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Endeavoring to enhance the penetration rate of renewable energy sources,
concurrently ensuring economic and operational stability, this study proposes
a novel bi-layer optimization method of the wind–solar-storage AC/DC
microgrid (MG). First, by incorporating a superordinate electric and seasonal
hydrogen hybrid energy storage system (E&SHESS), the topology structure of the
microgrid is established. Subsequently, to rectify the intrinsic limitations of the
conventional beluga whale optimization (BWO) algorithm, this paper proposes a
multi-strategy hybrid improvement to BWO (MHIBWO). This innovative
improvement integrates an MTent strategy, a step size adjustment
mechanism, and a crisscross strategy. Then, constructing a bi-layer iterative
model based on the topology, annual net income and grid-connected
friendliness are introduced as optimization objectives for the outer and inner
layers, respectively, utilizing MHIBWO and CPLEX for resolution. Through a
nested iteration of the two layers, the model outputs the capacity scheme
with the best performance of economy and stability. Finally, the simulation
unequivocally demonstrated the superiority of MHIBWO and the model
proposed. In addition, based on the real data of the Elia power station, the
validity of the method in operation is tested using the fuzzy C-means algorithm
(FCMA) to extract and aggregate typical days, thereby presenting a sophisticated
solution for the field of microgrids optimization configuration.
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1 Introduction

1.1 Motivation

In recent years, there has been a rapid and significant advancement in microgrids
(MGs). The integration of distributed generations (DGs) into MGs has been steadily
increasing, driven by their benefits of energy utilization efficiency and dependable power
supply (Singh and Sharma, 2017; Zhao et al., 2023). However, the inherent instability of the
energy sources in MGs leads to voltage and frequency fluctuations that adversely affect both
the economy and the system reliability (Xu et al., 2021; He et al., 2022). Consequently, there
is an urgent need to optimize and strategically configure the MG, with the primary
objectives of improving grid-connection friendliness and ensuring economic efficiency.
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The optimal capacity determination for the MG relies on
constructing an effective model and solving associated
optimization problems (Lu Z. et al., 2023). The MG comprises
various components, including DGs, energy storage systems (ESSs),
loads, and power busbars. To meet the increasing requirements of
modern power systems, this paper proposes an electric and seasonal
hydrogen hybrid energy storage system (E&SHESS). This system
combines the advantages of an electric ESS in terms of response time
and a hydrogen ESS in terms of capacity and conversion efficiency,
which enables the system to adapt to power demands across various
periods and frequency ranges. Compared to a single busbar, AC/DC
hybrid busbars can handle different types of loads and offer
advantages such as high-power output efficiency and improved
system stability (Ferahtia et al., 2022). Unlike single-layer models
that predominantly focus on cost reduction in the objective function
construction, this paper addresses the challenges of balancing
operation stability and reliability, recognizing the limitations and
poor ergodicity, and introduces a bi-layer optimal model. The outer-
layer objective is economy, while the inner-layer objective is
stability. The coordination between planning and operation is
achieved through nested iterations of the two layers, resulting in
the derivation of an optimal global performance configuration. To
solve the bi-layer model, an efficient meta-heuristic algorithm,
Beluga Whale optimization (BWO), is proposed. Furthermore, to
overcome the shortcomings of poor population initialization and the
tendency to converge to local optima in the later stages, a multi-
strategy hybrid improvement method is used. This method
incorporates the MTent strategy, step size adjustment strategy,
and crisscross approach, enhancing the diversity of the initial
population of beluga whales and improving their optimization-
seeking ability in the middle and late stages.

In general, this paper introduces a bi-layer capacity optimization
method for wind–solar-storage AC/DC MG, considering grid-
connected friendliness (GCF). The contributions of this study are
four-fold.

1. An E&SHESS responding to the demand for different levels of
energy and power is proposed. The topological structure of the
MG and information mathematical model are built using
the E&SHESS.

2. A bi-layer iteration model of the MG is constructed. The net
income and GCF are introduced as the outer and inner
objectives, respectively. This optimization methodology
combines cost, environmental sustainability, and system
stability with more practical significance.

3. The multi-strategy hybrid improvement method and
MHIBWO are introduced. The proposed method exhibits
superior optimization performance to five common
algorithms in terms of optimization speed and accuracy.

4. The FCMA is used to aggregate typical operational and
uncertainty analysis days and validate the proposed
optimization method.

1.2 Related works

Planning and configuration are crucial in ensuring the financial
and operational stability of MGs. Consequently, researchers have

devoted significant attention to constructing comprehensive models
for the MG and addressing the problem of optimizing capacity
(Souza Junior and Freitas, 2022; Huang et al., 2023).

The construction of an MG model serves as a fundamental step
in achieving optimal efficiency. The ESS can effectively alleviate the
strain on the grid caused by generation power and enhance the
overall power supply quality (Erdemir and Dincer, 2023). However,
the primary ESSs, batteries, are susceptible to capacity limitations,
particularly in managing the high proportion of long-time scale
energy generation on the grid (Lyden et al., 2022). To solve the above
problems, an ideal seasonal ESS should have the advantages of a
large storage capacity, long service life, and low self-discharge rate
(Xie et al., 2023). Seasonal hydrogen ESSs have emerged as a
promising solution, attracting significant attention due to their
potential for large-scale energy storage (Zhou et al., 2022;
Yamashita et al., 2019). In a previous work, Lu et al. developed
an optimal configuration model for a “hydrogen
production–hydrogen storage” system in the incredible energy
season and a hybrid hydrogen gas turbine in the depleted energy
season (LuM. F. et al., 2023). In 2023, Shao et al. introduced a multi-
time grid method to optimize the operation of seasonal ESSs.
However, their planning model still uses the full-time series,
which increases the computational effort for system optimization
planning (Shao et al., 2023). Compared to single DC or AC
microgrids, hybrid AC/DC MGs combine both advantages (Yue
et al., 2022). Xie et al. learned through simulation analysis that an
AC/DC MG ensures power quality during the grid-connected
process and significantly improves the system stability of the MG
compared to a single MG (Xie et al., 2022).

The optimization problem of MGs has the characteristics of
non-convexity, nonlinearity, multi-objectivity, discrete/integer
variables, and nonlinear/linear constraints (Mohseni et al., 2019).
The modality of optimization problems is a multimodal system with
multiple local optima and a globally optimal solution (Ogbonnaya
et al., 2019). To realize the optimal operation of an island group
energy system with an energy transmission-constrained
environment, the energy demand and energy supply are
guaranteed. Yang et al. proposed an island energy hub model
that can realize energy cascade utilization and used the hybrid
policy-based reinforcement learning (HPRL) adaptive energy
management method to solve the problem. An HPRL method
that can deal with discrete–continuous mixing behavior is
proposed to solve the energy management problem of island
groups. For complex models with discrete–continuous mixed
actions, it is better to avoid simplifying the model to obtain an
optimization strategy (Yang et al., 2023). The methods for solving
MG optimization problems are shown in Supplementary Table S1.
Capacity optimization models are mainly divided into two
categories. One category is the single-layer, single/multi-objective
model, and the other is the two-stage, two-layer model (Huang et al.,
2021; Chen et al., 2022). The single-layer model makes it difficult to
consider the economics and dispatching problems, and the output
decision scheme is more localized and weaker in terms of global
interests (Chen et al., 2022). To avoid these issues, the two-stage
two-layer optimization model is applied (Luo et al., 2022). This
model can better coordinate the interests of multiple parties within
the MG and develop a reasonable strategy and an optimal operation
plan for the MG. Among these, the one with the strongest
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computing power is the two-layer heuristic algorithm, with the
upper layer often being a meta-heuristic algorithm. Currently,
research on artificial intelligence (AI) has produced a series of
programs that can be directly applied or used to solve complex
energy-related problems, such as energy system planning, design,
operation, and investment. Metaheuristics or heuristic optimization
is a branch of AI. By using appropriate computational variants of
Systema Naturae, we can calculate the globally optimal solution of
non-deterministic polynomial time-hard problems that do not
cooperate with precise mathematical optimization technology. To
adapt to the problem of complex bi-layer model structures, multiple
variables, and nonlinear constraints in the optimization
configuration process of microgrids, it is necessary to improve
the upper-level heuristic algorithm for the optimization objective
in the two-layer optimization method to further enhance the global
search ability and optimization accuracy (Almadhor et al., 2021). To
improve the performance of existing metaheuristic optimization,
Raghav et al. used the quantum teaching learning-based
optimization (QTLBO) algorithm, devised for the first time to
optimize energy flow in microgrids, solving the multidimensional
nonlinear problem of microgrid scheduling, and compared it with
existing metaheuristic algorithms, such as the real-number encoding
genetic algorithm, differential evolution algorithm, and TLBO. The
simulation demonstrated the superiority of QTLBO in terms of
convergence and overcoming premature convergence of global
optimal solutions and has improved the system economy
(Raghav et al., 2021). To study the issues of day-ahead and real-
time cooperative energy management for multi-energy systems
formed by many energy bodies, Li et al. proposed an event-
triggered distributed algorithm. By implementing this algorithm,
energy entities can effectively collaborate, maximize social welfare
for a day, smooth real-time load changes, and suppress fluctuations
in renewable resources (Li et al., 2019). Optimization objectives

often focus on economic efficiency, and the literature also considers
indicators such as power supply reliability, environmental benefits,
and safety (Dong et al., 2022; Ma et al., 2023).

2 Microgrid topology and models

Wind turbines (WTs) and photovoltaic (PV) modules constitute
the power generation system. In an E&SHESS, the battery is selected
as the electric ESS; the hydrogen ESS consists of an electrolyzer (EL),
a hydrogen storage tank (HT), and a fuel cell (FC). The converter
equipment realizes energy flow and system stability support through
bidirectional AC/DC. The topology of the MG system is shown
in Figure 1.

3 Bi-layer optimal configuration model

The bi-layer optimal model, with a hierarchical structure, is a
particular case of the multi-layer model. The architecture of the bi-
layer optimal model in this paper is shown in Figure 2. The
nomenclature is shown in Supplementary Table S2. Sections 3.1,
3.2 present the outer and inner optimization model functions,
respectively.

3.1 Outer-layer optimal model

The outer-layer optimal model considers the economics and
environment, with the objective function of the highest annual
comprehensive economy (ACE). This includes the annual
operating economy (AOE) and the annual polluting gas penalties
(APGPs). The decision variables in this layer are the capacity and

FIGURE 1
Microgrid topology diagram.
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power of the devices in the system. The objective function is
expressed as Eq. 1:

F x, y( ) � maxACE � max AOE − APGP( ). (1)

3.1.1 AOE
The AOE includes electricity income (EI), oxygen income (OI),

electricity cost (EC), power generation system cost (PGSC), and hybrid
energy storage system cost (HESSC). It can be expressed as Eq. 2 and
Eq. 3:

AOE � EI + OI − EC + PGSC +HESSC( ), (2)
EI � KEXGRID × EEXGRID

OI � KO2 × EO2

EC � KGRID × EGRID

PGSC � SP1 + SP2 + SP3
AHESSC � SE1 + SE2 + SE3 + SE4

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
. (3)

Here, S(P, E)1 is the initial investment cost, S(P, E)2 is the cost of
operation and maintenance, S(P, E)3 is the repayment cost for the

construction loan, and SE4 is the replacement cost. The expressions
are as given in Eqs 4–6:

SP1 � kCRFμSW+P
SP2 � γSW+P
SP3 � 1 − μ( ) · SW+P · ρ 1 + ρ( )N/ 1 + ρ( )N − 1[ ]

⎧⎪⎨⎪⎩ , (4)

SE1 � kCRF μBATSBAT + μHSH( )
SE2 � γBATSBAT + γHSH
SE3 � 1 − μBAT( )SBAT + 1 − μH( )SH[ ] + ρ 1 + ρ( )N/ 1 + ρ( )N − 1[ ]
SE4 � kCRF n1 × SBAT + n2SEL + n3SFUEL + n4SH−TANK + n5SO−TANK( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,

(5)
SBAT � KEBATEBAT + KPBATPBAT

SH � SEL + SFUEL + SH−TANK + SO−TANK
SEL � KELPEL, SFUEL � KFUELPFUEL

SH−TANK � KH−TANKEH−TANK, SO−TANK � KO−TANKEO−TANK

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (6)

where kCRF is the recovery factor, kCRF = r(1+r)N/(1+r)N-1, and
SW+P=KWTPWT+KPVPPV.

FIGURE 2
Architecture of a bi-layer optimization model.
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3.1.2 APGP
Pollutants generated by purchasing electricity from the utility

grid are converted into a penalty, expressed as Eq. 7:

APGP � σCO2 + σCO + σNOx + σSO2( )kGRIDEGRID. (7)

3.1.3 Outer-layer constraints
3.1.3.1 Power balance constraints

During operation, power balance must be ensured. The
constraints are expressed as Eq. 8:

PPV t( ) + PWT t( ) � PLOAD t( ) + PBAT−CH t( ) + PEL t( ) + PEXGRID t( ) ΔP> 0
PLOAD t( ) � PPV t( ) + PWT t( ) + PBAT−DIS t( ) + PFUEL t( ) + PGRID t( ) ΔP< 0{ ,

(8)

where ΔP = PPV(t)+PWT(t)-PLOAD(t) is the difference between DG
and load power.

3.1.3.2 Power and capacity constraints
The power, transactions, and capacity must be satisfied within a

certain range. The constraints are expressed as Eqs 9, 10:

0≤Px t( )≤Pxmax x ∈ WT,PV, BAT, EL, FUEL{ }
0.1Eymax ≤Ey t( )≤ 0.9Eymax y ∈ BAT,H − TANK,O − TANK{ }{ ,

(9)
PGRID t( )≤PGRID−max

PEXGRID t( )≤TGRIDPGRID−max
{ . (10)

3.2 Inner-layer optimal model

The inner optimization objective isGCF, which is represented by
the DG daily output fluctuation rate (DOFR) and daily output peaks
and valley gap (DOPVG). The power output of each device is the
decision variable of this layer. Using the linear weighted aggregation
method to transform multi-objective optimization into single-
objective optimization, the aggregate multi-objective function is
constructed as shown in Eq. 11.

GCF � min λ1DOFR + λ2DOPVG( ). (11)

The parameters of λ1 and λ2 are determined using the objective
function fitness departure ranking method.

3.2.1 DOFR
The power fluctuation of the complementary DG is shown in

Eqs 12, 13:

DOFR � ∑365

d�1 ∑24

t�1 PA d, t( ) − Pa d( )[ ]2/24∑24

t�1PA d, t( ){ }/365,
(12)

PA d, t( ) � PW+P d, t( ) + PE d, t( )
PW+P d, t( ) � PPV d, t( ) + PWT d, t( )
Pa d( ) � ∑24

t�1PW+P d, t( )/24
⎧⎪⎪⎨⎪⎪⎩ . (13)

3.2.2 DOPVG
The peaks and valley gap power of DG is shown in Eq. 14:

DOPVG � ∑365
d�1 maxP d( ) − minP d( )[ ]

365
. (14)

3.2.3 Inner-layer constraints
3.2.3.1 Electric ESS constraints

The charge state and operation of the electric ESS are shown in
Eqs 15–17.

SOCBAT−min ≤ SOCBAT t( )≤ SOCBAT−max, (15)
kmin ≤

EBAT

PBAT
≤ kmax, (16)

PBAT � aPBAT−CH + 1 − a( )PBAT−DIS
EBAT t( ) � EBAT t + 24n( ){ . (17)

This system operates daily to accommodate the high-frequency
power response and extend its service life. The system is charged and
discharged at different times. a is the working flag bit. When a = 1, it
is charging; when a = 0, it is discharging. n is the positive integer.

3.2.3.2 Seasonal hydrogen ESS constraints
The capacity and operation are expressed in Eqs 18–19.

SOH&OCTANK−min ≤ SOH&OCTANK t( )
SOH&OCTANK t( )≤ SOH&OCTANK−max

{ , (18)

PH � bPEL + 1 − b( )PFUEL

EH−TANK t( ) � EH−TANK t + 24n( ){ . (19)

This system operates on an annual cycle to accommodate the
massive electrical demand. The staggered operation of the EL and FC
in the system was investigated. b is the working flag bit. When b = 1,
EL is working; when b = 0, FC is working.

3.2.4 Evaluating indicator
The self-balancing rate is the ratio of the power provided by the

DG to the load, as shown in Eq. 20:

RSELF � ESELF

ELOAD
× 100% � 1 − EGRID

ELOAD
( ) × 100%. (20)

4 BWO and MHIBWO

4.1 BWO

BWO is a new meta-heuristic algorithm proposed by Zhong
et al. (2022). The behaviors of beluga whales inspire BWO. Balance
factor Bf determines the transition from the exploration to the
exploitation phase, which is expressed as Eq. 21:

Bf � B0 1 − T/2Tmax( ), (21)

where T is the current iteration, Tmax is the maximum iteration, and B0
randomly changes between (0 and 1). The processes are as follows:

4.1.1 Exploration phase
The exploration phase considers the pair of swimming beluga

whales. The positions are updated as given in Eq. 22:
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XT+1
i,j � XT

i,pj
+ XT

r,p1
−XT

i,pj
( ) 1 + r1( ) sin 2πr2( ) j � even

XT+1
i,j � XT

i,pj
+ XT

r,p1
−XT

i,pj
( ) 1 + r1( ) cos 2πr2( ) j � odd

⎧⎪⎪⎨⎪⎪⎩ , (22)

where Xi,j
T+1 is the new position for the ith beluga whale on the jth

dimension. Pj is a random number selected from the d-dimension
(j = 1, 2, . . ., d). Xi,Pj

T and Xr,P1
T are the positions of the ith and rth

beluga whales, respectively. r1 to r7 is a random number
between (0 and 1).

4.1.2 Exploitation phase
The preying behavior inspires the exploitation phase, which is

expressed in Eq. 23:

XT+1
i � r3X

T
best − r4X

T
i + C1 · LF · XT

r −XT
i( ), (23)

where Xi
T and Xr

T are the positions for the ith beluga whale and a
random beluga whale, respectively, Xi

T+1 is the new position, Xbest
T is

the best position, C1 is the random jump strength, and LF is the Levy
flight function. The expression is given in Eqs 24, 25:

FIGURE 3
Algorithm improvement ideas. (A) Bifurcation diagram of MTent. (B) Population initialization. (C) Inertia weight curve.

FIGURE 4
Flowchart of multi-strategy hybrid improvement to blue whale optimization (MHIBWO).
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C1 � 2r4 1 − T/Tmax( ), (24)
LF � 0.05 × u ×

σ

v| |1/β, (25)

where σ � ( Γ(1+β) × sin(πβ/2)
Γ[(1+β)/2] × β × 2(β−1)/2)1/β

and u and v are normally
distributed random numbers.

4.1.3 Whale fall
During migration and foraging, a small number of beluga whales

do not survive and fall into the deep seabed. Xstep is the step size of
whale fall. The model is expressed as Eqs 26, 27:

XT+1
i � r5X

T
i − r6X

T
r + r7Xstep , (26)

Xstep � ub − lb( ) exp −C2T/Tmax( ), (27)

where ub and lb are the upper and lower boundaries of the variable,
C2 is the step factor, and C2 = 2Wf × n.Wf is the probability of whale
fall, Wf = 0.1–0.05 T/Tmax.

4.2 MHIBWO

Due to the mutual constraints and influences between the inner
and outer layers in the established bi-layer optimal model, the
computational complexity is high. Therefore, three methods are
proposed to strengthen BWO, given as follows.

TABLE 1 Benchmark function test results.

F Measure Particle
swarm

optimization
(PSO)

Gray wolf
optimization

(GWO)

Improved gray
wolf

optimization
(IGWO)

seagull
optimization
algorithm
(SOA)

Blue whale
optimization

(BWO)

Multi-strategy
hybrid

improvement to
blue whale
optimization
(MHIBWO)

F1 Best 61.36 1.0942e-34 9.3578e-54 2.6254e-06 2.6901e-298 0

Aver 149.1289 2.5306e-33 3.7788e-50 57.5609 7.5355e-280 0

STD 71.6153 4.0073e-33 9.094e-50 192.0819 0 0

F2 Best 3.491 1.1443e-20 3.1551e-31 0.022954 3.2071e-151 0

Aver 11.5783 5.0713e-20 6.8814e-30 0.69329 7.9535e-142 0

STD 6.3829 3.4853e-20 9.2146e-30 0.87872 3.258e-141 0

F3 Best 1,279.3551 25.5664 25.061 0.022767 0 0

Aver 9,472.6468 26.7154 26.6173 1,712.6577 0 0

STD 21,431.2062 0.58127 1.1467 5,882.6474 0 0

F4 Best 121.2079 0 0 0.00031868 0 0

Aver 169.2072 2.7011 2.0107 7.4353 0 0

STD 29.0647 4.1009 4.359 14.7444 0 0

F5 Best 2.2826 3.9968e-14 4.4409e-15 2.8207e-06 8.8818e-16 8.8818e-16

Aver 4.4908 4.2988e-14 7.816e-15 0.025719 8.8818e-16 8.8818e-16

STD 0.88926 3.6948e-15 7.9441e-16 0.056298 0 0

F6 Best 2.705 0.0065251 0.015326 0.00058116 1.5705e-32 1.5705e-32

Aver 4.3043 0.030724 0.10178 48,980.5028 1.5705e-32 1.5705e-32

STD 2.1321 0.014263 0.11894 219,042.3144 2.808e-48 2.808e-48

F7 Best 0.00078318 0.00030749 0.00030762 0.00035813 0.00030901 0.0003075

Aver 0.008193 0.0033177 0.0085838 0.0087633 0.00032881 0.00030843

STD 0.0096589 0.0073466 0.0098728 0.0084678 2.5162e-05 1.4411e-06

F8 Best −3.3219 −3.322 −3.322 −2.9858 −3.3202 −3.3219

Aver −3.1402 −3.274 −3.2376 −2.4843 −3.297 −3.3197

STD 0.15933 0.071437 0.084237 0.41956 0.044198 0.0060363

F9 Best −10.1532 −10.1528 −10.1532 −10.1033 −10.1525 −10.1532

Aver −9.108 −9.6464 −6.5052 −8.3737 −10.1402 −10.1531

STD 2.0578 1.555 3.1997 1.3985 0.015024 0.00013206
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4.2.1 MTent
In this paper, the traditional Tent is improved, and MTent is

proposed. MTent is used to replace the original initializationmethod
of BWO to enhance the population diversity. The formula is
expressed in Eq. 28:

Xn+1 � 2 Xn + rand()/20( ), Xn ∈[0, 0.5)
2 1 −Xn + rand()/20( ), Xn ∈ 0.5, 1[ ]{ , (28)

where Xn represents the initial value and ranges between (0 and
1). rand() is a random number between [0 and 1]. The bifurcation
diagram and population initialization are shown in Figures 3A, B.
By using the MTent approach proposed in this study for
population initialization, a comparison between the two
methods leads to the observation that the populations
generated by the Tent map predominantly conglomerate at the
boundary, exhibiting limited ergodicity and randomness. In
contrast, the initial population derived from MTent
demonstrates improved ergodicity and randomness, resulting
in a more diverse generated population.

4.2.2 Step size adjustment strategy
The step size adjustment strategy enriched the individual

diversity of the population. The nonlinear decreasing search
factor is shown in Eq. 29:

ri � A × 1 − t/Itermax( )η[ ] 1
/η, i � 1, 2, ..., 7, (29)

where η is the adjustment coefficient and A is the random number
rand. The range is between (0 and 1). As shown in Figure 3C, in the
early stage, the weight is relatively large, and the decreasing speed is
slow, which is conducive to improving the global optimization
ability. When the weight factor is small, it enhances the

advantage of the algorithm in local development and accelerates
the speed of obtaining the optimal solution.

4.2.3 Crisscross strategy
4.2.3.1 Horizontal crossover strategy

Horizontal crossover operation is the process of performing
crossover operations on two different white whales in a population
in the same dimension, enabling them to learn from each other and
improve the global optimization ability of the algorithm. Lateral
crossover is performed on the parent individuals xi and xj to generate
the offspring individuals MxTi and MxTj, respectively, as shown in
Eq. 30:

MxT
i,d � m1xT

i,d + 1 −m1( )xT
j,d +N1 × xT

i,d − xT
j,d( )

MxT
j,d � m2xT

j,d + 1 −m2( )xT
i,d +N2 × xT

j,d − xT
i,d( ) , (30)

where m1 and m2 are random numbers among [0,1]; N1 and N2 are
random numbers in [-1,1]; xTi,d and xTj,d are the dth dimensions of
the parent individuals xi and xj, respectively; and MxTi,d and MxTj,d
are the children generated by crossing xi and xj in the dth dimension,
respectively.

4.2.3.2 Vertical crossover strategy
Vertical crossover operations are crossover operations

performed on all dimensions of newborn individuals, improving
the ability of the algorithm to avoid local optima. The vertical
crossover operation performs crossover operations on two
dimensions of the global optimal solution xTi. d1st and d2nd
dimensions of xTi are crossed vertically and horizontally, as
shown in Eq. 31:

MxT
i,d � m × xT

i,d1
+ 1 −m( )xT

i,d2
. (31)

MxTi,d is the offspring generated from the d1 and d2 dimensions
of individuals xTi,d1 and xTi,d2, respectively, by longitudinal
crossover; m∈[0,1].

4.3 Optimization process of MHIBWO

In this section, the optimization process of MHIBWO is
introduced in detail, and Figure 4 shows the specific flowchart.

Step 1: Parameter initialization.
The algorithm parameters of the BWO are initialized, and the

population size, n, and the maximum number of iterations, Tmax are
set. The initial positions of all beluga whales are randomly generated
within the search space, and the fitness values are obtained based on
the objective function.

Step 2: Population initialization.
The Tent is used to initialize the beluga whale population and

randomly generate the individual beluga whale population, and the
position of a beluga whale is updated using Eq. 28.

Step 3: Fitness calculation.
The initial fitness values of the beluga whale population and the

individuals are calculated and compared to find the optimal
individual.

TABLE 2 Wilcoxon rank-sum test.

Algorithm PSO GWO IGWO SOA BWO

P

F1 8.0065e-
09

8.0065e-
09

8.0065e-
09

8.0065e-
09

8.0065e-
09

F2 8.0065e-
09

8.0065e-
09

8.0065e-
09

8.0065e-
09

8.0065e-
09

F3 8.0065e-
09

8.0065e-
09

8.0065e-
09

8.0065e-
09

NaN

F4 8.0065e-
09

1.0296e-
07

0.0045277 8.0065e-
09

NaN

F5 8.0065e-
09

5.6107e-
09

7.4275e-
10

8.0065e-
09

NaN

F6 8.0065e-
09

8.0065e-
09

8.0065e-
09

8.0065e-
09

NaN

F7 6.7956e-
08

0.59786 4.539e-07 6.7956e-
08

3.9388e-
07

F8 7.4064e-
05

0.10751 0.59786 6.7956e-
08

8.5974e-
06

F9 2.9148e-
05

7.898e-08 0.0090454 6.7956e-
08

6.7956e-
08
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Step 4: Update on the exploration and exploitation phases.
Each beluga whale enters the exploration phase or exploitation

phase based on the balance factor Bf = B0(1-T/2Tmax). The step size
adjustment strategy is used in Eq. 31, and the subsequent stages, (22)
and (23), are applied.

(1) If Bf > 0.5, the updating mechanism enters the exploration
phase as Eq. 22. Then, the crisscross strategy is used to

improve, and the position of the beluga whale is updated
by Eqs 30, 31.

(2) If Bf < 0.5, the updating is controlled by the exploitation phase
as Eq. 23.

Calculating and sorting the fitness values of new
positions helps in finding the optimum result in the
current iteration.

A B C

D E F

G H I

FIGURE 5
Benchmark function test results. (A) F1 iteration curve. (B) F2 iteration curve. (C) F3 iteration curve. (D) F4 iteration curve. (E) F5 iteration curve. (F) F6
iteration curve. (G) F7 iteration curve. (H) F8 iteration curve. (I) F9 iteration curve.
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Step 5: Update on the whale fall phase.
Calculating the probability of whale fallWf in each iteration, the

updating mechanism is entered into the whale fall phase as Eq. 26.

Step 6: Terminating condition check.
If the current iteration is larger than the maximum iterative

number, the MHIBWO stops; otherwise, step 4 is repeated.

TABLE 3 Multi-scenario design.

Scenario Electric energy storage
system (ESS)

Seasonal hybrid energy storage system
(HESS)

Single-
layer

Bi-
layer

1 √

2 √ √

3 √ √

4 √ √ √

5 √ √ √

FIGURE 6
Comparative analysis of algorithms. (A) Convergence curve of algorithms. (B) Optimal configuration results of algorithms

TABLE 4 Optimal configuration scheme of algorithms.

Algorithm APGP/106 Yuan ACE/107 Yuan DOFR DOPVG/kW SBR (%)

PSO 3.714 1.283 40.1 5,061.2 72.2

BWO 3.138 1.813 35.7 3,645.8 84.2

MHIBWO 2.841 2.472 32.4 3,345.1 90.6

TABLE 5 Optimal configuration scheme of scenarios.

Scenario PWT/kW PPV/kW PBAT/kW EBAT/kWh PEL/kW PFUEL/kW EH-TANK/m
3 EO-TANK/m

3

1 1,594.1 1,511.3 - - - - - -

2 1,532.8 1,309.8 765.5 3,062.1 - - - -

3 3,064.5 2,626.8 - - 2,943.9 1,965.1 35,707 67,143

4 2,943.8 2,405.7 568.2 3,002 2,003.6 1,927.2 49,733 69,454

5 3,656.5 2,527.9 248.5 2,671 2,379.2 2,009 48,249.2 67,858
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4.4 Optimization performance test
of MHIBWO

In this paper, nine benchmark functions are used to test
the optimization performance of particle swarm optimization
(PSO), gray wolf optimization (GWO), improved gray
wolf optimization (IGWO), seagull optimization algorithm
(SOA), and BWO. All algorithms are tested 20 times (Luo
et al., 2022). The test function results are shown in Tables 1, 2,
and Figure 5. The benchmark function is shown in
Supplementary Table S4, and the three-dimensional
results of the test results are shown in Supplementary

Figure S1. The parameters of the algorithms are shown in
Supplementary Table S3.

In the case of the benchmark test functions, it is evident that
MHIBWOnot only successfully identifies the optimal function value
but also significantly improves the convergence speed. This outcome
reflects the effectiveness of the proposed method in enhancing the
global search capability and convergence speed of the algorithm.
Furthermore, while both BWO and MHIBWO consistently identify
the minimum value of the function, it is notable that MHIBWO
exhibits a shorter search time and higher accuracy. These results
unequivocally highlight the superiority of the proposed method in
terms of search accuracy and speed.

FIGURE 7
Comparative analysis of multi-scenarios. (A) Convergence curve of scenarios. (B) Optimal configuration results of scenarios.

A B C

D E F

FIGURE 8
Operation curve on the typical days. (A) Fuzzy C-means algorithm (FCMA) aggregate load on a typical day. (B) Typical day of spring. (C) Typical day of
summer. (D) Typical day of autumn. (E) Typical day of winter. (F) Hydrogen storage capacity on typical days.

Frontiers in Energy Research frontiersin.org11

Zhong et al. 10.3389/fenrg.2024.1336205

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1336205


5 Example analysis

5.1 Typical scenarios and system
parameter settings

A total of 8,760 sets of measurement light intensity, wind speed,
and load data are shown in Supplementary Figure S2 (ELIA, 2024).
Supplementary Table S5 gives the MG equipment investment
parameter. Supplementary Table S6 presents the electricity time-
of-use price. Supplementary Table S7 provides the pollutant
emission factors for power purchase. The following five scenarios
are given in Table 3. The solution process of the system is shown in
Supplementary Figure S3. In this paper, the analytical calculations of
the system were carried out on theMATLAB R2021a platform based
on YALMIP/CPLEX12.8.

5.2 Comparative analysis of MHIBWO and
other algorithms

PSO, BWO, and MHIBWO are used to solve scenario 5. The
convergence curves are shown in Figure 6, and the optimized results
are shown in Table 4:

As shown in Figure 6, MHIBWO has the highest net value, a
faster convergence speed, and requires fewer iterations to reach the
convergence state. As can be analyzed from Table 4, the results of
capacity optimization configuration using MHIBWO output have
achieved good net income and grid stability results. Compared with
PSO and BWO, the economy has increased by 53.2% and 33.9%,
respectively. Under the configuration scheme, the SBR degree of the
MG has also been significantly improved, which proves the excellent
ability of MHIBWO to solve the model. Therefore, the algorithms
used below are MHIBWO.

5.3 Analysis and comparison of
multi-scenarios

The configuration schemes under five different scenarios are
shown in Table 5, and the results are shown in Figure 7.

Combining all of the experimental results, configuring a
hybrid ESS that couples a seasonal hydrogen ESS and
electrical ESS can effectively improve the environmental
protection and stability of the system. Compared to single-
layer optimization models, double-layer optimization models
have better uniformity and globality. The reason is that the
double-layer model achieves model architecture optimization,
and its outer decision variable dimension is exponentially
reduced compared to those of the single-layer model,
allowing the solution to spread throughout the entire solution
set space to the maximum extent possible.

5.4 Results and analysis of optimal capacity

The FCMA is used to extract and aggregate 4 typical days. The
operation curve of the system on typical days is shown in Figure 8.

The wind and solar energy resources in spring and summer are
relatively abundant, and the electricity consumption is not high. The
system is self-sufficient. When there is surplus power generation, the
E&SHESS operates to store or sell the surplus electricity to the utility
grid and regularly sells excess energy to further increase economic
efficiency. The resources in autumn and winter have significantly
decreased, and the peak load has increased. The start-up of EL is
reduced, and the electric ESS participates in peak shaving, while FC
compensates for the shortage of PV power generation. At night and
during peak load, the electric ESS and FC are discharged in an
orderly manner, and any shortage of electricity is purchased from
the utility grid. In addition, the hydrogen storage level of the HT on
typical days is in the range of 30%–80%, which is the optimal
operating range of the hydrogen storage tank, further proving the
rationality of the configuration scheme.

6 Conclusion and prospects

This paper presents a bi-layer optimization method for
microgrid capacity optimization, aiming to achieve a balance
between the economy and operational stability while considering
engineering practicality.

1) The MG with the E&SHESS could meet the response
requirements of various power sources and loads.

2) A bi-layer capacity optimization model of MGs is proposed. By
iterating through outer and inner layers, the dimensionality of
decision variables is reduced to optimize the architectural
model, improving the ergodicity and globality of the solution.

3) By comparing the test functions with five other common
algorithms, the superiority of MHIBWO in terms of
convergence speed and optimization accuracy was verified.

4) Through typical daily operations, it was proved that power
allocation can be effectively carried out between systems,
achieving overall economic and stable operation.

The subsequent work explores the new generation of high-
quality energy. Studying the beneficial interaction between the
grid and users further improves the economy and reliability of
the system.
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