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Extensive research validates the effectiveness of employing Dissolved Gas
Analysis (DGA) for diagnosing electric power transformer failures. However, a
significant portion of existing research focuses on static data for classifying
failure types, lacking a thorough exploration of causality. This study proposes
an approach integrating causality and the DGA framework to infer power
transformer failures. Validation through 96 historical samples from diverse
transformers demonstrates the capability of this method to identify probable
abnormal failures of the power transformer accurately. The proposed causal
reasoning method is able to diagnose all common transformer states,
accounting for the level of severity in both electrical and thermal failures, and
with an accuracy of 95.8%.
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1 Introduction

Inmodern power systems, power transformers are vital for uninterrupted energy supply.
The uninterrupted functioning of various industries and daily life is contingent upon
the reliable transmission and distribution facilitated by power transformers. Early failure
detection is essential to prevent disruptions and ensure the stability and resilience of the
power system.

Diagnosing failures in power transformers is a complex task, andDissolvedGasAnalysis
(DGA) is one of the most effective methods for this purpose. DGA evaluates transformer
faults by measuring concentrations of gases in transformer oil, such as hydrogen (H2),
methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbonmonoxide (CO),
and carbon dioxide (CO2) (Kari et al., 2018). These gases can indicate different types of
faults. Partial discharges generate hydrogen and methane, and the presence of acetylene
and hydrogen can confirm arcing (Gouda et al., 2016).The analysis of these gases, including
their levels, and proportions provides crucial insights for identifying potential malfunctions
in transformers.

Various methods are used to interpret DGA data, while the conventional approaches
are ratio methods like the Doernenburg ratio, Rogers ratio, and the Duval triangle
(Aizpurua et al., 2018). However, while these techniques are highly accurate, they are time-
consuming and expensive (Aizpurua et al., 2018). To address these challenges, there has
been a shift towards intelligent diagnostic approaches that integrate soft computin methods
with DGA for cost reduction (Tomsovic et al., 1993; Guo et al., 2019). For instance,g
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the Dempster-Shafer Theory demonstrates that soft computing
methods can achieve high accuracy with large sample
databases (Min and Chang, 2009). However, the adoption of
machine learning in transformer failure diagnosis is hampered
by the scarcity of failure data caused by the frequency of
transformer failures.

To address the challenge of low transparency and the lacking
of training data, this study proposes a method that integrates the
DGA with causal reasoning to diagnose the transformer failures.
In general, failure diagnosis and explanation are rooted in the
fundamental concept of causality Lewis (1986) Achieving a clear
understanding of these processes relies on accurately identifying
the interdependence and causal relationships among their
constituent components, as discussed in further research Özgür-
Ünlüakın et al. (2021). Causal reasoning, an emerging approach,
leverages knowledge of causal relationships between variables to
predict outcomes based on cause-and-effect models Pearl and
Mackenzie (2018). It effectively reduces the requirements for
training datasets as it leverages knowledge of causal relationships
between dissolved gases and equipment failures instead of static
data regression.

The paper is organized as follows. After the introduction
in Section 1, the conventional failure diagnosis methods are
presented in Section 2. The methodology of the proposed system
is proposed in section 3. The experimental results including the
comparison with three conventional methods and discussions are
stated in section 4. Finally, the conclusions are summarized in
section 5.

2 Failure diagnosis

The generation of the hydrocarbon gases within the normal
operating transformers would be caused by thermal and electrical
stresses, which can indicate potential problems within the
transformer (Syafruddin and Nugroho, 2020). As transformers
age, some gas generation is anticipated; distinguishing between
normal and excessive gassing rates is crucial. Normal gas
generation in transformers is influenced by several factors.
These include transformer design, loading, and the type
of insulating material used. To identify abnormal behavior
in transformers, standard gassing rates are employed as a
universal metric (Ali et al., 2023).

The breakdown of insulation in transformers leads to the
production of crucial gases such as H2, CH4, C2H6, C2H4,
C2H2. Other gases such as CO and oxygen (O2) are also
present, originating from the degradation of cellulose insulation
(Kari et al., 2018). Moreover, external factors like CO2, nitrogen
(N2), and moisture can be absorbed from the air due to an
oil/air interface or tank leak. The specific gases generated and
their quantities depend on the fault’s location, severity, and
energy. Low-energy events like partial discharge produce hydrogen,
methane, and ethane. The sustained high-energy arcing results
in the generation of all gases, with acetylene requiring the most
energy. The appearance of these gases in transformers is influenced
by temperature, as they dissolve within the insulation oil based
on the nature and intensity of the failures (Syafruddin and
Nugroho, 2020).

TABLE 1 Transformer types of failure.

Types of failures Abbreviations

No Failure NM

Thermal Failure (T < 300°C) LO

Thermal Failure (300°C < T < 700°C) MO

Thermal Failure (T > 700°C) HO

Discharges of Low Energy LD

Discharges of High Energy HD

Partial discharges PD

Concurrent overheating and discharge OD

An accurate fault diagnosis involves alerting to gases surpassing
the standard limits in terms of concentrations, increments, rates
of change, or ratios. The diagnostic report should include concise
interpretive remarks and recommendations derived from these
findings. To facilitate the identification of various faults during
the diagnostic process, distinct classes have been established.
These classes are determined through the physical examination
of numerous faulty transformers, which are detectable through
visual inspections and DGA outcomes. These classes are also
summarised in Table 1.

Failures such as overheating, discharges, and Concurrent
overheating and discharge generate various gases. The specific
nature and intensity of the fault can be determined by analyzing
the concentrations and types of these gases. The primary approach
for diagnosing transformer failures using Dissolved Gas Analysis
(DGA) involves extracting status information, which consists
of various combinations of characteristic gases, throughout the
operation of the power transformer. Subsequently, an existing
diagnostic model algorithm is applied to analyze and differentiate
this state information. Based on the judgment results, power system
operators can discern the fault type and severity of the transformer.
This information enables them to promptly devise specific
countermeasures tailored to different situations, aiming tominimize
fault-related losses within the power system to the greatest extent
possible. The conventional methods include Doernenburg Ratio
Method (CH4/H2, C2H2/C2H4, C2H2/CH4, C2H6/C2H2), Rogers
Ratio Method (CH4/H2, C2H2/C2H4, C2H4/C2H6, C2H6/CH4), and
Duval Triangle Method (CH4/H2, C2H2/C2H4, C2H4/C2H6).

2.1 Doernenburg Ratio Method

Doernenburg Method (DRM), which can be found in the IEEE
C57.104–1991 guide, makes use of the ratios of the concentration of
the key gases Hydrogen, Methane, Ethane, Ethylene, and Acetylene
(Stenkovski et al., 2022). Although it was withdrawn by IEEE in
2006, it is one of the most effective methods in the diagnosis of
electrical equipment such as transformers. This method is restricted
by a few criteria. This diagnostic approach often has the drawback
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TABLE 2 The limited concentration of the dissolved gas (Jongvilaikasem
et al., 2022).

Types of gas L1 concentration (ppm)

H2 100

CH4 120

CO 350

C2H2 35

C2H4 50

C2H6 65

of leading to ‘no diagnosis’, a situation that happens more often
than not (Jongvilaikasem et al., 2022). To apply this method, one
of the key gases (H2, C2H2, C2H4, C2H6, or CH4) must have a
concentration at least double the L1 concentration levels listed in
Table 2. By referring to Table 3, the failure can be diagnosed.

2.2 Rogers Ratio Method

The Roger Ratio Method (RRM) utilizes gas ratios similar to
those in the DRM, specifically C2H2/C2H4and CH4/H2, with the
exception of the ratio of C2H4/C2H6 (Bakar et al., 2014), as shown in
Table4. Unlike the DRM, the RRM can be used even if the key gases
are not at high concentrations. This means that, with RRM, the gas
concentrations do not need to be at least twice the L1 levels (Rogers,
1978). DRM and RRM are effective in diagnosing failures, but they
have a limitation. Sometimes, certain gas combinations do not fit
within the specified value range. When this happens, it becomes
impossible to determine the type of fault.

2.3 Duval Triangle Method (DTM)

DTM works on the idea that various faults in a transformer
create different gases. By measuring the amounts of these gases,
it is possible to figure out what kind of fault is present (Duval,
2008). It came from IEC TC10 databases and an existing IEC
60599 Ratio method. The results of the gas analysis are then
plotted on a triangular diagram, known as the Duval Triangle.
This triangle is divided into different zones, each corresponding
to a particular type of fault, such as thermal faults, electrical
discharges, or a combination of both (Li and Zhang, 2016). The
application of the DTM relies on three essential gases (CH4, C2H4,
and C2H2), which represent progressively higher energy levels of
gas generation. The concentrations of these gases are computed and
subsequently graphed on the three edges of a triangular diagram,
as shown in Figure 1. Compared with DRM and RRM, DTM will
not appear in cases where some results can fall outside the codes
and no diagnostics can be given. DTM has created a closed-loop so
it can always consistently yield a diagnosis, and maintain a low rate
of incorrect assessments.

2.4 Digital methods

Several approaches have been suggested to enhance the precision
of ratio-based DGA diagnostic approaches. These can generally
be divided into fuzzy logic-based methods, heuristic methods and
multiple data-driven artificial intelligence (AI) technologies.

Fuzzy logic facilitates the expression of imprecise
requirements, encompassing uncertain criteria or loosely defined
constraints, allowing for reasoning in situations with uncertain
specifications. Tomsovic et al. (1993) introduced a theoretical
fuzzy information model and inference scheme, utilizing rule-
based representation to systematically integrate diverse diagnostic
methods. This approach effectively resolved the potential rule
conflicts and ensured the generation of the most consistent
conclusions. Its advantages included robustness to missing data,
ease of expansion to new diagnostic methods, and analytical
performance evaluation. However, functions in fuzzy logic systems
need to be determined based on expert experience, and effective
fuzzy logic systems require comprehensive knowledge from human
experts. In addition, the limitation also occurred when the rules
in the rule-based system could not be automatically adjusted
through the self-learning process, requiring more interventions
from human experts.

Most of the intelligent fault diagnosis methods in power
transformers are based on a variety of data-drivenmachine-learning
technologies. Saravanan et al. (2020) applied a Multilayer Artificial
Neural Network (ANN) to classify the transformer failure with an
accuracy of 76%. However, Katooli and Koochaki (2020) indicated
that the ANNs utilized BPA as a learning algorithm that reduced
their level of accuracy. Some works applied the machine learning
approaches as attribute selectors and combined them with the
Support VectorMachine (SVM) to improve precision and reliability.
Moreover, other than the SVM, some works implemented the ANN
as the failure classifier. For example, Li et al. (2016) proposed a
power transformer failure diagnosis approach based on an SVM
achieving a diagnosis accuracy of 87.18%. In this approach, GA
selected the free control parameters of SVM including penalty
parameter, sigma, and type of kernel function, and then SVM was
for transformer failures classification. Moreover, Dwiputranto et al.
(2021) proposed a method that combined GA and ANN to classify
the type of transformer failure reliably based on DGA data and
achieved an accuracy of 95%.

Numerous techniques have been introduced for diagnosing
power transformer failures. However, most of the existing
technologies utilise black-box models to obtain fault diagnosis
results while the causality was relatively inconsiderate in this
domain. When it comes to diagnosing faults and understanding
the reasoning process, using black-box models often fails to provide
explanations that match real-world phenomena. Explanations are
rooted in the fundamental concept of causality and the absence
of a causal framework in contemporary systems has been linked
to issues related to generalization, interpretability, and outcome
quantification (Peters et al., 2017). The exploration of techniques to
distil rules from equipment failure events remained a developing
area. This approach often lacked a deep understanding of the basic
causes and struggled with diagnosingmultiple failures and updating
with new knowledge (Saravanan et al., 2020). Our approach aims to
identify and understand how different types of failures cause various
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TABLE 3 Doernenburg RATIO FAILURE DIAGNOSIS METHOD (Jongvilaikasem et al., 2022).

Potential failure C2H4/H2 C2H2/C2H4 C2H2/CH4 C2H6/C2H2

Thermal failure >1.0 <0.75 <0.3 >0.4

Partial discharge (low intensity) <0.1 Not significant <0.3 >0.4

high intensity discharge 0.1 to 1.0 >0.75 >0.3 <0.4

TABLE 4 Rogers ratio failure diagnosis method (Jongvilaikasem et al., 2022).

Potential failure C2H2/C2H4 CH4/H2 C2H4/C2H6

Normal < 0.1 0.1 to 1.0 <1.0

low intensity discharge < 0.1 <0.1 <1.0

high intensity discharge 0.1 to 0.3 0.1 to 1.0 1.0 to 3.0

medium temperature thermal failure < 0.1 >1.0 1.0 to 3.0

high temperature thermal failure < 0.1 >1.0 3.0

FIGURE 1
Duval triangle Failure Diagnosis (Jongvilaikasem et al., 2022)

gases to be produced. This helps in clearly determining the source
and type of the failure.

3 Proposed method for transformer
failure diagnosis

To solve the challenges of lacking transparency and training
data, this research proposes a causal-based method to diagnose the

type of failure by discovering the causal relationship between the
concentration and the types of the specific gases and the types of
failures. To process themethodology, it would be necessary to review
the causal reasoning first.

3.1 Causal reasoning

Causal reasoning, recognized as a fundamental cognitive
capability, empowers individuals to navigate the complexities of the
world by discerning the underlying causes of observed phenomena
and devising effective problem-solving strategies (Waldmann,
2017). The objective of causal reasoning is to acquire adequate
knowledge about the causal relationships between variables to
predict/infer the outcome accurately (Stuart, 2010). Within this
context, causal reasoning serves as a framework for systematically
formalizing our comprehension of the data-generating process
through the application of Structural Causal Models (SCMs). SCMs,
or Structural Causal Models, help estimate how interventions
affect the data produced by a certain process (Nogueira et al.,
2022). To analyze the causal impacts of certain variables on
others, a formalization of causal relationships is required. A widely
accepted method for representing these relationships is through the
utilization of a causal-directed acyclic graph (causal DAG), often
referred to as a causal diagram (Shen et al., 2020). Such a diagram
can capture prior assumptions regarding the causal structure of
interest, which can include insights from expert knowledge. Usually,
conventional causal reasoning focuses on figuring out the effects
of certain causes. But this diagnostic system works the other way
around: it starts from the effects and tries to find out what the
possible causes might be.

Bayesian Networks (BNs), probabilistic graphical models that
depict the probabilistic associations among random variables, are
regarded as a potent instrument in the domain of causal reasoning
(Lu et al., 2023). Moreover, Lakehal et al. (2015) illustrates that BNs
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FIGURE 2
General Bayesian network.

allow for the reversal of probabilities, enabling the identification
of causes when effects observations and cause consequences are
known. Refer to Figure 2, a Bayesian Network contains an edge
connecting two variables signifies a direct dependence between
them, with one acting as the parent (cause) and the other as
the child (effect). To capture this relationship, each node in the
network possesses a conditional probability table, quantifying the
child variable’s behavior in response to its parent(s) if multiple
parents are involved. However, for root nodes without parents, the
probability table is non-conditional, representing prior probabilities
related to variable values. The graphical representation is referred
to as the model structure, with associated probability tables
termed model parameter. Therefore, identifying the cause-and-
effect relationships and conducting the causal model requires
both structural learning and parameter learning. These structural
elements can either be derived from expert knowledge or computed
based on available data.

BNs effectively handle uncertainty and depict interrelationships
between problem variables, offering a visually accessible
representation and enabling comprehensive failure probability
analysis for complex systems (Lakehal et al., 2015; Özgür-
Ünlüakın et al., 2021). Consequently, BNs serve as the foundational
framework underpinning this paper. By leveraging BNs, our
approach discovers the relationship between the types and quantities
of specific gases under various power transformer states. Integrating
this relationship under the dissolved gas analysis framework, the
invention establishes the BNs model for power transformer state
diagnosis. Our proposed diagnosis approach will be introduced
in detail in Section 3.2.

3.2 Methodology

Our proposed method, integrating causal reasoning and
dissolved gas analysis. It aims to work well in general, using a
small amount of data to evaluate the condition and track faults
in various types of power transformers. As shown in Figure 3.
The proposed method comprises three main steps: 1) Conducting
a Causal model; 2) Training a Bayesian Network with structure
learning and parameter learning; and 3) Utilizing the model to
diagnose failures. For this study, a quantity of 823 samples was
obtained from the North China Electric Power Research Institute
(2021), involving the transformers in 110 kV, 220 kV, 330 kV, 500 kV,
and 750 kV. This dataset consists of a subset of 727 samples for the
model training and a subset of 96 samples for the testing. After
the conduction of the model, the proposed method will be tested

through the testing dataset with a comparison with the conventional
methods, including DRM, RRM, and DTM. The following will
introduce the process of model conduction.

3.2.1 Causal model conduction
Given the differences in initial data from various transformers, it

is crucial to preprocess this data. This step aligns the inputs with the
model, minimizing noise and ensuring the accuracy of the causal
model. Addressing the issue of limited failure data and the low
interpretability of power grid transformers, our method is proposed
to refine by discovering and constructing causal relationships
between transformer status, gas production types, and quantities.
The BNs serve as the foundational method for fault diagnosis and
traceability. In light of inevitable errors from causal learning,manual
intervention, branch reduction, and optimization through expert
experience are implemented to enhancemodel accuracy. Ultimately,
a fault reasoning method is formulated based on the cause-and-
effect model of power transformer status and gas production. This
method conducts explainable reasoning, failure-type judgment, and
screening to support operational, maintenance, and repair activities.
This enhancement seeks to enhance work quality and efficiency in
power transformers.

Diehl and Ramirez-Amaro (2022) indicate that the process
of explaining failures necessitates the acquisition of knowledge
regarding the cause-and-effect relationship between potential causes
and the effects of a phenomenon. The framework of this model
is established based on the DGA technology. Therefore, the
potential causes should be various transformer states (refer to
Table 1) and the effects should be the type and the content of
the dissolved gases in transformer oil. According to (Feng et al.,
2021), due to the rareness of safety-critical events, adversarial
learning proves valuable in significantly reducing the necessary
data quantity without compromising impartial evaluation. In other
words, an appropriate reduction of the normal data subset can
substantially reduce the overall dataset size without reducing the
capacity of the model. Therefore, the training dataset was designed
as shown in Table 5.

Moreover, in the analysis of gas release, seven types of dissolved
gases are commonly considered: H2, CH4, C2H2, C2H4, C2H6,
CO, and CO2 (Gouda et al., 2016). However, to reduce dataset
requirements and simplify the model, the investigation of the two
carbon oxides (CO, CO2) will be eliminated as their relatively minor
proportional variations.

This research includes multiple transformers, and gas
production levels may vary. To address this, data preprocessing
will use gas proportions instead of the content. Unlike traditional
ratio-based DGA or other methods that use normalization, our
method calculates specific gas ratios to the total gas, offering
comprehensive observations. A sudden increase in a specific gas
raises its proportion, reducing the ratios of other gases. H2, with
significant overall presence, is considered separately. Proportions
are calculated as follows:

H2% =
H2

H2 +CH4 +C2H2 +C2H4 +C2H6
(1)

CH4% =
CH4

CH4 +C2H2 +C2H4 +C2H6
(2)
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FIGURE 3
General causal model for transformer failure diagnosis.

C2H2% =
C2H2

CH4 +C2H2 +C2H4 +C2H6
(3)

C2H4% =
CH4

CH4 +C2H2 +C2H4 +C2H6
(4)

C2H6% =
CH4

CH4 +C2H2 +C2H4 +C2H6
(5)

After identifying the variables, the next step is to construct the
causalmodel. A set of treatments Xwill be generated, and denoted as
C ⊂ X, representing potential causes, along with outcome variables
identified as E ⊂ X. The primary objective of causal inference will be
to assess and quantify the impact of C on E and utilize the impact
to trace back the potential states. To concise the training process,
our method absorbs the benefits from fuzzy logic concepts and
processes the computed proportion data of the gases (the outcomes
of Eq. 1-5) into six intervals, denoted as X1 to X6, effectively
representing severity. Consequently, the input of the model will,

therefore, become the interval index. Its primary objective is to learn
how the gas release severity reflects the current state type.

3.3 Model training

As mentioned previously, this study adopts BNs as the
framework of the causal model conduction, due to the benefits such
as their capability for the reversal of inference. BNs are characterized
by a graphical structure denoted as G=(V, A), which forms a directed
acyclic graph (DAG). In which, V = {X1, X2, … , Xn}, refer to the set
of nodes and A refer to the set of arcs. By utilizing the dependency
structure in the Directed Acyclic Graph (DAG) and the Markov
property, the joint probability distribution of a Bayesian Network
(BN) can be broken down into a set of local probability distributions.
In this situation, each random variable Xi on its direct parents ΠX:

p(X1,X2,….Xn) = Πp(Xi|parents(Xi)) (6)
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TABLE 5 Transformer STATE types in the training samples.

State types (abbr.) Number of samples

NM 127

LO 19

MO 39

HO 88

LD 70

HD 298

PD 25

OD 61

Learning the Bayesian network from the data requires two
steps: structure learning and parameter learning (Diehl et al., 2021).
Structure learning is dedicated to learning the graphical structure
G=(V, A). Refer to Figure 4, learning the structure of the BNs is to
identify the different types of failures associated with the proportion
of the target gases. There are two families of the most common
methods to learn the graphical model including constraint-
based algorithms and score-based algorithms. Constraint-based
algorithms consider conditional independence constraints, whereas
score-based algorithms generate multiple potential causal graphs,
assign scores to each, and ultimately choose a final graph based
on these scores (Shen et al., 2020). In this research, the score-based
algorithm was chosen because, despite its higher computational
time demands, it has been demonstrated to exhibit greater accuracy
in learning causal structures (Shen et al., 2020). It is important
to highlight that acquiring reliable assumptions regarding causal
relationships represents a significant challenge within the broader
domain of causal inference (Sharma et al., 2021). The gold standard
causal structure for the transformer system was not available. As
a result, the resulting causal structure will be presumed correct or
manually adjusted based on domain knowledge.

Ji et al. (2015) indicate that structural learning is about the
exploration of casual relationships among a multitude of variables,
and parametric learning focuses on the estimation of conditional
probability tables, which capture probabilistic relationships between
variables. Moreover, the computation of the desired probabilities
within the model becomes feasible only once both the structure
and parameters have been defined. In this study, the maximum
likelihood estimator will be employed to construct a conditional
probability table, leveraging the previously established network
structure.

3.4 Utilizing model to diagnose failures

In this research, the causal model utilizes the BNs to compute
the possibility of the occurrence of the states. By training the
historical data of the transformers, the model will be able to
determine the occurrence probabilities of each state, based on the

conditional probability tables s. The probability of occurrence is
computed from the formula (6) ultimately enabling the diagnosis of
transformer failures.

In this approach, BNs were employed as the causal model
to calculate the occurrence probability of the states. By inputting
and processing gas production data from power transformers,
the model determines the probability of each state based on
conditional probability tables. The probability of occurrence is
computed according to the formula (6), enabling the diagnosis of
transformer faults. To address data limitations, the model simplifies
training by streamlining the inference process. In Figure 3, fault
types are initially classified through expert knowledge into fault type
I and fault type II, addressing diagnostic challenges and enhancing
accuracy. The proposed method enables multi-layer fault diagnosis
and traceability for current power transformers, identifying fault
types through intelligent and interpretable reasoning based on
known gas production conditions.

4 Model testing and discussion

The testing revolves around the utilization of 96 authentic
samples, which involve the transformers in 110 kV, 220 kV, 330 kV,
500 kV, and 750 kV. Each of these testing samples has been
painstakingly labelled with its corresponding failure type. The
primary objective of this testing is to examine our diagnosis model
by analyzing these data and then comparing its diagnostic results
with the existing labelled state types. The following presents an
example of the testing of the proposed model.

4.1 Example presentation

Taking an example using the data in Table 6, the system
follows the evaluation procedure (as shown in Figure 4) during the
diagnostic process.

The probabilities of occurrence for each STATE TYPE II are
illustrated in Table 7.

It can be seen that Discharge presents the highest possibility of
occurrence.Therefore, the systemwill thenmove to STATETYPE II,
and diagnose the failure among HD, LD, and PD. The probabilities
of occurrence for each STATE TYPE I are illustrated in Table 8.

After the BN inference, posterior probabilities given by the
network are presented in TABLE8. In this table, the posterior
probability of the high_energy discharge is 0.78, a higher probability
compared to the probability of low_energy discharge (0.13) and
partial discharge (0.09). Based on this inference, the model is
possible to make a conclusive decision, confirming the state type
as high_energy discharge. The actual description of the state
is a high_energy discharge caused by the solder joints of the
potential connection wire falling off, and the diagnosis results are
consistent with it.

4.2 Testing

Theobjective of the testing is to evaluate the diagnostic accuracy
of the system in identifying and classifying transformer failures. In
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FIGURE 4
General causal model for transformer failure diagnosis.

TABLE 6 An example of the testing dataset.

H2 CH4 C2H2 C2H4 C2H6 Failure type

443.99 116.38 5.33 7.52 91.03 High_energy Discharge

TABLE 7 List of possibilities for each State Type II.

STATE TYPE II Possibility

NM 0.08

Overheating 0.05

Discharge 0.70

OD 0.17

TABLE 8 List of possibilities for each State Type I.

STATE TYPE I Possibility

LD 0.13

HD 0.78

PD 0.09

the assessment of the testing, four systems were tested by analyzing
96 individual samples. The results are listed in Table 9. The Equation
of accuracy and % unsolved is as follows:

Accuracy =
number o f correct diagnosis

number o f diagnosis
× 100% (7)

%Unsolved =
number o f unsolved diagnosis

number o f diagnosis
× 100% (8)

The evaluation outcomes presented in Table 9 indicate that
among the evaluated methods, the DTM achieves the highest
level of accuracy. While DRM, RRM, and DTM all demonstrate
commendable accuracy, the %Unsolved indicates that they
encounter challenges in diagnosing certain scenarios, particularly
NM conditions. For instances, these methods can not identify an
‘NM’ state, consistently indicating the presence of a fault instead.
Moveover, when certain gas combinations fall outside the designated
value range upon calculation, DRM and RRM was inpossible to
identify the fault type. Consequently, their diagonosis presents a
sector of unsolved.

The proposed causal system attained an impressive accuracy
rate of 92 out of 96 cases. It not only showed good accuracy
compared to conventional methods but also demonstrated
the capability to discern system failures. Moreover, both
RRM and DRM present less accuracy in diagnosing the LO
condition while DTM and Causal method performs better. It is
important to acknowledge that variations in the testing dataset
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TABLE 9 Number of correct diagnosis among different methods.

Method Number of diagnosis Number of correct diagnosis Accuracy (%) % unsolved

DRM 60 58 97.1 37.5

RRM 55 51 92.7 42.7

DTM 81 80 98.8 15.6

Causal 96 92 95.8 0

contributed to differences in accuracy. Despite this, the results
clearly show that the model accurately identified the state types
in almost all tested instances across various transformer types,
underscoring its practical effectiveness. Besides, unlike the one-size-
fits-all approach of conventional methods, the proposed method
presents the probabilities of occurrence of all states and provides
higher flexibility for more personalized and accurate assessments.

To explore the failures, notably, in some instances, failures occur
when the actual failure type is the second most likely failure type
predicted by the system. Moreover, failures also happen during
the distinction between HO and MO. One possible reason might
be the challenge due to the variability in the data. Temperature
measurements in real-world transformer operations can fluctuate,
making it difficult to establish clear thresholds for categorization.
The employment of interval data prepossessing would also affect
the accuracy of the system, the exact distinction of each interval
should be tuned manually. This highlights a potential area for
further improvement or manual involvement in the diagnostic
process. Besides, these situations highlight the advantage of utilizing
BNs in this diagnostic context, which is the transparency it
offers across all possible scenarios. This transparency can be
instrumental in understanding the system’s reasoning and decision-
making process, enabling engineers and experts to analyze and
intervene when necessary, further enhancing the system’s diagnostic
capabilities. Besides, the proposed Bayesian model offers the added
benefit of simultaneous diagnosis of two failures, for example, the
diagnosis of OD.

5 Conclusion

This paper proposes an approach to transformer failure
diagnosis based on the relationship between dissolved gases in
transformer oil and the type of failures in electric power operations.
While previous studies primarily focused on failure classification,
this study proposes an approach integrating causality and the DGA
framework to infer power transformer failures. The proposed causal
reasoning method can diagnose all potential transformer states,
accounting for varying degrees of severity in both electrical and
thermal failures. By comparing with the conventional ratio-based
DGA methods including DTM, DRM, and RRM, the system was
tested with a good accuracy of 95.8%. Furthermore, our model
demonstrates proficiency in diagnosing various types of failures
fromdifferent types of transformers, offering robust failure detection
and classification, and the ability to diagnose multiple failures
simultaneously. Besides, this study also extends the applicability

of causal reasoningin the domain of power systems. Future workwill
explore the failure prediction by employing the time-series data.
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