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This paper introduces an exponential time integrator scheme for solving partial
differential equations in time, specifically addressing the scalar time-dependent
convection-diffusion equation. The proposed second-order accurate scheme is
demonstrated to be stable. It is applied to analyze the heat and mass transfer mixed
convective flow of power-law nanofluid over flat and oscillatory sheets. The
governing equations are transformed into a dimensionless set of partial
differential equations, with the continuity equation discretized using a first-order
scheme. The proposed time integrator scheme is employed in the time direction,
complemented by second-order central discretization in the space direction for the
momentum, energy, and nanoparticle volume fraction equations. Quantitative
results indicate intriguing trends, indicating that an increase in the Prandtl
number and thermophoresis parameter leads to a decrease in the local Nusselt
number. Thismodified time integrator is a valuable tool for exploring thedynamics of
unsteady power-law nanofluid flowovermoving sheets across various scenarios. Its
versatility extends to the examination of unstable fluid flows. This work improves
engineering and technological design and operation in nanofluid dynamics.
Improving numerical simulations’ precision and computational efficiency deepens
our comprehension of fundamental physics, yielding helpful information for
enhancing systems that rely on nanofluids.
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1 Introduction

Numerous engineering applications can benefit from studying unstable nanofluid flows
over moving surfaces, which has garnered much attention in fluid dynamics and heat
transfer. The unique properties of nanofluids, which aremixtures of nanoparticles in regular
fluids, make them promising tools for enhancing energy efficiency and heat transfer in a
wide range of manufacturing operations. In unstable flow situations, fluid and heat
transport processes change dynamically over time. Hence, a precise and efficient
numerical technique is needed to produce accurate findings.

Various technical and scientific procedures depend on the movement of heat and mass.
Recent years have seen a surge in interest in heat andmass transport within the power law of
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non-Newtonian nanofluid flow. The use of nanofluids has the
potential to improve heat transfer efficiency.

A “nanofluid” is a fluid that contains suspended nanoparticles.
Due to the nanoparticles’ enhanced thermal conductivity, the base
fluid may be able to transmit heat more efficiently. The non-
Newtonian behaviour of nanofluids makes it challenging to study
their heat and mass transport, despite their intriguing
characteristics.

Many people in the field of fluid dynamics have been interested
in non-Newtonian nanofluids due to their complex heat and mass
transfer features. Since these fluids are used in various contexts, from
high-tech manufacturing to healthcare, precise and efficient
numerical approaches are required to understand their
elusive behavior.

Over the past 35 years, scientists have extensively studied the
properties of differential air-heated cavities. These cavities
contain two isothermal vertical walls and one adiabatic
horizontal wall. Convective laminar and turbulent flows
powered by buoyancy were reported by Markatos and
Pericleous (Markatos and Pericleous, 1984). Coupled heat
conduction across a wall with two-dimensional laminar
internal convection was the subject of an early integrated
experimental and computational investigation by Kim and
Viskanta (Kim and Viskanta, 1984). De Valh Davis (De Vahl
Davis, 1987) is credited with one of the seminal numerical
research on natural convection in air-filled square cavities; he
used the finite difference method to ascertain the initial exact
findings concerning fluid mechanics and temperature
distribution. The impact of the horizontal top and bottom
wall boundary conditions on air natural convection in a cavity
with large Rayleigh numbers was described experimentally and
numerically by Wu et al. (Wu et al., 2006) and Bari et al. (Baïri
et al., 2007), respectively. With internal partitions (Bilski et al.,
1983; Kumar-Das and Kumar-Reddy, 2006; Wu and Ching,
2010), conducting solids (House et al., 1990), and local or
volumetric heat sources [(Liaqat and Baytas, 2001; Kumar
et al., 2022; Asghar et al., 2023; Kuznetsov and Sheremet,
2009)], among other situations, researchers have investigated

the impact of solid objects within the cavity on natural
convection.

Power law non-Newtonian nanofluid flows have been studied in
terms of their heat and mass transport using exponential integrator
techniques. Non-Newtonian fluid properties, such as viscosity and
power-law index, have been studied (EL-Dabe et al., 2019) for their
impacts on the velocities, temperatures, and concentrations of
suspended nanoparticles. Researchers have examined the
potential effects of the power-law index, nanoparticle volume
fraction, nanoparticle type, and permeability parameter on
nanofluid flow and heat transfer (Raju et al., 2015; Maleki et al.,
2019). It has been found that the friction and heat transfer
coefficients are affected by the power-law index and the Reynolds
number (Raju et al., 2015). The heat transfer and two-dimensional
flow of a non-Newtonian power-law nanofluid over a stretching
surface have been the subject of numerical investigations (Afify and
El-Aziz, 2017). According to reference (Eid and Mahny, 2017), non-
Newtonian nanofluids can experience unstable boundary-layer
convective heat and mass movement when a magnetic field is
paired with heat generation or absorption.

The natural convection of non-Newtonian fluids is more
difficult to understand since viscous forces are calculated using a
nonlinear relation between shear stresses and the deformation rate.
The effective viscosity is needed to calculate the viscous forces, and
this can only be done by locating velocity gradients everywhere and
at all times. Non-Newtonian phase change slurries with a power law
have been described by Inaba et al. (Inaba et al., 2003) using the
Rayleigh-Benard natural convection model. There have been many
two-dimensional descriptions of laminar flows of non-Newtonian
fluids, including flows in a vertical duct (Lorenzini and Biserni,
2003), from a vertical plate (Kumari and Nath, 2006), inside an
enclosure with a micropolar fluid (Aydin and Pop, 2007), inside a
power-law fluid with an applied magnetic field (Chen, 2008), inside
porous media with viscoelastic fluids (Malashetty et al., 2011; Hirata
et al., 2015), inside inclined cavities with Otswald de Waele fluids
(Khezzar et al., 2012), and inside circular and square cylinders
(Sasmal and Chhabra, 2012; Shyan et al., 2013). Oswald and

FIGURE 1
Effect of m on velocity profile using H0=0.1, GrT=0.1,
GrC � 0.1,Pr � 0.9, Sc � 0.9, γ � 0.1,Re � 1,Nt � 0.1,Nb � 0.1.

FIGURE 2
Effect of Hartmann number on velocity profile using
m � 1.1,GrT � 0.5,GrC � 0.1,Pr � 0.9, Sc � 0.9, γ � 0.1,Re � 1,
Nt=0.1, Nb=0.1.
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Waele found that liquid foods had a nonNewtonian fluid character,
and their research helped shed light on the part that natural
convection plays in the transitory thermal procedures utilized in
the food industry for pasteurization and sterilization (Moraga et al.,
2011; Moraga and Lemus-Mondaca, 2011). The phenomenon of
natural convection and solidification of water juices within inner
cavities, induced by a combination of forces involving natural air
convection, has been investigated. The study explores different
configurations of inlet and outlet for cooling external air.
Hershel-Bulkley, Casson, and Power law are the non-Newtonian
rheological models used to explain fluid mechanics and heat
transmission. The findings of this research have been
documented and published in a scientific publication (Lemus
et al., 2013).

There are several advantages to using exponential integrators in
power law nanofluid flow for mass and heat transfer. The effects of
thermophoresis and Brownian motion on heat transmission and
nanoparticle volume fraction are investigated (Balaji et al., 2020). An
effective way to get self-similar equations by using the right
similarity transformation is with exponential integrators. Once
these equations are known, they can be numerically solved using
the Runge-Kutta method and shooting techniques (Ravnik and
Tibaut, 2018). Researchers used the integrators discussed in the
paper to understand better how different mass and heat fluxes
affected the nanoparticle volume fraction parameter and
temperature distribution (Ghosh and Mukhopadhyay, 2018). In
addition, they allow us to study how Brownian motion and
thermophoresis interact to affect heat transmission and
nanoparticle volume fraction (Ellahi et al., 2016). Nevertheless,
the abstracts do not address the potential drawbacks of using
exponential integrators for this objective.

In (Shafiq et al., 2021), a new approach to solving numerical
problems using artificial neural networks (ANN) combines the
Levenberg-Marquard algorithm with multilayer perceptron
(MLP) feed-forward back-propagation. This approach can be
used to understand radiation, heat generation/absorption, and
unsteady electrically conducting Williamson liquid flow along

porous stretching surfaces. Thermodynamic boundary conditions,
velocity, and thermal slip phenomena are all considered in the study
of heat. This gap is filled in the article (Sindhu et al., 2023; Çolak
et al., 2023) by talking about multilayer ANN with Bayesian
regularisation for a generalized exponential model based on
inverse power law (IPL) reliability measures. The fundamental
goal (Upadhya et al., 2022) is to manage the flow, heat, and mass
transfer of Casson and micropolar fluids and hybrid nanofluids
(Casson, micropolar, silica, alumina, and water) along a curved
stretched sheet. This study (Qureshi et al., 2023) aims to investigate
the effects of a morphological nanolayer on the heat transfer
characteristics and flow characteristics of a multi-hole-diaphragm
(MHD) hybrid nanofluid formed by dispersing a polymer/CNT
matrix nanocomposite material through orthogonal permeable
discs. This study (Kavya et al., 2022) examines the fluid
momentum and thermal energy parameters of a laminar, stable,
incompressible, two-dimensional, non-Newtonian pseudo-plastic
Williamson hybrid nanofluid flowing across a stretching cylinder.
The effects of magnetohydrodynamics, thermal conduction,
injection, heat generation, and suction and injection are all
considered. The main objective of the (Zeeshan et al., 2023)
study is to examine the nanofluid flow that occurs between two
horizontal channels that are infinitely rotatable. You can stretch the
lower plate because it is porous. We use graphs to discuss how
physical parameters like chemical reactions, heat sources and sinks,
Hall current, and thermal properties affect concentration,
temperature, and velocity profiles. The three-dimensional stable
axisymmetric boundary layer over a permeable moving plate is
investigated in depth in this study (Lund et al., 2023). As its base
liquid, water contains two or more distinct types of nanoparticles in
the hybrid nanofluid.

Computational fluid dynamics utilizing an exponential
integrator method is the focus of this investigation. This method,
famous for its proficiency in handling rigid and very oscillatory
systems, elucidates the heat and mass transport phenomena in
Power Law non-Newtonian nanofluid flows. This research will
combine theoretical analysis with numerical simulations to better

FIGURE 3
Effect of thermal Grashoff number on velocity profile using
m � 1.1,H0 � 0.1,GrC � 0.1,Pr � 0.9, Sc � 0.9, γ � 0.1,Re � 1,
Nt = 0.1, Nb = 0.1.

FIGURE 4
Effect of Brownian motion parameter on temperature profile
using m � 1.1,H0 � 0.9,GrC � 0.1,Pr � 0.9, Sc � 0.9, γ = 0.1,
Re = 1, Nt = 0.1, GrT = 0.5.
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understand the intricate interplay between fluid rheology, nanoscale
interactions, and heat-mass exchanges. In what follows, we will
provide a comprehensive examination of the intricacies of the
exponential integrator scheme, shedding light on the intriguing
subject of non-Newtonian nanofluid dynamics.

In many contexts, the dynamics of unsteady power-law
nanofluid flow over moving sheets can be studied with the help
of the modified time integrator. For example, one can use nanofluid
flow analysis to understand better how nanofluids behave in systems
like heat exchangers and solar panels. Beyond that, it might be used
to study the dynamics of nanofluidic flow in the human body,
especially in the cardiovascular system. Here are a few
concrete instances:

1. By manipulating nanofluids over solar panels, we can enhance
the efficiency of solar energy harvesting.

2. By guiding a flow of nanofluids over heat exchangers, it is
possible to boost heat transmission efficiency.

3. Drug and other therapeutic agent distribution can be enhanced
by harnessing the movement of nanofluids in the
circulatory system.

4. Understanding how nanofluids move in an unsteady
environment is essential to create cutting-edge cooling
systems for high-performance engines, electronic
components, and aerospace applications. In industries where
lightweight materials and compact designs are prioritized, this
research work can improve the accuracy of simulations to aid
in the design of more effective cooling solutions.

Our findings can enhance forecasting and design in these
practical contexts, leading to savings, efficiencies, and reduced
environmental impact. By tackling the challenges of unsteady
power-law nanofluid flow over moving sheets, our research could
help push forward several engineering disciplines and create cutting-
edge, environmentally friendly technology.

The governing equations that describe the unsteady flow of
power-law nanofluid over moving sheets are commonly referred to

as the Navier-Stokes equations. The abovementioned equations
exhibit nonlinearity and coupling, making them challenging to
solve by analytical methods. The equations are commonly solved
using numerical methods. Numerous numerical methods exist that
can solve some particular differential equations. Some numerical
methods can be preferred because they give large stability regions.
Among the class of numerical methods, the explicit class of finite
difference plays a vital role in finding the solution for linear and
nonlinear differential equations. One of the advantages of using an
explicit scheme is to avoid linearization for nonlinear differential
equations. The other advantage is that these schemes can be used
without adopting extra iterative schemes for solving difference
equations. The class of exponential integrators are those
numerical methods that can handle stiff problems. This
contribution modifies and applies an exponential time integrator
scheme to solve unsteady power-law nanofluid flow over the moving
sheets. The modified exponential integrator scheme successfully
solves the dimensionless forms of governing equations. The
modified time integrator was validated by comparing its results
against those obtained from the conventional explicit time
integrator and experimental research. Based on the data, it can
be concluded that the modified time integrator has higher accuracy
and efficiency when compared to the standard explicit time
integrator.

The findings of this study, which provide a novel viewpoint, fill a
significant gap in the existing body of research on nanofluid
dynamics. An exponential time integrator system for solving
time-dependent partial differential equations (PDEs) is presented
and thoroughly examined in our research. This system is distinct
from those presented in earlier works or studies. We demonstrate
that this technique is accurate to the second order and stable to a
high degree. This method investigates the dynamics of unsteady
power-law nanofluid flows over moving sheets in various
environments.

This state-of-the-art temporal integrator offers a fresh
perspective on non-stationary phenomena in the context of
power-law nanofluid flows. A computational tool for researching

FIGURE 5
Effect of thermophoresis parameter on temperature profile using
m � 1.1,H0 � 0.9,GrC � 0.1,Pr � 0.9, Sc � 0.9, γ � 0.1,Re � 1
Nb = 0.1, GrT = 0.5.

FIGURE 6
Effect of Schmidt number on nanoparticles volume fractions
profile using m � 1.1,H0 � 0.9,GrC � 0.1,Pr � 0.9,Nt � 0.1,
γ = 0.1, Re = 1, Nb = 0.1, GrT = 0.5.
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nanofluid behavior in settings with heat and mass transfer over
oscillatory sheets, which answers a need in the literature, is provided
by our work.

This study aspires to improve the subject by exploring
hitherto unexplored areas regarding the dynamics of
unstable nanofluid flows and by enhancing the precision and
efficiency of numerical simulations. Our work represents a
significant step forward in the ongoing effort to understand
nanofluid dynamics and its potential applications in
engineering and research.

2 Proposed exponential time
integrator scheme

To propose a numerical scheme, one should examine a partial
differential equation in the following format:

∂u
∂t

� F u,
∂u
∂x

,
∂2u
∂x2

( ) (1)

The first and second stages of the schemes are explicit. For
constructing the first stage of the scheme, Eq. 1 can be written as

∂u
∂t

� u + G u,
∂u
∂x

,
∂2u
∂x2

( ) (2)

The first stage of the proposed scheme can be expressed as

�un+1
i � un

i e
Δt + eΔt − 1( )G un

i ,
∂u
∂x

∣∣∣∣∣∣∣ ni , ∂
2u

∂x2

∣∣∣∣∣∣∣∣
n

i

( ) (3)

Equation 3 can be written as:

�un+1
i � un

i e
Δt + eΔt − 1( ) F un

i ,
∂u
∂x

∣∣∣∣∣∣∣ ni , ∂
2u

∂x2

∣∣∣∣∣∣∣∣
n

i

( ) − un
i{ } (4)

where Δt is the time step size.
Re-write Eq. 4 as

�un+1
i � un

i e
Δt + eΔt − 1( ) ∂u

∂t

∣∣∣∣∣∣∣ ni − un
i{ } (5)

Let the second stage of the scheme be expressed as

�un+1
i � un

i e
Δt + eΔt − 1( )⎧⎨⎩aG un

i ,
∂u
∂x

∣∣∣∣∣∣∣ ni , ∂
2u

∂x2

∣∣∣∣∣∣∣∣
n

i

( )
+ bG⎛⎝�un+1

i ,
∂�u
∂x

∣∣∣∣∣∣∣n+1i
,
∂2�u
∂x2

∣∣∣∣∣∣∣∣
n+1

i

⎞⎠⎫⎬⎭ (6)

Where a and b are unknown parameters to be found later using
Taylor series expansion

Equation 6 can be written as

�un+1
i � un

i e
Δt + eΔt − 1( )⎧⎨⎩a F un

i ,
∂u
∂x

∣∣∣∣∣∣∣ ni , ∂
2u

∂x2

∣∣∣∣∣∣∣∣
n

i

( ) − cun
i( )

+b⎛⎝ �F �un+1
i ,

∂�u
∂x

∣∣∣∣∣∣∣ n+1i
,
∂2�u
∂x2

∣∣∣∣∣∣∣∣
n+1

i

) − �un+1
i

⎞⎠⎫⎬⎭⎛⎝ (7)

Now consider the Taylor series expansion for un+1i

un+1
i � un

i + Δt∂u
∂t

∣∣∣∣∣∣∣ni + Δt( )2∂
2u

∂t2

∣∣∣∣∣∣∣∣
n

i

+ O Δt( )3( ) (8)

By substituting Taylor series expansion for un+1i into Eq. 7
it yields

un
i + Δt∂u

∂t

∣∣∣∣∣∣∣ni + Δt( )2∂
2u

∂t2

∣∣∣∣∣∣∣∣
n

i

� un
i e

Δt + eΔt − 1( ){a F n
i − cun

i( )
+ b �F n+1

i − �un+1
i( )} (9)

Re-write Eq. 9 as:

un
i + Δt∂u

∂t

∣∣∣∣∣∣∣ni + Δt( )2∂
2u

∂t2

∣∣∣∣∣∣∣∣
n

i

� un
i e

Δt + eΔt − 1( ) a
∂u
∂t

∣∣∣∣∣∣∣ ni − cun
i( ){

+ b
∂�u
∂t

∣∣∣∣∣∣∣ ni − �un+1
i( )}

(10)
By substituting Eq. 5 into Eq. 10 it is obtained

un
i +Δt

∂u
∂t

∣∣∣∣∣∣∣ni + Δt( )2∂
2u

∂t2

∣∣∣∣∣∣∣∣
n

i

� un
i e

Δt + eΔt −1( ) a
∂u
∂t
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+b eΔt
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∣∣∣∣∣∣∣ ni + eΔt −1( ) ∂2u
∂t2
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n

i

−∂u
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−un

i e
Δt − eΔt −1( ) ∂u
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i( ))}

(11)
Equation 11 can be expressed as;

un
i + Δt∂u

∂t

∣∣∣∣∣∣∣
i

n

+ Δt( )2∂
2u

∂t2

∣∣∣∣∣∣∣∣
n

i

� eΔt − ac eΔt − 1( ) − beΔt eΔt − 1( ) + b eΔt − 1( )2( )un
i

+ a eΔt − 1( ) + beΔt eΔt − 1( ) − 2b eΔt − 1( )2( )∂u
∂t

∣∣∣∣∣∣∣ni
+ b eΔt − 1( )2∂2u

∂t2

∣∣∣∣∣∣∣∣
n

i

(12)

Equating the coefficients of uni ,
∂u
∂t|

n

i
and ∂2u

∂t2 |
n

i
on both sides of Eq.

12 yields

1 � eΔt − ac eΔt − 1( ) − beΔt eΔt − 1( ) + b eΔt − 1( )2 (13)
Δt � a eΔt − 1( ) + beΔt eΔt − 1( ) − 2b eΔt − 1( )2 (14)

Δt( )2
2

� b eΔt − 1( )2 (15)

Upon solving Eqs. 13–15 it is obtained

a � 2Δt eΔt − 1( ) − eΔt Δt( )2 + 2 Δt( )2 eΔt − 1( )
2 eΔt − 1( )2

b � Δt( )2
2 eΔt − 1( )2

c � − Δt( )2 + 2 eΔt − 1( )2
Δt Δt eΔt − 2( ) + 2 eΔt − 1( )( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16)

Therefore for F � ∂2u
∂x2, both stages of the proposed scheme can

be expressed as:
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�un+1
i � un

i e
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n

i

− un
i{ } (17)

un+1
i � un

i e
Δt + eΔt − 1( )⎧⎨⎩a

∂2u
∂x2

∣∣∣∣∣∣∣∣
n

i

− cun
i( ) + b⎛⎝∂2�u

∂x2

∣∣∣∣∣∣∣∣
n+1

i

− �un+1
i

⎞⎠⎫⎬⎭
(18)

Let central difference numerical approximation for ∂2u
∂x2 is used at

ith grid point and nth and at arbitrary time levels, Eq. 17 and (18)
can be expressed as:

�un+1
i � un

i e
Δt + eΔt − 1( ) δ2xu

n
i − cun

i{ } (19)
un+1
i � un

i e
Δt + eΔt − 1( ) a δ2xu

n
i − cun

i( ) + b δ2x�u
n+1
i − �un+1

i )}({ (20)
where δ2xu

n
i � uni+1−2uni +uni−1

(Δx)2 .

3 Stability analysis

This study will use either a Von Neumann stability or
Fourier series analysis. For the said purpose, consider a two-
dimensional convection-diffusion partial differential equation is
expressed as:

∂u
∂t

� α1
∂u
∂x

+ α2
∂u
∂y

+ β1
∂2u
∂y2

(21)

The proposed scheme is applied to the time variable of Eq. 21,
and space terms are discretized by central difference approximation.
Equation 21 is discretized as

�un+1
i,j � un

i,je
Δt + eΔt − 1( ) α1δxu

n
i,j + α2δyu

n
i,j + β1δ

2
yu

n
i,j − un

i,j{ } (22)
un+1
i,j � un

i,je
Δt + eΔt − 1( ){a α1δxu

n
i,j + α2δyu

n
i,j + β1δ

2
yu

n
i,j − cun

i,j( )
+ b(α1δx�un+1

i,j + α2δy�u
n+1
i,j + β1δ

2
y�u

n+1
i,j − �un+1

i,j )} (23)

where δxuni,j �
uni+1,j−uni−1,j

2(Δx) and δyuni,j �
uni,j+1−uni,j−1

2(Δy)
According to Fourier series analysis, the following

transformations can be considered.

un+1
i,j � En+1eiIψejIψ , un

i ± 1,j � Ene i±1( )IψejIψ

un
i,j ± 1 � EneiIψe j±1( )Iψ , �un+1

i,j � �E
n+1

eiIψejIψ

�un+1
i ± 1,j � �E

n+1
e i±1( )IψejIψ , �un+1

i,j ± 1 � �E
n+1

eiIψe j±1( )Iψ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (24)

where I � ���−1√
.

Some of the transformations are substituted into Eq. 22 and
dividing both sides by eiIψejIψ , it yields

�E
n+1 � EneΔt + eΔt − 1( ) α1

eIψ − e−Iψ

2Δx( ) + α2
eIψ − e−Iψ

2Δy( ){
+β1

eIψ − 2 + e−Iψ

Δy( )2( ) − 1}En (25)

Using trigonometric identities, Eq. 25 can be expressed as:

�E
n+1 � EneΔt + eΔt − 1( )

α1
Isinψ

Δx + α2
Isinψ

Δy + β1
Δy( )2 2 cosψ − 2( ) − 1{ }En (26)

Let c1 � α1(eΔt−1)
Δx , c2 � α2(eΔt−1)

Δy , d � (eΔt−1)β1
(Δy)2

Re-write Eq. 26 as

�E
n+1 � EneΔt + α1Isinψ + α2Isinψ + 2d cosψ − 1( ) − 1{ }En (27)

Now, substituting some of the transformations from (24) into
Eq. 23 and dividing both sides by eiIψejIψ , it yields

En+1 � EneΔt + eΔt − 1( ){a α1
eIψ − e−Iψ

2Δx( ) + α2
eIψ − e−Iψ

2Δy( )(
+ β1

eIψ − 2 + e−Iψ

Δy( )2( ) − c)En + b α1
eIψ − e−Iψ

2Δx( )(
+ α2

eIψ − e−Iψ

2Δy( ) + β1
eIψ − 2 + e−Iψ

Δy( )2( ) − 1)�En+1} (28)

Using trigonometric identities, Eq. 28 can be expressed as:

En+1 � EneΔt + a c1Isinψ + c2Isinψ + d 2 cosψ − 2( ) − c( )En{
+b c1Isinψ + c2Isinψ + 2d cosψ − 1( ) − 1( )�En+1} (29)

Putting the expression for �En+1 from Eq. 27 into Eq. 29, it
is obtained

En+1 � EneΔt + a c1 + c2( )Isinψ + d 2 cosψ − 2( ) − c( )En

+ b c1 + c2( )Isinψ + 2d cosψ − 1( ) − 1( )
× eΔt + c1 + c2( )Isinψ + 2d cosψ − 1( ) − 1( )En (30)

The amplification factor can be written as:

En+1

En � a 2d cosψ − 1( ) − c( ) + b 2d cosψ − 1( ) − 1( )
× 2d cosψ − 1( ) − 1 + eΔt( ) − bc2 sin 2 ψ

+ I ac3 sinψ + 2d cosψ − 1( ) − 1( )c3 sinψ[
+ c3 sinψ +2d cosψ − 1( ) − 1( )] (31)

Therefore, stability condition can be expressed as:

a23 + a24 ≤ 1 (32)
where a3 and a4 denotes real and imaginary parts of the right-hand
side of Eq. 31.

The stability analysis of the scalar equation is provided, and now
convergence for the partial differential equation system will be
provided. To achieve this aim, consider the system of partial
differential equations in the vector-matrix equation as:

∂v
∂t

� A
∂v
∂x

+ B
∂v
∂y

+ C
∂2v
∂y2

+Dv (33)

Discretize Eq. 33 using the first stage of the proposed scheme it
is obtained.

�vn+1i,j � vni,je
Δt + eΔt − 1( ) A{ δxv

n
i,j + Bδyv

n
i,j + Cδ2yv

n
i,j +Dvni,j − vni,j}

(34)
Discretizing Eq. 33 using the second stage of the proposed

scheme gives

vn+1i,j � vni,je
Δt + eΔt −1( ) a Aδxv

n
i,j +Bδyvni,j +Cδ2yvni,j +Dvni,j − cvni,j( ){

+ b Aδx�v
n+1
i,j +Bδy�vn+1i,j +Cδ2y�vn+1i,j +D�vn+1i,j − �vn+1i,j( )}

(35)
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Theorem: The proposed exponential scheme converges
conditionally for the system of PDEs (33).

Proof: To prove this Theorem, consider the exact scheme of the
exponential scheme as

�Vn+1
i,j � Vn

i,je
Δt + eΔt − 1( ) A{ δxV

n
i,j + BδyV

n
i,j + Cδ2yV

n
i,j +DVn

i,j − cVn
i,j}

(36)
Vn+1

i,j �Vn
i,je

Δt+ eΔt−1( ) a AδxV
n
i,j+BδyVn

i,j+Cδ2yVn
i,j+DVn

i,j−cVn
i,j( ){

+b Aδx �V
n+1
i,j +Bδy �Vn+1

i,j +Cδ2y �Vn+1
i,j +D �Vn+1

i,j − �Vn+1
i,j( )}

(37)
By subtracting Eq. 34 from Eq. 36 and using Vn

i,j − vni,j � eni,j, it
is obtained

�en+1i,j � eni,je
Δt + eΔt − 1( ) A{ δxe

n
i,j + Bδye

n
i,j + Cδ2ye

n
i,j +Deni,j − ceni,j}

(38)
Applying the norm on both sides of Eq. 38 that yields

�en+1 ≤ eneΔt

+ eΔt − 1
∣∣∣∣ ∣∣∣∣ A‖ ‖ en

Δx + B‖ ‖ en

Δy + C‖ ‖ 4en

Δy( )2 + D‖ ‖en + cen{ } (39)

Since eΔt > 1 for Δt> 0, so |eΔt − 1| � eΔt − 1 and let
c4 � eΔt−1

Δx , c5 � eΔt−1
Δy , d1 � eΔt−1

(Δy)2. Therefore, inequality (39) can be
written as

�en+1 ≤ eneΔt + c4 A‖ ‖ + B‖ ‖c5+4 C‖ ‖d1 + eΔt − 1( ) D‖ ‖+1( )en( ) (40)

Now subtracting Eq. 37 from Eq. 35 it is obtained

en+1i,j � eni,je
Δt + eΔt − 1( ) a Aδxe

n
i,j + Bδye

n
i,j + Cδ2ye

n
i,j +Deni,j − ceni,j( ){

+b Aδx�e
n+1
i,j + Bδy�e

n+1
i,j + Cδ2y�e

n+1
i,j +D�en+1i,j − �en+1i,j )}( (41)

Applying the norm on both sides of Eq. 41 gives

en+1 ≤ eneΔt

+ eΔt − 1
∣∣∣∣ ∣∣∣∣ a A‖ ‖ en

Δx + B‖ ‖ en

Δy + C‖ ‖ 4en

Δy( )2 + D‖ ‖en + cen( ){
+b A‖ ‖ �e

n+1

Δx + B‖ ‖ �e
n+1

Δy + C‖ ‖ 4�en+1

Δy( )2 + D‖ ‖�en+1 + �en+1( )} (42)

Re-write Eq. 42 as:

en+1 ≤ eneΔt + a c4 A‖ ‖ + c5 B‖ ‖+4d1 C‖ ‖ + eΔt − 1( ) D‖ ‖ + c( )en
+ b c4 A‖ ‖ + c5 B‖ ‖+4d1 C‖ ‖ + eΔt − 1( ) D‖ ‖+1( )�en+1 (43)

By using inequality (40) into (43), it yields

en+1 ≤ eneΔt + a c4 A‖ ‖ + c5 B‖ ‖+4d1 C‖ ‖ + eΔt − 1( ) D‖ ‖ + c( )en
+ b c4 A‖ ‖ + c5 B‖ ‖+4d1 C‖ ‖ + eΔt − 1( ) D‖ ‖+1( )
× eΔt + c4 A‖ ‖ + c5 B‖ ‖+4d1 C‖ ‖ + eΔt − 1( ) D‖ ‖+1( )en
+M O Δt( )2, Δx( )2, Δy( )2( )( ) (44)

Rearranging inequality (44) as

en+1 ≤ μen +M O Δt( )2, Δx( )2, Δy( )2( )( ) (45)

where μ � eΔt + a(c4‖A‖ + c5‖B‖+4d1‖C‖+ (eΔt − 1)‖D‖ + c) +
b(c4‖A‖ + c5‖B‖+4d1‖C‖ +(eΔt − 1)‖D‖+1)(eΔt + c4‖A‖ +
c5‖B‖+4d1 ‖C‖ + (eΔt − 1)‖D‖+1)

Put n � 0 in inequality (45). It yields

e1 ≤ μe0 +M O Δt( )2, Δx( )2, Δy( )2( )( ) (46)

Since e0 � 0 because of initial conditions, so inequality (46) can
be written as

e1 ≤M O Δt( )2, Δx( )2, Δy( )2( )( ) (47)

Put n � 1 in inequality (45) that yields

e2 ≤ μe1

+M O Δt( )2, Δx( )2, Δy( )2( )( )≤ 1 + μ( )M O Δt( )2, Δx( )2, Δy( )2( )( )
(48)

Similarly, if it is continued, then for finite n

en ≤ 1 + μ + . . . + μn−1( )M O Δt( )2, Δx( )2, Δy( )2( )( )
� 1 − μn

1 − μ
( )M O Δt( )2, Δx( )2, Δy( )2( )( ) (49)

For large n i. e., n → ∞ the series 1 + μ + . . . + μn−1 + . . . is an
infinite geometric series that will converge if |μ|< 1.

4 Problem formulation

Consider a laminar, two-dimensional, unsteady, incompressible
non-Newtonian fluid flow over the moving plate. The x− axis is
taken along the direction of flow, and y− axis is taken to
perpendicular to the plate. The plate is moving toward the positive
x− axis. The movement of the plate generates the flow in the fluid,
which is also driven by temperature and concentration gradients. Let
the ambient temperature and concentration be less than the plate’s
temperature and concentration. The effect of magnetic and chemical
reactions is also considered. The magnetic field has strength. B+ is
applied perpendicular to the sheet. Under boundary layer assumption,
the governing equations (Hayat et al., 2021) of discussed flow
phenomena can be expressed as:

∂u*
∂x*

+ ∂u*
∂y*

� 0 (50)

∂u*
∂t*

+ u*
∂u*
∂x*

+ v*
∂u*
∂y*

� K

ρ

∂
∂y*

∂u*
∂y*

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣m−1∂u*

∂y*
( )

+ g βT T − T+( ) + βC C − C∞( )( ) − σB2
+

ρ
u*

(51)
∂T
∂t*

+ u*
∂T
∂x*

+ v*
∂T
∂y*

� α
∂2T
∂y*2

+ τ DB
∂T
∂y*

∂C
∂y*

+ DT

T∞

∂T
∂y*

( )2( )
(52)

∂C
∂t*

+ u*
∂C
∂x*

+ v*
∂C
∂y*

� DB
∂2C
∂y*2

+ DT

T∞

∂2T
∂y*2

− k1 C − C∞( ) (53)

Subject to the boundary conditions
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u* x*, y*, t*( ) � uw, v* x*, y*, t*( ) � 0, T x*, y*, t*( )
� Tw, C x*, y*, t*( ) � Cw when y* � 0

u* x*, y*, t*( ) � 0, T x*, y*, t*( ) � T∞, C x*, y*, t*( )
� C∞ when y* → ∞

u* x*, y*, t*( ) � 0, v* x*, y*, t*( ) � 0, T x*, y*, t*( )
� 0, C x*, y*, t*( ) � 0when x* � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(54)

and initial conditions are given as

u* x*, y*, t*( ) � 0, v* x*, y*, t*( ) � 0, T x*, y*, t*( ) � 0, C x*, y*, t*( )
� 0when t* � 0

(55)
where u* and v* are horizontal and vertical components of the
velocity, respectively, T is the temperature of the fluid, C is
concentration, g is gravity, βC denotes solutal expansion, DT is
the thermophoresis diffusion coefficient, DB represents Brownian
motion coefficient, α is thermal diffusivity, ρ is the fluid density, σ
represents electrical conductivity, Tw and T∞ are wall and ambient
temperature, respectively, Cw and C∞ denotes concentration at the
wall/sheet and ambient concentration, respectively, and k1 is
dimensional reaction rate parameter.

By considering the following transformations

x � x*
L
, y � y*

L
, u � u*

u+
, t � u+t*

L
, θ � T − T∞

Tw − T∞
, ϕ � C − C∞

Cw − C∞
}
(56)

where u+ is the reference velocity (Vujanovic et al., 1972) given as

u+ � ρLm

K
[ ] 1

m−2
(57)

whereK is the fluid consistency index, and L is characteristic length.
Eqs. 50–53 are reduced to

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

� ∂
∂y

∂u
∂y

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣m−1∂u

∂y
( ) + GγT

R2
e

θ + GγC

R2
e

ϕ − H2
a

Re
u (58)

∂θ
∂t

+ u
∂θ
∂x

+ v
∂θ
∂y

� 1
PrRe

∂2θ
∂y2

+ Nb

Re

∂θ
∂y

∂ϕ
∂y

+ Nt

Re

∂θ
∂y

( )2

(59)

∂ϕ
∂t

+ u
∂ϕ
∂x

+ v
∂ϕ
∂y

� 1
ScRe

∂2ϕ
∂y2

+ Nt

Nb

1
ScRe

∂2θ
∂y2

− γϕ (60)

The dimensionless boundary conditions can be expressed as

u x, y, t( ) � ϵ, v x, y, t( ) � 0, θ x, y, t( ) � 1,ϕ x, y, t( ) � 1wheny � 0
u x, y, t( ) � 0, θ x, y, t( ) � 0, ϕ x, y, t( ) � 0when y → ∞

u x, y, t( ) � 0, v x, y, t( ) � 0, θ x, y, t( ) � 0, ϕ x, y, t( ) � 0when x � 0

⎫⎪⎬⎪⎭
(61)

and dimensionless initial conditions can be expressed as

u x, y, t( ) � 0, v x, y, t( ) � 0, θ x, y, t( ) � 0,ϕ x, y, t( ) � 0when t � 0

(62)
where Ha denotes a Hartmann number, Re Reynolds number,
Pr Prandtl number, Sc is Schmidt number, GγT is Grashof
number, Gγe is solutal Grashof number, Nt is
thermophoresis, Nb is Brownian motion coefficients, and γ is
the dimensionless reaction rate parameter, and these are
expressed as

Ha � B+L
��
σ

ρ]

√
, Re � Lu+

]
, Pr � ]

α
, Sc � ]

DB
,GγT

� LBgβT Tw − T∞( )
]2

, GγC �
LB gβc Cw − C∞( )

]2
, Nt

� τDT Tw − T∞( )
]T∞

, Nb � τDB Cw − C∞( )
]

, γ � Lk1
u+

The skin friction coefficient, local Nusselt, and Sherwood
numbers are defined as

FIGURE 7
Effect of m and Hartmann number on skin friction coefficient
using GrC � 0.1,Pr � 0.9,Nt � 0.1, γ � 0.1,Re � 1,Nb � 0.1,
GrT � 0.5, Sc � 1.7.

FIGURE 8
Effect of Prandtl number and thermophoresis parameter on local
Nusselt number using m � 1.1,H0 � 0.1,GrC � 0.1, γ � 0.1,Re � 1,
Nb � 0.1,GrT � 0.5, Sc � 1.7.
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Cf � τw
ρu2

+

, Nu � Lqw
k Tw − T∞( ), Sh �

Lqj
DB Cw − C∞( ) (63)

where τw � K|∂u*∂y* | m−1∂u*
∂y*|y*�0, qw � −k ∂T

∂y*|y*�0, qj � −DB
∂C
∂y*|y*�0.

Under the transformations (56) dimensionless skin friction
coefficients, local Nusselt number and Sherwood number are
expressed as

Cf � ∂u
∂y

∣∣∣∣∣∣∣∣ m−1∂u
∂y

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣y�0, Nu � −∂θ

∂y

∣∣∣∣∣∣∣∣y�0, Sh � −∂ϕ
∂y

∣∣∣∣∣∣∣∣y�0
Physical interoperation of the parameters: Our research seeks to

understand the physical effects of these parameters on related
profiles, offering critical clues about the intricate relationship
between forces and phenomena that control nanofluid dynamics.
Each parameter’s effect on fluid behavior, heat transfer, and mass
transport can be better understood with the help of the trends that
have been noticed.

Hartmann Number (Ha): The Hartmann number, abbreviated
as Ha, is a measure used in magnetohydrodynamics to compare
electromagnetic and viscous forces. Our findings indicate that the
effect of magnetic forces becomes more pronounced as the
Hartmann numbers increase. Theoretically, this might be
considered a stronger magnetic field lowering the fluid’s speed.
Increases in the Hartmann number cause a dampening of fluid
motion, which alters flow patterns and velocity profiles.

Reynolds Number (Re): The Reynolds number describes this
ratio of inertial forces to viscous forces Re. According to our
findings, the dominance of inertial forces grows as the Reynolds
number increases, transitioning from laminar to turbulent
flow. The physical effect of increasing Reynolds numbers is to
produce more turbulent fluid, which alters the velocity and
temperature profiles. Because of their superior mixing and
heat transmission capabilities, turbulent flows impact the
system’s transport phenomena.

Prandtl Number (Pr): The Prandtl number, abbreviated as
Pr, is the ratio of momentum diffusivity to heat flicker. Our
research indicates that fluctuations in the Prandtl number
influence heat transport and thermal boundary layer
characteristics; a high Prandtl number results in a
substantially higher momentum diffusivity than a low one. As
a result, the thermal boundary layer thickens, which alters heat
transport and affects temperature profiles.

Schmidt Number (Sc): The ratio between momentum diffusivity
and mass diffusivity is known as the Schmidt number (Sc). Our
research shows that mass diffusivity decreases when the Schmidt
number rises compared to momentum diffusivity. From a physical
standpoint, the Schmidt number affects the Sherwood number and
concentration profiles, with the former indicating slower solute
transport. This characteristic dramatically impacts the fluid’s
mass transfer mechanisms.

Grashof Numbers (GγT andGγe): For concentration gradients,
the Grashof numbers indicate the buoyant force to viscous force
ratio, and for temperature gradients, they indicate the same thing.
Higher values of these Grashof numbers indicate a more substantial
effect of buoyant forces on fluid motion. On a physical level, higher
Grashof numbers cause natural convection to be more vigorous,
which changes the concentration and temperature profiles. Fluid
behavior and related heat and mass transfer can be understood by
determining the direction and intensity of these gradients.

Thermophoresis (Nt) and Brownian Motion (Nb) Coefficients:
The effects of particle motion in response to temperature are
characterized by thermophoresis and Brownian motion
coefficients, respectively. As these coefficients are increased, the
concentration profiles of nanoparticles are affected. The local
concentration of nanoparticles in the fluid is affected by the
physical properties of the particles, which are increased
thermophoresis and Brownian motion coefficients.

Reaction Rate Parameter (γ): The system’s chemical reaction
kinetics are controlled by the dimensionless reaction rate parameter
(γ). The rate of reaction and, by extension, the creation or
consumption of species are affected by changes in γ in our study.
From a physical standpoint, a quicker chemical reaction is indicated
by a greater γ, which impacts concentration and temperature
profiles and overall heat and mass transfer rates.

5 Results and discussions

A novel approach is presented in this study, wherein an
exponential integrator technique is employed to compute
numerical solutions for time-dependent partial differential
equations. The scheme was proven conditionally stable for time-
dependent convection-diffusion equations by employing von
Neumann stability analysis. The scheme can be proven consistent
because it is constructed using Taylor series expansions. The Lax
equivalence theorem can be applied to ensure the convergence of the
proposed numerical scheme. Due to the second-order accuracy of
the proposed scheme, the result(s) obtained by the scheme is/are
more accurate than those produced by the first-order exponential
scheme. Since the proposed scheme is explicit, it can solve
differential equations without linearising them. So, this explicit
scheme can be applied to any linear and nonlinear differential

FIGURE 9
Effect of reaction rate parameter and Schmidt number on local
Sherwood number using m � 1.1,H0 � 0.1,GrC � 0.1,Pr � 0.9,
Nt � 0.1,Re � 1,Nb � 0.1,GrT � 0.5.
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equations without adopting any iterative scheme. So, this is one of
the advantages of using the exponential proposed scheme. The time
variable is represented in the outermost loop of the Matlab code, as
the scheme is explicit. The interior loops denote the spatial
directions.

Additionally, the boundary conditions are specified within
the circuits. The scheme converges on a solution without needing
an additional iterative scheme. One of the primary benefits of
employing explicit schemes is this; however, appropriate step
sizes must be selected to ensure that the scheme produces stable

FIGURE 10
Contour plot for the horizontal component of velocity profile over t and y coordinates using m � 1.1,H0 � 0.1,GrC � 0.1,Pr � 0.9,Nt � 0.1,
Re � 1,Nb � 0.1,GrT � 0.5, Sc � 0.9, γ � 0.1,UW � cos(t), x � 1.3878.

FIGURE 11
Contour plot for the vertical component of velocity profile over t and y coordinates using m � 1.1,H0 � 0.1,GrC � 0.1,Pr � 0.9,Nt � 0.1,
Re � 1,Nb � 0.1,GrT � 0.5, Sc � 0.9, γ � 0.1,UW � cos(t), x � 1.3878.
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solutions. Consequently, the time needed to obtain a converged
solution from these schemes is reduced. However, implicit
schemes occasionally offer the benefit of a large step size;
thus, obtaining the solution with a large step size is possible.
However, doing so may require considerable time if an iterative
scheme is employed.

Figure 1 shows the velocity profile by varying m. The higher
value of m reduces the thickness of the momentum boundary layer.
Figure 2 shows the effect of the Hartmann number on the velocity
profile. The velocity profile decays by choosing larger values of the
Hartmann number. By choosing the larger value of the Hartmann
number, the strength of the magnetic field increases and leads to

FIGURE 12
Contour plot for the vertical component of velocity profile over x and y coordinates using m � 1.1,H0 � 0.1,GrC � 0.1,Pr � 0.9,Nt � 0.1,
Re � 1,Nb � 0.1,GrT � 0.5, Sc � 0.9, γ � 0.1,UW � cos(t).

FIGURE 13
Contour plot for temperature profile over x and y coordinates using m � 1.1,H0 � 0.1,GrC � 0.1,Pr � 0.9,Nt � 0.1,Re � 1,Nb � 0.1,GrT � 0.5,
Sc � 0.9, γ � 0.1,UW � cos(t).
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enhancement of Lorentz force that resists the velocity, so the velocity
profile decays. Figure 3 shows the effect of the thermal Grashoff
number on the velocity profile. The rise in the thermal Grashoff
number produces a rise in the velocity profile. For mixed convection
flow, the temperature gradient is one of the driving forces in the
motion of the fluid. The temperature gradient rises by choosing a
larger thermal Grashoff number, enhancing the velocity profile. The
effect of the Brownian motion parameter on the temperature profile
is depicted in Figure 4. The thermal layer becomes thicker as it
increases because it causes the temperature profile to decrease. The
particle is dispersed throughout several fluid areas as the Brownian
motion parameter increases. The fluid’s temperature increases as a
result of the dispersion of heat. Figure 5 shows how the temperature
profile is affected by the thermophoresis parameter. Increasing the
thermophoresis parameter causes the temperature profile to climb,
as seen in Figure 5. Particles with a lower temperature move closer to
the plate due to the thermophoresis force, while particles with a
higher temperature move away from the plate and towards its
proximity. As the thermophoresis force grows, the particle cycle
continues, and the fluid’s heated particles disperse to other parts of
the fluid, raising the temperature profile. Figure 6 shows how the
nanoparticle volume percentage varies with the Schmidt number.
Figure 6 shows the decline of the nanoparticle volume percentage as
the Schmidt number increases.

The nanoparticle volume fraction decreases as the Schmidt
number increases since the relationship between the two
quantities is inversely proportional. Figure 7 shows how the
Hartmann number and m affect the negative skin friction
coefficient. The negative skin friction coefficient decays by rising
m, and it grows by enhancing the Hartmann number. Figure 8
illustrates the influence of the Prandtl number and thermophoresis
parameter on the local Nusselt number. At the local level, the

Nusselt number grows as the Prandtl number increases but
decreases as the thermophoresis parameter increases. The
increase in the Prandtl number results in a decrease in thermal
conductivity, hence causing a reduction in the rate of conductive
heat transfer. Consequently, the local Nusselt number experiences
an elevation.

The thermal conductivity rises by enhancing the
thermophoresis parameter, and consequently, conductive heat
transfer rises, so the local Nusselt number decays. The
nanoparticle volume fraction as a function of the reaction rate
parameter and the Schmidt number is shown in Figure 9. Figure 9
delves into the complex interplay of the Schmidt number, the
reaction rate parameter, and the nanoparticle volume percentage.
A noticeable pattern shows that the local Sherwood number
increases when the response rate parameter and Schmidt
number go up. The mass diffusivity affects the local Sherwood
number, which affects the diffusion rate as the Schmidt number
increases. For the oscillatory sheet example, the contour plots
(Figures 10–14) display the nanoparticle volume velocities,
temperatures, and percentages. The second contour map uses
geographic and temporal variables, although the first employs
spatial coordinates. Looking at these photographs, you can
understand the flow dynamics across the oscillatory sheet. The
contour plots reveal intricate patterns and variations in the
nanoparticle distribution, velocity, and temperature, which
provide light on the system’s transient behavior. The dual-
variable contour plots offer a new perspective by displaying
the changes in these variables over time and space.
Visualizations like these aid in painting a clearer image of the
complex interplay of factors influencing unstable power-law
nanofluid movement. When studying heat and mass transfer
phenomena, it is essential to consider numerous factors to

FIGURE 14
Contour plot for nanoparticle volume fractions profile over x and y coordinates using m � 1.1,H0 � 0.1,GrC � 0.1,Pr � 0.9,Nt � 0.1,Re � 1,
Nb � 0.1,GrT � 0.5, Sc � 0.9, γ � 0.1,UW � cos(t).
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comprehend the system’s dynamics fully. The observed patterns
and trends demonstrate this.

6 Conclusion

This article discusses how to modify an explicit time integrator to
account for unstable power-law nanofluid flow over moving sheets; this
work has significant ramifications for many different areas. Since this
finding enhances our understanding of the behavior of nanofluids in
unsteady flow conditions and the accuracy of numerical models, it has
far-reaching consequences for many branches of engineering and
technology. We tweaked an exponential time integration technique
to deal with PDEs that change over time and used Taylor series
expansion to build our new approach. The convergence of the
modified exponential scheme has also been provided for a
system of parabolic equations. Moreover, a mathematical two-
dimensional model for the power-law nanofluid flow over the
surfaces has also been presented. The proposed exponential
scheme has solved its dimensionless form, and first and
second-order difference formulas have been employed for
space terms. The modified time integrator can investigate
unsteady power-law nanofluid flow over moving sheets. It can
also be applied to investigating various forms of non-steady fluid
motion. The concluding points can be expressed as

1. Increasing the Hartmann number increased the negative skin
friction coefficient.

2. Increasing the Prandtl number and the thermophoresis
parameter led to a decline in the local Nusselt number.

3. Both the Schmidt number and the response rate parameter are
increasing, which results in a rise in the local
Sherwood number.

Our study of unstable power-law nanofluid flow over moving
sheets is an essential addition to science and engineering in a world
with a rising demand for efficient and sustainable solutions. It paves
the way for exploiting nanofluids’ special features to solve some of
the most challenging problems in today’s high-tech world. This
study lays the groundwork for further research and the expansion of
novel applications across various sectors. This research
demonstrates that the modified time integrator helps investigate
nanofluids’ non-stationary power-law flow over vibrating sheets.
The precision and efficiency of the improved time integrator, as well
as its potential application to more complex issues, might be further
explored in future research.
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