of the six variables in the simulated
scenario system. In the next stage, indicators to measure
decarbonized transportation (CO2EmTra and ReEneCon) would
be used as the response variable, while the intervention impact of
the other four variables from demand and supply side on
decarbonising transport would be focused on.

According to the results of Figures 3A, B above, following the
impact of one standard deviation of AltNuE, a positive impact to
CO2EMTra could be observed during the first period.

Subsequently, the positive impact turn to negative from 2nd to
3rd period, the impact increase slightly at 4th period then reached
a stable state which below the starting level. In addition, a
downward trend of positive influence for ReEneCon could be
observed in the first two periods. In subsequent periods,
ReEneCon recovered and increased from 2nd to 4th period
approximately, followed by a slight decline after the fourth
period then returned to a steady state.

As the result from Figures 4A, B, for a standard deviation impact
from EleProRe, CO2EmTra could be observed positively affected at
the first period then fall back and turns to negative impact from to
2nd to 3rd period. The impact tends to stabilize lower than the initial
level after experiencing slight fluctuations between 3rd to 6th period.
The impact of EleProRe on ReEneCon exhibits a singular declining
trend, with a gradually decreasing rate observed from the first to the
5th period, followed by the tendency towards stability.

4.6.2 Scenario of demand side intervention
Based on the results presented in Figures 5A, B, it could be

observed that CO2EmTra exhibited a notable decline during the
first time period subsequent to the influence of AirTrFre.
However, in the following time periods spanning from the
second to the fifth, fluctuations were observed. The
fluctuations gradually diminished beyond the fifth time period,

FIGURE 3
(A) IRF for AltNuE: CO2EMTra. (B) IRF for AltNuE: ReEneCon.

FIGURE 4
(A) IRF for EleProRe: CO2EmTra. (B) IRF for EleProRe: ReEneCon.
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eventually stabilizing at a level lower than the initial state.
ReEneCon was observed to have been continuously affected by
negative impacts, despite the decreasing intensity of the influence
over time, which eventually reached a stable state higher than the
beginning level.

The results of Figures 6A, B demonstrate that, following the
influence of RailTrGood, CO2EmTra exhibited a gradually
diminishing negative impact during the first period and gradually
shifted to a positive influence. During the second to fourth periods,
the positive impact gradually weakened and turned into negative,
eventually stabilizing at the end of the period. Also, ReEneCon was
observed to continuously experience negative impacts, which
persisted over time and stabilized at a level higher than the
initial state.

4.7 Forecast error variance
decomposition (FEVD)

The FEVD technique could be used to determine how much
each variable in the created scenario system contributes to the
forecast for the target variable. As a result, the technique
emphasises the matching levels of importance associated with
each variable. The FEVD would concentrate on the implications

from variables of demand and supply side interventions for
decarbonizing transportation.

Based on the results shown in Figure 7, in terms of CO2EmTra,
the largest contribution could be attributed to the supply-side
technology AltNuE, accounting for approximately 31%. The
contribution from EleProRe would be relatively lower, at
approximately 3.8%. The demand-side technologies RailTrGood
and AirTrFre have contributions of approximately 20% and 13%,
respectively. As for ReEneCon, the largest contribution could be
derived from the own lagged values, which remains at 74.08% from
the first period to the tenth period, only slightly decreasing to
73.84%. The supply-side technology EleProRe has the highest
contribution among the remaining variables, accounting for
approximately 10%. The lowest contribution could be observed
from AltNue, at around 2.2%. The demand-side variables
RailTrGood and AirTrFre both have contributions of
approximately 6.5%.

5 Discussion and conclusion

This study explores the panel data of G20 countries during
1995–2015 using the PVAR model. By establishing scenarios

FIGURE 5
(A) IRF for AirTrFre: CO2EmTra. (B) IRF for AirTrFre: ReEneCon. FIGURE 6

(A) IRF for RailTrGood: CO2EmTra. (B) IRF for
RailTrGood: ReEneCon.
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involving demand and supply-side interventions and
decarbonization of transportation, the research analyzes the
effects of adjusting railway and air freight volume, renewable
energy electricity supply and alternative new energy use on
decarbonization of transportation.

The results suggest that adjusting railway and air freight
volume, renewable energy electricity supply and alternative new
energy use could have varying degrees of impact on
decarbonization of transportation. By intervening in demand-
side freight volume, the CO2 emissions from transportation
decrease below the pre-adjustment level after a fluctuation
caused by the intervention, while renewable energy
consumption increases above the pre-adjustment level. The
result supports the findings of Li et al. (2022) and similar to
the results of Habib et al. (2021). Combining supply-side
interventions, renewable energy electricity supply could

continuously have a positive effect on consumption of
renewable energy and reduce CO2 emissions from
transportation below the pre-adjustment level, confirming the
views of Petruška et al. (2022). Alternative new energy use causes
more fluctuations in CO2 emissions from transportation,
although the emissions could be observed lower than before
the intervention in the later stages, while this fluctuation could
be explained by the views of Neves et al. (2019). The intervention
of alternative new energy on renewable energy consumption has
a positive impact for most of the period, stimulating the use of
renewable energy and further reflecting the measures mentioned
by Carfora et al. (2022).

Due to the difference in research focus, this study
explores factors concentrate on demand and supply-side
interventions. Future research could further investigate
and consider additional external factors such as urbanization

FIGURE 7
FEVD for ReEneCon and CO2EmTra.
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and population growth to provide a more comprehensive
evaluation of the impact and effectiveness of decarbonized
transportation.
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