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Previous studies on the carbon emission efficiency (CEE) in the power industry
have neglected concerns related to regional heterogeneity and the integer
character of certain indicators. In response to these issues, this study
proposes a meta-frontier DEA model that integrates integer constraints for
evaluating the CEE of China’s provincial power industry from 2011 to 2021.
This study also proposes to apply the Theil, technology gap ratio, and
inefficiency decomposition indexes to analyze regional disparities,
technological gaps, and strategies for enhancing CEE within China’s provincial
power industry. The research findings highlight several key points. First, China’s
power industry exhibits inefficiencies in CEE. The central region mainly
contributes to the overall CEE decline, and approximately 70% of provinces
demonstrate an average CEE below 0.70. Second, the technological level of
the western region is leading, while that of the central region is the worst.
Specifically, Ningxia, Hainan, and Jiangsu have the most advanced production
technology levels. Third, substantial disparities in CEE within China’s power
industry primarily stem from regional imbalances in development. Fourth,
technical inefficiency contributed 68.24% of the CEE in the central region, and
management inefficiency contributed 96.91% and 65.42% in the western and
eastern regions, respectively. Overall, China’s power industry still has 37%
potential for improvement.
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Introduction

The power industry plays a crucial role in promoting China’s economic and social
development by supplying the energy essential for economic growth and ensuring the
sustainability of social production (Zhu et al., 2020). However, given China’s current energy
landscape, thermal power remains the primary source of power generation (Zhao et al.,
2021). Coal consumption for thermal power generation exceeds 50% of China’s total coal
usage (Jia and Lin, 2021). In the short term, fundamentally changing the energy
consumption mode dominated by fossil energy, especially coal, remains difficult, which
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also determines that the power industry will long remain China’s
primary source of greenhouse gas emissions (Zhao et al., 2021).
Scientifically assessing the power industry’s carbon emission
efficiency (CEE) is essential for offering practical guidance
towards sustainable development in China (Zhang et al., 2022).

Scholars have used a variety of methods to evaluate the CEE, and
these methods mainly include stochastic frontier analysis (Cai et al.,
2019), fuzzy set theory (Taylan et al., 2016), entropy weight method
(Banadkouki, 2023), Topsis (Govindan and Sivakumar, 2016), and
data envelopment analysis (DEA) (Zhang et al., 2015). Among these
methods, DEA is frequently used (Zhang and Wei, 2015). However,
previous studies have some research gaps as follows. First, owing to
the regional heterogeneity inherent in the power system, substantial
variations exist in resource input, power output, and production
technology (Han et al., 2020). Neglecting the inherent heterogeneity
in investigating CEE within the power system may yield biased
evaluation outcomes, thereby hindering the provision of precise
decision-making guidance to policymakers (Yu et al., 2022). Second,
most scholars have not considered the integer constraints of some
indicators, such as integer constraints on employment numbers
(Chen et al., 2021a). This oversight can result in biased efficient
boundaries that provide insufficient support for decision-
making reference.

To address these research gaps, this study conducted specific
practical work as follows. First, this study proposes improved DEA
models based on the meta-frontier analysis framework and integer
constraints. Then, these models are utilized to measure power
industry’s CEE. Second, this study constructs a development
difference measurement index and a technology gap ratio (TGR)
index to analyze the regional heterogeneity and technology
heterogeneity of CEE in the power industry. Third, this study
decomposes the inefficiency of CEE to explore the internal
factors leading to low performance in the power industry and
provides improvement strategies.

The contributions of this study can be summarized as follows.
First, variations in regional development across China lead to
heterogeneity in the technological level of China’s regional power
industries. Previous studies have ignored the technological
heterogeneity (Sueyoshi et al., 2020; Li et al., 2022), potentially
leading to biased CEE results. This study addresses this issue by
constructing a DEA model within a meta-frontier framework.
Second, existing research often lacks identification of the
constraints of input–output indicators when overemphasizing
reducing inputs or increasing outputs (Liu and Sun, 2022). For
example, personnel input indicators are characterized by integer
constraints. Disregarding the integer constraints on indicators can
result in the generation of inaccurate production boundaries and the
formulation of misleading conclusion. To address this issue, this
study incorporates integer constraints into the evaluation models,
realistically reflecting the integer characteristics of some indicators.
Third, some studies have been done to deconstruct the inefficiency
of carbon emissions to explore efficiency improvement strategies
(Ding et al., 2020; Wang and Feng, 2021; Chen and Wang, 2023).
However, the research on exploring technology gaps between groups
and non-equilibrium CEE between groups and within groups is
insufficient. Therefore, this study combines the Theil, TGR, and
inefficiency decomposition indexes to explore the technology gap of
CEE, the differences in CEE between regions and within regions, and

the improvement strategies for CEE in China’s power industry. The
combined use of these methods can provide valuable improvement
strategies for CEE enhancement in the power industry frommultiple
perspectives.

The content of the following four sections is organized as follows.
A comprehensive overview of the relevant literature is displayed in
Section 2. Section 3 elaborates on the extended model and its
associated indicators. Section 4 is the empirical findings and their
corresponding interpretations. Section 5 summarizes the study’s
findings and provides relevant recommendations.

Literature review

Application of DEA in performance
evaluation

DEA is a non-parametric method that utilizes linear programming
to assess the relative efficiency of similar evaluation units based on input
and output indicators (Sueyoshi et al., 2017). In comparison to the
parametric SFA model, the DEA method can produce superior
evaluation results while requiring a smaller dataset. At the same
time, it has many advantages, such as no need to set indicator
weights, unified indicator dimensions, and preset function models
(Fall et al., 2018). Classical DEA models include the CCR model
(Charnes et al., 1978) with constant returns to scale and the BCC
model (Banker et al., 1984) with variable returns to scale. Throughout
the evolutionary development of DEA models, scholars have explored
and developed various DEA models to overcome the potential
limitations of traditional approaches. In traditional DEA, the
flexibility in weight selection often results in identifying multiple
DMUs as valid, posing challenges in distinguishing between all
DMUs. Roll et al. (1991) and Roll and Golany (1993) introduced a
series of approaches to derive a unified weight set, considering various
viewpoints to maximize the average efficiency and the number of
effective DMUs. Tone (2001) proposed a slacks-based DEA (SBM)
model to deal with the problems of excess input and insufficient output
related to DMU. Andersen and Petersen (1993) were the pioneers in
introducing the concept of super-efficiency. The super-efficiency DEA
model allows for the reordering of effective units, facilitating the
differentiation of efficiency among these units. Subsequently, to
circumvent the disadvantages of tranditional super-efficiency model,
Tone (2002) developed a super SBM method. Fried et al. (2002)
proposed the three-stage DEA model, which effectively eliminates
the influence of external factors and statistical noise, resulting in a
more realistic efficiency calculation. Tone and Tsutsui. (2010) proposed
an epsilon-based measure (EBM) model including radial and non-
radial information based on SBM, which can more honestly and
effectively reflect the efficiency of DMU. To address the missing
data within the dataset, Cook et al. (2013) developed a
heterogeneous DEA model to evaluate the relative efficiency of
datasets with more relaxed homogeneity criteria. Lio and Liu (2018)
regarded input and output as uncertain variables and proposed an
uncertain DEA model.

The DEA method has undergone continuous expansion and
evolution, gaining widespread application in production,
management, environmental, and economic decision-making
analyses due to its high adaptability. For example, Wu et al.
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(2019) used the EBM model to evaluate the production efficiency of
Chinese coal enterprises and found that mining areas far away from
cities have high efficiency. Liu et al. (2020) utilized the improved
super-SBM to explore and find noticeable regional differences in
industrial water efficiency in China, and areas with highly scarce
water sources have the highest industrial water efficiency. Shuai and
Fan (2020) employed the super-efficiency approach to assess China’s
green economic efficiency. Additionally, they employed Tobit
regression to examine the U-shaped relationship between
environmental regulations and green economic efficiency. Liu
et al. (2020) considered the common frontier framework and
intermediate output target setting and evaluated the loan
efficiency and deposit efficiency of 28 commercial British airlines
in China through the developed two-stage DEA model. The results
show that most banks’ deposit subsystems exhibit inefficiency, and a
large loan efficiency gap exists among banks. Chen et al. (2021)
segmented the production process of the high-tech industry into
three series of sub-stages characterized by shared inputs and
undesired outputs. They employed the super DEA approach to
assess overall innovation and sub-stage efficiency. The findings
highlight pronounced variations in innovation efficiency across
Chinese provinces, with significant room for improvement. Xiao
et al. (2021) utilized a two-stage DEAmethod to assess the ecological
efficiency of resource-based cities in China. Their findings indicate a
year-over-year improvement in overall efficiency, with governance
and production efficiency displaying parallel growth trends. Chen
et al. (2021) measured the operational efficiency of 52 universities in
China through an extended two-stage DEA model under the
framework of considering shared inputs. The results show that
75% of colleges and universities operate inefficiently, with no
significant difference between regions. Yu and Zhang (2021)
investigated the influence of low-carbon pilot policies on CEE
using DEA and regression models. The empirical outcomes
indicate that China’s low-carbon pilot policies contribute to
improving CEE. Wang et al. (2021) assessed China’s energy
efficiency development trends and features. Their findings
indicate significant potential for improvement in China’s overall
energy efficiency. Regional energy efficiency predominantly exhibits
a pattern of being high in the east and low in the west, with the
disparities within and between regions gradually diminishing. Zhou
et al. (2023) applied the non-radial DEA and the staggered
difference-in-differences models to analyze the impact of
innovation on improvement in carbon total factor productivity.
Their research provides valuable suggestions for improving carbon
productivity and innovation direction in China.

Evaluation of CEE in the power industry

The electric power industry serves as the cornerstone of the
national economy. As the primary energy consumer, it consumes
substantial energy and releases significant pollutants. Consequently,
scholarly attention has consistently gravitated toward research on
the CEE of the power industry. Xie et al. (2018) employed the game
cross-efficiency method to assess the environmental efficiency of the
power generation sector across 30 provinces in China and revealed
notable regional disparities. Sueyoshi et al. (2018) introduced
natural disposability, management disposability, and group

heterogeneity into the DEA model to evaluate the sustainability
performance of the power generation sectors in China’s coastal and
inland regions. The study identified regional disparities in the
sustainability performance of these power generation sectors.
Wang et al. (2018) integrated the material balance principle into
the DEA method to assess China’s thermal power industry’s
environmental and emission reduction efficiency. Building upon
this foundation, the authors introduced the Malmquist productivity
index to track environmental and emission reduction efficiency
variations. Sun et al. (2020) employed meta-frontier technology
and DEA methods to empirically analyze China’s provincial power
system’s sustainable performance and technological disparities. The
findings reveal pronounced regional disparities in China’s power
system’s sustainable performance and technological prowess, with
strength concentrated in the east and relative weakness in the west.
Sueyoshi et al. (2020) proposed an improved DEA method to
identify group heterogeneity among the evaluated units. This
method was applied in the environmental performance analysis
of China’s inter-provincial power industry, revealing substantial
disparities in power’s environmental performance under natural
and managed disposability. Du et al. (2021) used DEA and
econometric models to analyze the impact of environmental
regulation on the production performance of power plants in
China. Based on the results, the authors also provided
recommendations for implementing environmental regulations
and improving the production performance of power plants in
China. Sun et al. (2021) introduced the meta-frontier into the
performance evaluation model to quantify the technological
disparities among power supply chain systems. They assessed the
sustainable development performance of China’s regional power
supply chain systems, with empirical findings indicating
pronounced regional technological heterogeneity within China’s
power supply chain system and substantial potential for
improvement in its sustainable development performance. Xie
et al. (2022) proposed an improved semi-disposable dynamic
network SBM model and evaluated the environmental efficiency
of China’s inter-provincial power system. The empirical findings
indicate that the recent power system reform has markedly
enhanced the efficiency of China’s power generation and
distribution sectors. Sun and Dong (2022) constructed a DEA
model to evaluate the carbon emission reduction performance of
the clean power industry in 58 countries. The results show
significant differences in carbon emission reduction performance
across countries, and regional and industry heterogeneity affects the
gap in technology and management levels. Fang et al. (2022)
explored the CEE and improvement strategies of 42 thermal
power plants in China through the SBM model. The results
reveal a polarization phenomenon in the CEE distribution of
thermal power plants and noticeable regional differences.

Literature summary

The above literature shows that scholars have conducted a series
of studies on the CEE of the power industry. The main differences
between this study and the previous studies are as follows. First,
performance evaluation for electricity or other energy systems has
been extensively studied and analyzed by scholars (Mardani et al.,
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2017). However, the majority of these studies have concentrated on
energy saving or emission reduction, ignoring the heterogeneity that
exists between different units being evaluated. Unlike most of the
previous studies, this study incorporates the regional technological
heterogeneity of the power industry into the evaluation process and
assesses the CEE of the power industry from the group- and meta-
frontier perspectives. Second, with the exception of Liu and Sun
(2022), few studies have considered the integer constraints
associated with indicators during the efficiency evaluation
process. However, the model of Liu and Sun (2022) is radial and
may overestimate evaluation results. Unlike Liu and Sun (2022), this
study extends the model from a non-radial perspective to obtain
reasonable results. This study also introduces Kuosmanen’s (2005)
technique into the DEA method to effectively model the convex
technology and the weak disposability of the outputs. Third,
previous studies usually use the inefficiency decomposition index
to explore efficiency improvement strategies from a single
perspective. Unlike previous studies, this study combines the
Theil, TGR, and inefficiency decomposition indexes to explore
the technology gap of CEE, the differences in CEE between
regions and within regions, and the improvement strategies of
CEE in China’s power industry. The combined use of these
indexes in this paper can provide improvement strategies for
CEE improvement in China’s power industry from multiple
perspectives.

Models and indicators

Group-frontier DEA
Assume thatNDMUs are to be evaluated, and each DMUn uses

Ipn and ejn to obtain the expected output yrn, accompanied by the
undesired output bqn. Among these indicators, Ipn has integer
characteristics. All DMUs are assumed to be divided into G
groups according to technical heterogeneity. In the g-th group,
the efficiency of DMUd can be found through Model (1).

min Eg
d � 1

3
1 − 1

P
∑P
p�1

αgp⎛⎝ ⎞⎠ + 1 − 1
J
∑J
j�1
βgj⎛⎝ ⎞⎠ + 1 − 1

Q
∑Q
q�1

ρgq⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
s.t. ∑Ng

n�1
λgn + μgn( )Ipn ≤ ~Ipd, p � 1, . . . , P,

~Ipd ≤ 1 − αgp( )Ipd, p � 1, . . . , P,

∑Ng

n�1
λgn + μgn( )ejn ≤ 1 − βgj( )ejd, j � 1, . . . , J,

∑Ng

n�1
λgnyrn ≥yrd, r � 1, . . . , R,

∑Ng

n�1
λgnbqn � 1 − ρgq( )bqd, q � 1, . . . , Q,

~Ipd ∈ Z*, p � 1, . . . , P,

∑Ng

n�1
λgn + μgn( ) � 1,

λgn , μ
g
n ≥ 0, n � 1,/, Ng.

(1)

In Model (1), Ng represents the number of DMUs in the g-th
group, αgp represents the reduction proportion of Ipd, β

g
j represents

the reduction proportion of ejd, and ρgq represents the reduction
proportion of bqd. Model (1) uses the ~Ipd variable to reflect the
integer nature of Ipd; that is, the projection value of Ipd must be an
integer. Referring to the research of Sun et al. (2018), this paper uses
two sets of variables, λgn and μ

g
n , to reflect the convexity of the model

and the weak disposability of undesired outputs.

Meta-frontier DEA
Model (1) can calculate the group efficiency of each DMU.

Referring to O’Donnell et al. (2008), this section proposes the meta-
frontier model.

min Em
d � 1

3
1 − 1

P
∑P
p�1

αmp⎛⎝ ⎞⎠ + 1 − 1
J
∑J
j�1
βmj⎛⎝ ⎞⎠ + 1 − 1

Q
∑Q
q�1

ρmq⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
s.t. ∑G

g�1
∑Ng

n�1
λgn + μgn( )Ipn ≤ ~Ipd, p � 1, . . . , P,

~Ipd ≤ 1 − αmp( )Ipd, p � 1, . . . , P,

∑G
g�1

∑Ng

n�1
λgn + μgn( )ejjn ≤ 1 − βmj( )ejd, j � 1, . . . , J,

∑G
g�1

∑Ng

n�1
λgnyrn ≥yrd, r � 1, . . . , R,

∑G
g�1

∑Ng

n�1
λgnbqn � 1 − ρmq( )bqd, q � 1, . . . , Q,

~Ipd ∈ Z*, p � 1, . . . , P,

∑G
g�1

∑Ng

n�1
λgn + μgn( ) � 1,

λgn , μ
g
n ≥ 0, n � 1,/, Ng.

(2)
In Model (2), αmp represents the reduction proportion of Ipd, β

m
j

represents the reduction proportion of ejd, and ρmq represents the
reduction proportion of bqd. Compared with Model (1), all group
frontiers generate the frontier of Model (2); that is, the number of all
DMUs in the model (2) is N1 +N2 +/ +NG � N.

Technology gap ratio
The TGR indicates the technological disparity between the

group- and meta-frontier. The larger the value, the closer the
DMU is to the meta-frontier technology level. In essence, a
greater TGR corresponds to a higher production technology level.

TGR � Em

Eg
. (3)

Theil index
The Theil index was widely used to estimate regional income

gaps. This index divides the gap into intra- and inter-group gaps,
therebymeasuring the temporal changes in the two types of gaps and
their contribution to the total gap. This study uses the Theil index to
measure regional differences in the CEE of China’s power industry.
The Theil index can decompose the overall regional differences (T)
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into differences within regions (Tw) and differences between regions
(Tb), and therebymeasure their importance in the overall differences
(Wang et al., 2021; N’Drin et al., 2022). Referring to the research of
Luo et al. (2023), the specific formula is as follows:

T � 1
n
∑n
i

Em
i

Em
ln

Em
i

Em
� Tw + Tb, (4)

Tw � ∑3
q

nq
n
×
Em
q

Em
( ) · 1

nq
∑nq
i

Em
qi

Em
q

ln
Em
qi

Em
q

, (5)

Tb � ∑3
q

nq
n

Em
q

Em
ln

Em
q

Em
. (6)

The samples in this study were stratified into three groups
according to geographical location: eastern, central, and western.
Here, n and nq denote the number of provinces encompassed within
the overall sample and a specific subsample, respectively. Em

i

signifies the meta-frontier CEE of province i. Em
qi represents

province i’s meta-frontier CEE within group q. Em corresponds
to the average meta-frontier CEE across the overall sample, and Em

q

pertains to group q’s average meta-frontier CEE.

CEE inefficiency decomposition
Building upon the work of Yu and Chen. (2020), this study

decomposes CEE inefficiency into two components: technical
inefficiency (TIE) and management inefficiency (MIE). By
assessing the contribution ratio of TIE and MIE, this study
conducts an in-depth analysis of the internal factors behind
inefficiency, potential for improvement, and directions for
enhancement in each province. The specific formula is as follows:

CEEI � 1 − Em � TIE +MIE, (7)
TIE � Eg − Em, (8)
MIE � 1 − Eg. (9)

In Model (7), CEEI denotes CEE inefficiency.

Indicator description
This study refers to the selection of evaluation indicators by

Sun et al. (2020) and uses the following input–output indicators to
assess the CEE of China’s power industry. The four input
indicators are energy consumption (X1), power generation
installed capacity (X2), energy industry investment (X3), and
power industry employment-population (X4). The desired

output is power generation (Y1), and the undesired output is
CO2 emissions (Y2). Input indicators and power generation are
derived from China’s electricity, energy, and employment-related
statistical yearbooks. CO2 data come from the Emissions Database
for Global Atmospheric Research. Statistical descriptions of these
indicators are presented in Table 1.

Empirical analysis

CEE analysis
Figure 1 depicts the meta-frontier efficiency change

characteristics of CEE in China’s power industry from 2011 to
2021. The following discoveries are made. First, the CEE in the
eastern and central regions follows a U-shaped trend, similar to the
overall trend. Until 2016, the CEE in the western region remained
constant, but after that, it demonstrated annual improvement. This
change can be linked to the issuance of China’s 13th 5-year plan for
electric power development, which played a pivotal guiding role.
This plan delineates 18 critical tasks and provides a clear direction
for fostering green and CEE within the power industry. Second,
throughout the study period, the average CEE of the power industry
is highest in the eastern region, followed by the western region, while
the central region displays the lowest performance, with respective
average values of 0.68, 0.67, and 0.50. In addition, this study’s
investigation revealed that post-2017, the CEE of the power
industry in the western region surpassed that in the eastern
region. Despite the eastern province’s well-developed economy
and advanced technical infrastructure, granting it a leading edge
in CEE, it grapples with substantial electricity demand and relies
heavily on a single form of power generation (Cheong et al., 2019).
By contrast, the western region boasts abundant power generation
capacity and diverse forms of power generation, positioning it not
only to meet regional power demands but also to play a pivotal role
in west–east power transmission (Wang et al., 2019). Third, the
average CEE across China’s power industry is 0.63. Figure 1 shows
that the central region’s CEE has dragged down the overall level.
This phenomenon may be intricately linked to regional resource
endowments. The eastern and western regions predominantly
employ nuclear, hydropower, photovoltaic, and wind energy,
whereas the central region heavily relies on thermal power
generation (Liu et al., 2017). Consequently, the choice of power
generation method significantly influences the CEE in the central
region and overall.

TABLE 1 Statistical descriptions.

Variables Unit Mean Min Max Std.Dev

Inputs X1 10000 tons of standard coal 14967.08 1549.29 44611.10 8817.63

X2 10000 kW 5531.32 423.00 17334.00 3469.72

X3 100 million yuan 1006.30 101.00 3383.00 660.86

X4 person 96282.65 12428.00 253007.00 51524.42

Desirable output Y1 100 million kW hours 2095.72 189.00 6196.00 1359.38

Undesirable output Y2 10000 tons 36155.91 4891.87 90849.06 22049.33

Frontiers in Energy Research frontiersin.org05

Huang and Zhao 10.3389/fenrg.2024.1339553

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1339553


The study offers a comprehensive insight into the CEE levels of the
power industry in each province, as depicted in Figure 2. Some results
can be summarized. First, regarding the ranking of provinces within the
region, Hainan, Jiangsu, and Zhejiang in the eastern region rank among
the top three in group-frontier CEE, with their average values being
0.99, 0.95, and 0.91, respectively. The average group-frontier CEE values
of Ningxia and Qinghai in the western region exceeded 0.90, which are
0.92 and 0.90, respectively. In the central region, Jiangxi, Anhui, and
Inner Mongolia exhibit the group’s highest average CEE, with values of
0.99, 0.97, and 0.96, respectively. Second, each province’s average meta-
frontier CEE falls below the group frontier performance average.

Overall, only Hainan, Jiangsu, Ningxia, and Qinghai have meta-
frontier CEE averages exceeding 0.90, which are 0.98, 0.93, 0.92, and
0.90, respectively. The meta-frontier CEE averages of provinces in the
central region are generally lower than 0.50.

TGR analysis
Figure 2 illustrates the average TGR for each province from 2011 to

2021, providing insights into the following findings. First, the TGR
mean of the western provinces is generally close to 1.00, which shows
that the group-frontier technology level of the western provinces is close
to the meta-frontier technology level. Second, Ningxia, Hainan, and

FIGURE 1
Meta-frontier CEE trends.

FIGURE 2
Averages of CEE and TGR of each province from 2011 to 2021.
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Jiangsu exhibit high average TGR rankings and have highmeta-frontier
CEE. This observation indicates that these three provinces operate at
an optimal production technology level and display technological
leadership. This outcome may be because Ningxia is a leader in
solar power generation, and Jiangsu is outstanding in nuclear and
solar energy. Therefore, their TGR levels are higher. Hainan’s
power industry is small in scale, so input and output are relatively
efficient. Figure 3 compares the average TGR across each region,
revealing that the overall average TGR hovers around 0.84. The
average TGR value of the western region is the highest, followed by
the eastern region, and the central region is the lowest. Their average
values are 0.99, 0.88, and 0.60, respectively. This finding shows that the
production technology level in the central region has great potential for
improvement.

Regional differences analysis
This section delves deeper into the underlying factors contributing

to variations in CEE within the regional power industry. Figure 4
illustrates the overall inter-regional and intra-regional variances in CEE
over the study period. This section finds the following conclusions. First,
the overall difference is consistent with the trend of intra-regional
differences, showing a U-shaped trend during the study period. Second,
intra-regional differences accounted for 81.56% of the overall
differences, while inter-regional differences accounted for 18.44%.
This result indicates that intra-regional differences are the main
factor responsible for the overall differences. This result may be
because the development of provinces within the region is
unbalanced, and developed provinces have a siphon effect on less
developed provinces (Wei et al., 2020; Sun et al., 2023). Specifically,

FIGURE 3
Average changes in TGR from 2011 to 2021.

FIGURE 4
Differences in regional CEE from 2011 to 2021.
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noticeable economic and technological differences also arise among
regional provinces. Economically developed provinces prioritize
technological innovation and environmental conservation (Zhang
and Li, 2020). Therefore, developed provinces can improve
input–output efficiency through technological innovation. At the
same time, increased ecological awareness and investment in green
innovation can alleviate the production of undesired outputs (Lv et al.,
2021). The gap between developed and underdeveloped provinces in
the region will also continue to expand with the economic and
technological gap (Ouyang et al., 2021).

Improvement potential analysis
This section explores the potential for improvement in the CEE of

China’s power industry and the internal causes of its inefficiency.

Figure 5 shows the overall CEE inefficiency and its decomposition.
First, the average inefficiency in CEE within the power industry initially
rises and declines over time, signifying an overall improvement in
China’s power industry. Second, the changing trend of overall
inefficiency is consistent with the changing trend of management
inefficiency, and the level of management inefficiency is higher than
that of technical inefficiency. This result indicates that managerial
inefficiency is the dominant factor in overall inefficiency. Third,
technical inefficiency is relatively stable, with its average value
floating around 0.13. Over the study period, the mean values for
overall CEE andmanagement inefficiency are 0.37 and 0.24, respectively.

Figure 6 presents the inefficiency decomposition of each region,
from which the following conclusions can be obtained. First, the central
region is most affected by technical inefficiency, with its contribution

FIGURE 5
Decomposition of CEE inefficiency from 2011 to 2021.

FIGURE 6
Decomposition of CEE inefficiency in each region.
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reaching 68.24%, far exceeding the overall national level. Second, the
western region is mainly affected by management inefficiency, which
accounts for 96.91%. Third, management inefficiency largely dominates
the CEE inefficiency in the eastern region, with technical inefficiency
contributing to 34.58% of the overall inefficiency. The reasons for this
result are shown below. First, Figure 7 shows that technical inefficiency
in Anhui, Jiangxi, Jilin and Inner Mongolia in the central region
contributes more than 80% to CEE inefficiency. The poor technical
performance of these provinces pulls down the technical efficiency of
the central region. They need to focus on improving their technology

levels. Second, as depicted in Figures 2, 7, there is a small gap between
group-efficiency and meta-efficiency in both the eastern and western
regions. Therefore, the power industry in these two regions should
currently focus on management improvements.

In this section, a strategy map for enhancing the CEE of the
power industry is presented in Figure 8, using each province’s
average management and technical inefficiency as a foundation.
Type 1 provinces should prioritize improving their management
capabilities. Provinces categorized as Type 2 exhibit relatively high
levels of CEE with limited room for improvement. Type 3 provinces

FIGURE 7
Decomposition of CEE inefficiency in each province.

FIGURE 8
Improvement strategies of each province.
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should address enhancements in management and technical
proficiency. Lastly, Type 4 provinces should focus on elevating
their technology levels.

Conclusion and suggestions

This study expands the DEA model using the meta-frontier
analysis framework and integer constraints to assess China’s power
industry’s CEE from 2011 to 2021. In addition, it investigates
regional disparities, technology gaps, the underlying causes of
inefficiency, and improvement directions within China’s power
industry’s CEE utilizing the Theil, TGR, and inefficiency
decomposition indexes. The research findings are summarized
below. First, the CEE of China’s power industry has improved
year by year, with the average performance values of the eastern,
central, and western regions being 0.68, 0.67, and 0.50, respectively.
Second, the CEE of the power industry in 70% of provinces is lower
than 0.70. Third, the average TGR value is the highest in the western
region, followed by the eastern region, and the lowest in the central
region. Specifically, Ningxia, Hainan, and Jiangsu have existing
technological leadership advantages. Fourth, uneven development
within regions is the dominant factor causing the overall
development gap in the power industry to increase. Fifth,
management inefficiency is the leading internal cause of
inefficiency in CEE in the power industry. The performance
inefficiency of CEE in the central region is most affected by
technical inefficiency, while the inefficiency of CEE in the eastern
and western regions is affected by management inefficiency.

Drawing upon the findings of this study, the following
implications are delineated. First, considerable room for
improvement remains in the CEE of China’s power industry, and
gaps are apparent between regions. The central region also brought
down overall performance levels. China should therefore further
scientifically lay out the power industry and entirely rely on
regional green resources to drive green development of the power
industry. Given that the uneven development within the region has
widened the overall differences, the provinces in the region should
coordinate development and promote the complementarity of the
power industry network.

Second, Ningxia, Hainan, and Jiangsu have technological
leadership advantages in the CEE of China’s power industry.
Therefore, provinces with technological advantages should
provide technical assistance to technologically backward
provinces to promote the overall development of the power
industry. Technical cooperation and exchanges should be
strengthened among various regions.

Third, management inefficiency is the main factor leading to
inefficiency in the CEE of the power industry. Government
departments should therefore introduce supporting policies
related to energy structure transformation and strengthen low-
carbon supervision of the power industry. In addition, power
generation companies should increase investment in clean energy
technology research and development and reduce the proportion of
thermal power generation.
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