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The thermal–hydraulic dynamics in containment are governed by a system of stiff
ordinary differential equations (ODEs). A fully implicit discretization scheme is
adopted to discretize these ODEs in order to mitigate the effects of stiffness. In
comparison with explicit or semi-implicit discretization schemes that are subject
to Courant limits on time steps, the fully implicit discretization scheme is more
suitable for a containment analysis code that focuses on predicting both short-
term and long-term thermal–hydraulic parameters after an accident. This study
introduces a general-purpose ODE solver for the containment analysis code. The
outline of the solver is as follows: The fully implicit discrete equations lead to a
large set of nonlinear equations that need to be solved using Newton’s iterative
method. The partial derivative components in the Jacobi matrix are calculated by
the perturbation method using finite difference approximation, which avoids the
complicated derivation of partial derivatives. The scaling modification technique
is incorporated into this ODE solver to deal with significant differences in
unknown variable magnitudes, and the line search method is introduced to
address the difficulty of obtaining an accurate root estimate with Newton’s
method when the initial guess is far from the actual root. This proposed ODE
solver was applied to two typical stiff ODE problems to test its stiffness-
suppressed ability and to demonstrate that this proposed solver can perform
calculations with a very large time step. Then, the CASSIA code, a containment
analysis code developed by China Nuclear Power Technology Research Institute
Co., Ltd (CNPRI), equipped with this ODE solver, was applied to the CSNI
(Committee on the Safety of Nuclear Installations) benchmark problem and
the Carolinas Virginia Tube Reactor (CVTR) test 3 problem to preliminarily
demonstrate that the proposed ODE solver can perform containment
thermal–hydraulic analysis correctly. This study could provide references for
the development of a home-made containment analysis code.
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1 Introduction

The widespread utilization of nuclear energy has placed a heightened emphasis on
nuclear safety, particularly following the Fukushima nuclear power plant accident in Japan
(Chen et al., 2018). The containment structure serves as the ultimate safeguard against the
release of radioactive fission products into the surrounding environment. Maintaining the
structural integrity of the containment system during loss of coolant accidents (LOCA) or
main steam line breaks (MSLB) necessitates the control of pressure and temperature within
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the structure to ensure that they remain below acceptable limits
(Brosche D, 1972). It is crucial to gain a precise understanding of the
time- and space-dependent pressure and temperature distribution
within a containment to ensure reactor safety. Thus, the
development of a reliable mathematical model and corresponding
containment thermal–hydraulic code is crucial for accurate
prediction of the time- and space-dependent pressure distribution
within the containment structure.

The mathematical simulation of thermal–hydraulic dynamics
within containment structures involves stiff initial value problems
(IVPs) in ordinary differential equations (ODEs), which is shown
as follows:

d �y

dt
� �F t, �y( )

�y t0( ) � �y0.

⎧⎪⎪⎨⎪⎪⎩ (1)

Efficient and accurate numerical methods are essential for
solving these types of problems. Conventional ODE solving
methods, such as Euler (Butcher. (2008)), explicit Runge–Kutta
(Butcher. (2008)), and Adams (Wille, (1998)), are restricted to a
very small step size in order to achieve a stable solution. This means
that substantial computer time could be required. To address this
challenge, an implicit scheme, which is unconditionally stable, is
required to allow for larger time steps and maintain stability
regardless of the stiffness of the problem.

Consequently, either the semi-implicit method (the convection
term is linerarized) or the fully implicit method is adopted by the
traditional containment thermal–hydraulic analysis code. Vapor,
liquid pool, and droplets are simulated in the CONTAIN 2.0 code
(Murata et al., 1997). An implicit numerical method was used to
calculate flow rates based on pressure and temperature in control
volumes, and fluid inertia was neglected in the momentum equation.
Complicated 1-D and 3-D conservation equations were considered
in the advanced integral containment code, GOTHIC code (George
et al., 2001). The semi-implicit method is adopted to solve
momentum equations, and then mass and energy conservation
equations are discretized by the semi-implicit method and solved
by the one-step Newton–Raphson method. The conservation
equations in the COCOSYS code (Allelein et al., 2008; O Dell
and Wong, 2010) are discretized by the explicit or implicit
method, and the Richardson extrapolation method is used to
enhance the accuracy of results and improve convergence. Some
severe accident analysis codes, like MELCOR (Gauntt et al., 2005),
can also be used to analyze containment thermal hydraulic
behaviors. Conservation equations in MELCOR were discretized
by the semi-implicit method and solved by the fixed-point
iteration method.

The velocity in the convection term of the momentum equation
is linearized in the CONTAIN code, GOTHIC code, and MELCOR
code, which means the time step used in these codes is restricted to
the Courant limit, and its value should not exceed a certain value
(Cai, 2022). The time step used in the COCOSYS code can reach a
large value due to an optional numerical scheme adopted in this
code, i.e., the fully implicit method, but the Richardson
extrapolation method used to enhance the accuracy of results
and improve convergence requires the calculation of additional
solutions at different grid resolutions to estimate the error and
refine the final solution. This process increases the computational

cost of the simulation as it involves running the simulation multiple
times with different grid sizes (Florez et al., 2017; Merga and
Chemeda, 2021).

The system of differential equations for thermal–hydraulic
dynamics is discretized via fully implicit schemes, yielding a set
of nonlinear equations. Common methods for solving nonlinear
equation systems include Newton’s iteration method (Press et al.,
2007), the fixed-point iteration method (Hoffman and Frankel,
2001), and the trust-region method (Yuan, 2000). Considering
the rapid convergence and effectiveness of Newton’s iteration
method, this study adopts it for solving the nonlinear equation
system resulting from fully implicit discretization. Consequently, in
the present work, a Newton-based fully implicit ODE solver with a
convergence-enhanced method is proposed for the containment
analysis code CASSIA, which has been developed by China Nuclear
Power Technology Research Institute Co., Ltd. (CNPRI).

Section 2 introduces the governing equations of the CASSIA
code, necessary closure models, a discretization scheme, and a
Newton-based solution procedure. Section 3 shows the
application of this proposed ODE solver to two typical stiff ODE
problems to test its stiffness-suppressed ability and to demonstrate
that this proposed solver can perform calculations with a very large
time step. Then, Section 4 shows the application of the CASSIA code
equipped with this ODE solver to the CNSI benchmark problem and
the Carolinas Virginia Tube Reactor (CVTR) test 3 problem to
preliminarily demonstrate that the proposed ODE solver can
perform containment thermal–hydraulic analysis correctly.

2Overview of a fully implicit ODE solver
for containment code

2.1 Governing equations for containment
analysis code

2.1.1 Basic conservation equations
The basic computational components in the containment

analysis code are control volume, junction, and heat structure.
They are used to model the compartments, connections between
compartments, and compartment walls in containment,
respectively. These computational components are illustrated in
Figure 1; the left component represents a control volume with a
pool, while the right component represents a control volume
without a pool. The junction connects these two control volumes.
On the right side of the right control volume, there is a heat structure
component used to represent heat transfer between this control
volume and another control volume or with the environment. The
sump water and gas mixture in a control volume is based on the
thermal non-equilibrium assumption, which allows them to have
different temperatures. The droplet within the containment
compartment is conveyed through the gas junction, taking into
account the thermal–hydraulic state (saturated or superheated) of
the target volume. If the target volume becomes superheated, the
droplet undergoes evaporation.

The basic governing equations for containment
thermal–hydraulic calculations are shown as follows (if droplets
exist, the governing equations for droplets are also needed):

The mass conservation equations are as follows:
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dMsteam

dt
� Gsteam, (2)

dMi

dt
� Gi i � 1,/, m( ), (3)
dMwater

dt
� Gwater. (4)

Eqs (2)–(4) delineate the mass conservation of the steam
component (denoted by the subscript “steam”) and all m types of
non-condensable gas components (denoted by the subscript “i")
within the upper gas phase sub-volume. The subscript “water”
signifies the water component within the lower liquid phase sub-
volume. Furthermore, M represents mass, while G denotes the
mass flow rate.

The energy conservation equations are as follows:

d

dt
∑m
i�1
Mihi +Msteamhsteam⎛⎝ ⎞⎠ − Vgas

dp

dt
� ∑

k

∑Nin

j�1
Gk,jhi,j − ∑Nout

j�1
Gk,jhk,j⎛⎝ ⎞⎠ + _Qgas,in − _Qgas,out,

(5)

d

dt
Mwaterhwater( ) − Vwater

dp

dt

� ∑ Gwater,inhwater,in − Gwater,outhwater,out( )
+ _Qwater,in − _Qwater,out.

(6)

Eqs (5) and (6) describe the conservation of energy within the
gas phase sub-volume (denoted by the subscript “gas”) and the
liquid phase sub-volume (denoted by the subscript “water”). In Eq
(5), the first term on the left-hand side represents the change rate of
total energy in the gas phase sub-volume, while the second term
represents the work performed by volume expansion. On the right-
hand side of the equation, the first term accounts for the energy
exchange due to the flow of all gas components, where the subscript
“in” denotes inflow to the control volume and “out” denotes outflow
from the control volume. The summation variable “k” encompasses
all gas components, while “Nin” and “Nout” represent the number of
fluids flowing into and out of the control volume, respectively. The
term “ _Q” denotes energy exchange, such as evaporation and
condensation at the gas–liquid interface, and energy transfer into

and out of the control volume via heat structures. Eq. (6) is similar to
Eq. (5), and its details are omitted here for brevity. In addition, h is
the specific enthalpy.

There are two different kinds of junctions (gas junctions and
water junctions), considering the characteristics of flow inside the
containment. Taking a gas junction as an example, the mass flow
rate is calculated by the following equations:

d �G

dt
� A

l
ρg elout − elin( ) + pout − pin( ) − ξ

1
2ρA2

�G �G
∣∣∣∣∣ ∣∣∣∣∣[ ], (7)

ρ � 1
2

ρout + ρin( ), (8)
ξ � ξ0 + ξa, (9)

where A represents the cross-sectional area of the junction, l is
the length of the junction, and ρ is the density of the fluid inside the
junction, which is calculated as the arithmetic mean of the gas
mixture density inside the control volume at the two ends of the
junction (as shown in Eq. 8). elout and elin are the elevations of the
outlet and inlet of the junctions, respectively; pout and pin are the
pressures at the outlet and inlet of the junction, respectively; and ζ is
the resistance coefficient of the junction, which is composed of the
user-input local resistance coefficient and the frictional resistance
coefficient along the junction (calculated by empirical formulas).

The volume conservation equation is as follows:

Vgas + Vwater � const. (10)

Eq. 10 indicates that the total volume of the control volume
remains constant.

Physically, the entire equation system of differential equations
from Eqs (2–7) exhibits rapid pressure responses with slower
temperature and energy responses, leading to a significant
disparity in the time scales of the dynamics, which qualitatively
characterizes the system as a stiff equation set. Mathematically, if the
condition number of the Jacobian matrix of the discretization
equation for the ODEs is excessively large, the equation system
can be considered stiff [(Butcher. (2008)); Thohura and Rahman,
(2013).]. As an example, the condition number of the Jacobian
matrix (the matrix is shown in Table 1) for the initial time step of the
CNSI benchmark problem, which is simulated in Section 4.1, is

FIGURE 1
Illustration of volume, junction, and heat structure in the containment code.

Frontiers in Energy Research frontiersin.org03

Huang et al. 10.3389/fenrg.2024.1332476

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1332476


TABLE 1 Jacobian matrix for the CNSI benchmark problem.

−1.00105 7.33E-05 0 0 0 0 0 0 0 0 0 0 0 0.000977183 0 0 0 0 0

7.33E-05 −1.00105 7.33E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 7.33E-05 −1.00105 7.33E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 7.33E-05 −1.00105 7.33E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 7.33E-05 −1.00105 7.33E-05 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 7.33E-05 −1.00105 7.33E-05 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 7.33E-05 −1.00105 7.33E-05 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 7.33E-05 −1.00105 7.33E-05 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 7.33E-05 −1.00105 7.33E-05 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 7.33E-05 −1.00007 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0.0538356 0 0 0 0 0 0 0 0 0 −0.0897125 −6942470 0 −1.05386 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −0.000761929 −0.000761929 5.95E-07 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
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calculated (the condition number is equal to 4.5737 · 1013),
indicating that the problems to be solved by the containment
code constitute a stiff equation set as well.

To mitigate the effects of stiffness, a fully implicit
discretization scheme is employed for solving the ordinary
differential equations (ODEs) involved in the containment
analysis code. In contrast to the explicit or semi-implicit
discretization schemes, which are subject to Courant limits on
time steps, the fully implicit discretization scheme is better suited
for predicting both short-term and long-term thermal–hydraulic
parameters following an accident.

2.1.2 Wall heat transfer equations
The heat transfer between containment walls and the gas

mixture in the containment is taken into account by heat
conduction through the wall, which is modeled by a heat
structure as shown in Figure 1. The one-dimensional heat
conduction model is adopted here. Although the three-
dimensional heat conduction model considering the axial and
circumferential temperature variations of the containment walls
and internal heat sink is more accurate, only the heat conduction
in the direction perpendicular to the containment wall (i.e., the
radial direction) is considered here due to the axial temperature and
circumferential gradients being minimal compared with radial
gradients. The code uses the finite difference method to solve the
heat conduction problem.

The one-dimensional heat conduction equation (as mentioned
above, the radial direction is the direction of heat conduction) is
presented as follows:

ρCp
∂T
∂t

� k
∂2T
∂x2

, (11)

where k is the thermal conductivity, t is the time, T is the
temperature, and ρCp is the volumetric heat capacity.

Within the heat structure model in the CASSIA code, diverse
boundary conditions can be simulated, encompassing adiabatic heat
flow calculated by different heat transfer coefficient correlations,
tables of surface temperature versus time, heat transfer rate versus
time, and heat transfer coefficient versus time or surface
temperature.

The boundary condition can be expressed in general as follows:

A T( )T t( ) + B T( ) ∂T T( )
∂n

� D T, t( ). (12)

The symbol n represents the unit normal vector oriented away
from the boundary surface. Therefore, the prescribed boundary
condition dictates that the heat flux leaving the surface equals a
heat transfer coefficient, ℎ, multiplied by the temperature difference
between the surface temperature, T, and the temperature of the sink,
Tsk, that is,

−k ∂T
∂n

� h T − Tsk( ), (13)

where A � h, B � k,D � hTsk.
Additional constitutive models are required to solve the above

conservation equations. These models include physical properties,
heat transfer between the water pool and gas mixture, and wall drag/
heat transfer models.

2.1.3 Physical properties
The physical properties of water and steam come from WSPIF-

97 (Cooper and Dooley, (2007)), and the relationships among
physical properties are presented as follows:

ρg � ρg P, Tg( ), (14)
ρf � ρf P, Tf( ), (15)
Ts � Ts P( ). (16)

The non-condensable gases are treated as ideal gases, so the
physical properties of ideal gases come from the ideal gas equation of
state. The partial derivatives of physical properties are derived based
on the state of the equations and Maxwell correlation (Moran and
Shapiro, (1992)).

The total gas pressure is calculated by Dalton’s law as follows:

P � Psteam +∑m
i�1
Pi � Psteam +∑m

i�1

Rg,iTg

Vg
. (17)

2.1.4 Wall-gas heat transfer model
The wall heat transfer coefficient is calculated by the Tagami

correlation (Tagami, 1965) during the blowdown phase and by the
Uchida correlation (Uchida et al., 1964) during the following heat
transfer coefficient decrease phase. The change from the Tagami
correlation to the Uchida correlation is realized with an
exponential function.

The equation for the maximum heat transfer at the end of the
blowdown phase is as follows:

hmax � 0.7858 · E

tp · V( )0.6

, (18)

where E is the energy-related term, tp is the blowdown time span,
and V is the free volume of the containment.

For the period until the end of the blowdown phase, the heat
transfer coefficient is determined by the following equation:

hg−w � hmax ·
��
t

tp

√
. (19)

The heat transfer coefficient for the following period in the
containment volume, according to Uchida is as follows:

hep � 11.362 + 284.05 · min
msteam∑n
i�1
mi

, 5
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (20)

The heat transfer coefficient calculated by the Uchida correlation
is strongly related to the ratio of steam mass to the mass of non-
condensable gases.

The connection between the Tagami correlation and the Uchida
correlation is shown as follows:

hg−w � hep + hmax − hep( )e−0.05 t−tp( ). (21)

2.1.5 Discretization scheme
The discretization scheme can be expressed as follows:
The mass conservation equations are as follows:
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Mn+1
steam −Mn

steam

Δt � Gn+1
steam, (22)

Mn+1
i −Mn

i

Δt � Gn+1
i i � 1,/, m( ), (23)

Mn+1
water −Mn

water

Δt � Gn+1
water. (24)

The energy conservation equations are as follows:

Mn+1
i hn+1i +Mn+1

steamh
n+1
steam( ) − Mn

i h
n
i +Mn

steamh
n
steam( )

Δt − Vn+1
gas

pn+1 − pn

Δt
� ∑ Gn+1

g,inh
n+1
g,in − Gn+1

g,outh
n+1
g,out( ) + _Q

n+1
g,in − _Q

n+1
g,out. (25)

Mn+1
waterh

n+1
water +Mn+1

waterh
n+1
water( ) − Mn

wh
n
w +Mn

wh
n
w( )

Δt − Vn+1
water

pn+1 − pn

Δt
� ∑ Gn+1

w,inh
n+1
w,in − Gn+1

w,outh
n+1
w,out( ) + _Q

n+1
w,in − _Q

n+1
w,out. (26)

The governing equations for the mass flow rate in gas junctions are
as follows:

�G
n+1 − �G

n

Δt � An+1

ln+1
[ρn+1gn+1 hn+1out − hn+1in( ) + Pn+1

out − Pn+1
in( )

−ξn+1 1

2ρn+1 An+1( )2
�G
n+1 �G

n+1∣∣∣∣∣ ∣∣∣∣∣]. (27)

The wall heat conduction equation is as follows:
Two types of nodes are considered when discretizing the wall

conduction equation, namely, boundary nodes and inner nodes, as
demonstrated in Figure 2.

Assuming that the thermal conductivity k and volumetric heat
capacity ρCp are constant, the difference equation of the mth inner
node can be expressed as (28) and the difference equations of
boundary nodes can be expressed as (29) and (30).

ρn+1m Cn+1
p,m

Tn+1
m − Tn

m

Δt � kn+1m

Tn+1
m+1 − 2Tn+1

m + Tn+1
m−1

Δx( )2 . (28)

ρn+11 Cn+1
p,1

Tn+1
1 − Tn

1

Δt � kn+11

Tn+1
2 − 2Tn+1

1

Δx( )2 . (29)

ρn+1M Cn+1
p,M

Tn+1
M − Tn

M

Δt � kn+1M

−2Tn+1
M + Tn+1

M−1
Δx( )2 . (30)

2.2 Newton-based solution method

2.2.1 Basic solution procedure
The discrete process described above gives rise to a system of

non-linear equations. To solve this system of discretized

equations, the iterative Newton method (Süli and Mayers,
2003) is employed. The resulting set of equations can be
expressed as follows:

�yn+1 − �yn

Δt � �F tn+1, �yn+1( ), (31)
where

�F �y( ) � f1 �y( ), f2 �y( ),/, fn �y( )[ ]T. (32)
�y � y1, y2,/, yn[ ]T. (33)

At the (k+1)-th iteration, it is possible to express the equation using a
first-order Taylor expansion as follows:

�F �yk+1( ) ≈ �F �yk( ) + ∂ �F

∂ �yk δ �yk � 0. (34)

The linear system of Eq. 35 should be solved at each iteration, where
∂ �F
∂ �yk is the Jacobian matrix and �F( �yk) is the vector of residuals.

∂ �F

∂ �yk δ �yk � − �F �yk( ). (35)

The desired δ �yk can be obtained by using the Gaussian
elimination method. Then, we can get:

�yk+1 � �yk + δ �yk. (36)

The flow chart of the Newton-based solution method is as
demonstrated in Figure 3.

The computational cost and memory for complex problems can
be reduced by approximating the Jacobian matrix in Eq. 37 through
a finite difference of the residuals, eliminating the need to explicitly
construct the Jacobian matrix:

FIGURE 2
Mesh scheme of the heat structure.

FIGURE 3
Flowchart of Newton’s iteration method.
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∂ �F

∂ �yk( )
ij

� ∂fi

∂yj
≈
fi y1, y2,/, yj + ε,/, yn( ) − fi y1, y2,/, yj,/, yn( )

ε
.

(37)

The parameter ε is a perturbation parameter that is set to
1 × 10−6 in this study.

2.2.2 Scaling modification technique
As mentioned above, the unknown variables in this study include

steammass, mass flow rate, and temperature. These variables may vary
significantly in magnitude under certain operating conditions (for
instance, in scenarios where steam content is low, the magnitude of
steam mass may be approximately 0.01 or less, while in situations with
high pressure differences, the magnitude of the mass flow rate may
exceed thousands or more.). Such differences in magnitude among
variables can affect the convergence and stability of Newton’s method
described in Section 2.2.1. Therefore, special numerical methods
are required.

The scaling modification technique is used to improve the
convergence and stability of the algorithm. This involves scaling
the variables by a certain factor to make their magnitudes more
comparable. By applying variable scaling, Newton’s method can
more effectively handle variables with different magnitudes,
improving the convergence and stability of the algorithm.

Here are the steps to perform variable scaling:

1. Estimate the magnitudes of each variable.
2. Divide each variable by its estimated magnitude.
3. Apply the scaled variables in the iterations of

Newton’s method.
4. Restore the final solution to the original variable magnitudes.

By applying the scaling modification technique, Newton’s method
can adapt better to variables with different magnitudes, enhancing the
efficiency and stability of the algorithm. This technique is particularly
useful when dealing with ODEs in the containment analysis code and
significant differences in unknown variable magnitudes (mass, mass
flow rate, temperature, and some other variables) and can improve the
convergence behavior of the method.

2.2.3 Line search method
To avoid divergence caused by the excessively long step size of

Newton’s iteration method, the line search method is combined with
Newton’s iteration method to improve its efficiency and
convergence stability. The main idea of the line search method is
to adjust the step size at each iteration to reduce the residual error of
nonlinear equations.

In Newton’s method, the algorithm iteratively updates an initial
guess for the solution by using the equation:

�yk+1 � �yk + δ �yk. (38)

When applying the line search method, instead of using the
above equation directly, the step size is scaled by a factor λ as follows:

�yk+1 � �yk + λ · δ �yk. (39)

The purpose of the line search method is to make Newton’s
method more robust and efficient by taking into account the
decreased residual as follows:

�F �xk+1( )����� �����≤ �F �xk( )����� �����. (40)

It can improve the convergence rate, especially in cases where
the initial guess is far from the solution.

By incorporating the line search method into Newton’s method,
the algorithm can provide faster convergence and improved
numerical stability, leading to more reliable results.

3 Application to typical stiff
ODE problems

In this study, the proposed ODE solver was applied to some
typical stiff ODE problems. The results of the computations were
compared with the corresponding theoretical solutions or literature-
derived values to verify that the solver is capable of solving the stiff
ODE problems.

PROBLEM 1: To begin with, we consider an example of a stiff
differential equation system that can be analytically solved, which is
described in Eq. 41 as follows:

du

dt
� −1000.25u + 999.75v + 0.5

dv

dt
� 999.75u − 1000.25v + 0.5

u 0( ) � 1.0

v 0( ) � −1.0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(41)

This set of equations has an analytical solution, as follows:

u t( ) � −e−0.5t + e−2000t + 1
v t( ) � −e−0.5t − e−2000t + 1.

{ (42)

The presence of the transient term e−2000t in the solution causes this
system to be stiff. The profiles of u and v calculated by the proposed fully
implicit solver, explicit Euler method, and explicit 4th order
Runge–Kutta method are compared with the analytical results,
which are shown in Figures 4, 5. The figures above illustrate that

FIGURE 4
The time profile of u(t).
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these calculated valuesmatch the analytical solution very well. However,
it is noteworthy that the explicit methods (Euler and RK methods)
necessitate significantly smaller time steps compared to the fully implicit
method. It is observed that when the time step of the explicit method is
as large as that of the fully implicit method, the solutions are divergent.
The computational results are illustrated in the figure below:

In addition, three different methods on a PC (13th Gen Intel(R)
Core (TM) i9-13900H 2.60 GHz) were used to solve Eq. 41, and the
total computational times required for the three methods are shown
in Table 2. The result shows that the implicit method requires less
overall computational effort compared to explicit methods.

PROBLEM 2: As described in Thohura and Rahman (2013), the
following kinetics problem, originally proposed by Robertson, is
commonly used as an illustrative instance in this field. The
governing equations for this problem are described as follows:

dy1

dt
� −0.04y1 + 104y2y3

dy2

dt
� 0.04y1 − 104y2y3 − 3.107y2

2

dy3

dt
� 3.107y2

2

y1 0( ) � 1.0

y2 0( ) � 0.0

y3 0( ) � 0.0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(43)

Due to the long time span of this problem
(4 · 109s ≈ 126.755 years), the time steps for this problem are
variable to finish this calculation, which is shown in Table 3.

As a result, only the calculated value of the proposed ODE solver
and the literature-based value for this problem are compared, as
shown in Figure 6. The results show that the calculated values agree
well with values in the literature considering the long time span.

Consequently, the capabilities of the proposed ODE solver to
solve stiff ODE equations are proven by these two typical stiff
ODE equations.

4 Application in the containment
T-H analysis

4.1 Application to the CNSI
benchmark problem

As described in Haware et al. (1994), the CNSI benchmark
problem consists of a single volume with injected steam and water,
from which heat is transmitted to a single concrete wall. The

FIGURE 5
The time profile of v(t).

TABLE 2 Overall computational effort comparison among three solving
methods.

Method Time step (s) Elapsed time* (s)

Explicit Euler method 0.001 0.014382

Explicit 4-th R-K method 0.001 0.0081875

Implicit_Newton method 0.1 0.0022122

TABLE 3 Time steps used in problem 2.

Time span (s) Time step (s)

0~0.4 0.01

0.4~4.0 0.1

4.0~40 1

40.~400 10

400.~4,000 100

4,000.~ 4 · 104 1,000

4 · 104 ~ 4 · 105 1 · 104

4 · 105 ~ 4 · 106 1 · 105

4 · 106 ~ 4 · 107 1 · 106

4 · 107 ~ 4 · 108 1 · 107

4 · 108 ~ 4 · 109 1 · 108

FIGURE 6
The comparison between the calculated value and literature-
based value.
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nodalization of this problem is illustrated in Figure 7. The
geometrical and thermal hydraulic parameters are listed in
Table 4 and the mass flow rate profiles of injected water and
steam are shown in Figure 8.

An analytical solution for this benchmark problem was derived
in Haware et al. (1994). Comparisons between calculated results and
the analytical solution are shown in Figures 9, 10, 11. The total
pressure in the containment volume is shown in Figure 9, the partial
pressure of the steam is shown in Figure 10, and the wall surface
temperature is shown in Figure 11.

The calculated results for all three parameters exhibit strong
agreement with the analytical solution, providing evidence of the
accuracy of the ODE-solver developed for the containment
analysis code presented in this study. This ODE-solver
effectively ensures the conservation of mass and energy within
the fluid, as well as energy within the structural wall.
Furthermore, the comparisons in Figures 9, 10 illustrate that
both the calculated total pressure and steam partial pressure
slightly exceed the benchmark value. This discrepancy can be
attributed to the adoption of thermal non-equilibrium equations

in this study, while the analytical solution is based on a thermal
equilibrium model. The good agreement of the predicted wall
surface temperature in Figure 11 indicates that the modeling of
wall conduction is accurately represented in the analysis. In
addition, Figure 9 to Figure 11 demonstrate that a larger time
step (1 s) can yield the same results as a smaller time step. This
observation substantiates the notion that the fully implicit
method can, to a certain extent, alleviate the constraints
imposed by the time step.

4.2 Application to the CVTR test 3 problem

A series of design basis accident (DBA) tests were conducted on
the Carolinas Virginia Tube Reactor (CVTR) containment system
(Norberg et al., 1969), and the pressure and temperature responses
of the containment under steam injection were simulated. The
configuration of the CVTR containment system is illustrated in
Figure 12. The containment consists of a hemispherical dome and a
cylindrical body, with a diameter of 17.68 m inside the cylindrical
tube, a total height of approximately34.75 m, a wall thickness of
approximately0.61 m, and a concrete wall structure, and a total free
volume of the containment of approximately6425.66 m³. Depending
on the height and function, the containment can be divided into four
zones: the dome, the operation region, the intermediate region, and
the basement region.

Test 3 of CVTR, in which the spray system is not activated, is
chosen to verify the thermal hydraulic analysis ability of the
containment code with the proposed ODE solver. Only two
nodes (the dome region and the containment main region) are
simulated in this calculation without considering the inner
connection of the compartments inside the containment, and the
atmosphere environment is also simulated by a node, which is
shown in Figure 13.

The initial condition is also described in Figure 13, and the input
parameters needed for the inner heat sink and containment wall are
listed in Table 5. The mass flow rate and the enthalpy of injected
steam are demonstrated in Figure 14.

FIGURE 7
Nodalization of the CNSI benchmark problem.

TABLE 4 Geometrical and thermal hydraulic parameters.

Containment volume 40m³

Initial containment pressure 1 bar

Initial containment temperature 25°C

Initial containment relative humidity 0%

Initial wall temperature 25°C

Thermal conductivity of the wall 1.5 W/m · K

Thermal diffusivity of the wall 7.33 × 10−7 ㎡/s

Heat transfer coefficient between the containment atmosphere and wall surface 2000 W/m2 ·K

Specific heat capacity of air in the containment 718 J/kg ·K

Specific enthalpy of input water/steam 1,400 kJ/kg

Containment wall surface area 90 ㎡

Containment wall thickness 0.1 m
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The comparison between the experimental and calculated
values of pressure in the containment under test 3 conditions is
shown in Figure 15. It can be seen in Figure 15 that the pressure
inside the containment increases rapidly during the steam
injection period and decreases slowly after the end of the
steam injection, and the CASSIA code equipped with the
proposed ODE solver is able to simulate this trend. The peak
pressures calculated by the CASSIA code and those of the
experimental values appear at basically the same time, but the
peak pressure calculated by the CASSIA code is higher than the
experimental value. The discrepancy can be attributed to the
inadequate consideration of momentum-induced mixing
phenomena in the initial pressurization process, as well as the
fact that the correlation of the wall heat transfer coefficient used
in the CASSIA code is conservative.

5 Conclusion

In this study, a general-purpose, fully implicit ODE solver for
containment analysis code is developed.

The ODE solver uses a modified Newton iteration combined with
scaling modification techniques and line search methods to improve
its convergence and stability. The partial derivative components in the
Jacobi matrix are calculated by the perturbation method using the
finite difference approximation, which avoids the complicated
derivation of partial derivatives.

This solver is employed to validate its efficacy in solving stiff
ordinary differential equations (ODEs) by applying it to two
representative cases. The calculated results for these two typical stiff
ODE problems are subsequently compared against analytical solutions

FIGURE 8
Injected water/steam mass flow rate.

FIGURE 9
Comparison of total pressure between the benchmark and
calculated value.

FIGURE 10
Comparison of steam pressure between the benchmark and
calculated value.

FIGURE 11
Comparison of temperature between the benchmark and
calculated value.
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and literature-based values. The comparison results not only establish
the proficiency of the proposed ODE solver in addressing stiff ODE
equations but also illustrate its capability to handle calculations with
significantly large time steps, as exemplified by problem 2.

Furthermore, the solver is also employed to assess its competence in
conducting thermal–hydraulic analysis within a containment, specifically
applied to the CNSI single-volume containment benchmark problem
and CVTR test 3 problem. In the CNSI benchmark problem, three
essential parameters, namely, total pressure, steam partial pressure,
and wall temperature, are calculated. The obtained results for all three

FIGURE 12
CVTR containment configuration.

FIGURE 13
Nodalization of the CVTR containment.

TABLE 5 The characteristic parameters of the heat structures in the CVTR
containment.

No. Heat structure Material Area (m2) Width(m)

1 Containment wall Steel 1437.21 0.00635

Air 0.0016

Concrete 0.61

2 Dome Steel 498.89 0.0127

Air 0.0016

Concrete 0.5334

3 Inner heat slab Concrete 1065.23 0.89

Steel 447.24 0.036

FIGURE 14
Themass flow rate and enthalpy of injected steam in CVTR test 3.

FIGURE 15
Comparison of pressure between the experimental value and the
calculated value.
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parameters exhibit a close agreement with the benchmark solution,
thereby verifying the capability of the CASSIA code, which
incorporates the developed ODE solver, to accurately calculate
mass and energy conservation as well as wall heat conduction. In
the CVTR test 3 problem, the pressure within the containment is
compared to the experimental value. The observed trend and the
timing of the peak pressure align closely with the experimental data,
providing a preliminary assessment of the CASSIA code’s capability to
conduct thermal hydraulic analysis within a containment.

It is worth noting that the Newton method adopted in the
proposed ODE solver involves the computation of the Jacobian
matrix, which can be computationally expensive, especially for large
systems. Additionally, if the Jacobian needs to be updated in each
iteration, it adds to the computational cost. Considering that the
equations of the containment code are large and sparse, it may be
beneficial to take advantage of the sparsity structure of the Jacobian
matrix. Sparse matrix techniques can significantly reduce the
computational cost of both storing and computing the Jacobian.
This would be the future improvement of the proposed ODE solver.

Data availability statement

The raw data supporting the conclusion of this article
will be made available by the authors, without undue reservation.

Author contributions

JH: methodology, software, and writing–original draft. JL:
supervision and writing–review and editing. YM:
software, validation, and writing–review and editing.

Funding

The author(s) declare that no financial support was
received for the research, authorship, and/or publication of
this article.

Acknowledgments

The authors would like to express their appreciation for the
financial support of CNPRI (China Nuclear Power Technology
Research Institute Co., Ltd.).

Conflict of interest

Authors JH, JL, and YMwere employed by China Nuclear Power
Technology Research Institute Co., Ltd.

The authors declare that this study received funding from China
Nuclear Power Technology Research Institute Co., Ltd. The funder
had the following involvement in the study: the decision to submit it
for publication.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Allelein, H. J., Arndt, S., Klein-Hessling, W., Schwarz, S., Spengler, C., and
Weber, G. (2008). COCOSYS: status of development and validation of the German
containment code system. Nucl. Eng. Des. 238 (4), 872–889. doi:10.1016/j.
nucengdes.2007.08.006

Bogacki, P., and Shampine, L. F. (1989). A 3(2) pair of Runge–Kutta formulas. Appl.
Math. Lett. 2, 321–325. doi:10.1016/0893-9659(89)90079-7

Brosche, D. (1972). ZOCO V, a computer code for the calculation of time- and space-
dependent pressure distributions in reactor containments. Nucl. Eng. Des. 23 (3),
239–271. doi:10.1016/0029-5493(72)90149-5

Butcher, J. C. (2008). Numerical methods for ordinary differential equations.
Chichester, UK: Wiley.

Cai, Q., Fan, K., and Shan, J. (2022). Development and preliminary validation of fully
implicit scheme single-phase liquid metal fast reactor code nusol-lmr. SSRN Electron. J.,
doi:10.2139/ssrn.4077541

Chen, Y., Wu, Y. W., Wang, M. J., Zhang, Y., Tan, B., Zhang, D., et al. (2018).
Development of a multi-compartment containment code for advanced PWR plant.
Nucl. Eng. Des. 334, 75–89. doi:10.1016/j.nucengdes.2018.05.001

Cooper, J. R., and Dooley, R. B. (2007). “Revised release on the IAPWS industrial
formulation 1997 for the thermodynamic properties of water and steam,” in 18th
International Conference on the Properties of Water and Steam, Boulder, Colorado,
August, 2007.

Florez, W. F., Gonzalez, J. W., Hill, A. F., López, J. D., and López, G. J. (2017).
Numerical methods coupled with Richardson extrapolation for computation of
transient power systems. Ing. Cienc. 13 (26), 65–89. doi:10.17230/ingciencia.13.
26.3

Gauntt, R., Cole, R., Erickson, C., Gido, R., Gasser, R., Rodriguez, S., et al. (2005).
MELCOR computer code manuals. Albuquerque, New Mexico: Sandia National
Laboratories, 6119. NUREG/CR.

George, T. L., Wiles, L., Claybrook, S., Wheeler, C., and McElroy, J. (2001). Gothic
containment analysis package technical manual. Richland, WA, USA: Numerical
Applications Inc.

Hairer, E., and Wanner, G. (1989). Stiff differential equations solved by Radau
methods. J. Compu. Appl. Math. 111, 93–111. doi:10.1016/s0377-0427(99)00134-x

Haware, S. K., Ghosh, A. K., Raj, V. V., and Kakodkar, A. (1994). “Analysis of CSNI
benchmark test on containment using the code CONTRAN,” in Proceedings of the
third international conference on containment design and operation v2,
Canada, 580.

Hoffman, J. D., and Frankel, S. (2001). “Fixed-point iteration,” in Numerical methods
for engineers and scientists (New York, NY, USA: CRC Press), 141–145.

Merga, F. E., and Chemeda, H. M. (2021). Modified crank–nicolson scheme with
Richardson extrapolation for one-dimensional heat equation. Iran. J. Sci. Technol.
Transaction A, Sci. 45 (54), 1725–1734. doi:10.1007/s40995-021-01141-0

Moran, M., and Shapiro, H. (1992). Fundamentals of engineering thermodynamics.
SERBIULA (sistema librum 2.0). Available at: http://ftp.demec.ufpr.br/disciplinas/
TM104/Termodinamica/Moran-Thermo-Book/Michael%20J.%20Moran,%20Howard
%20N.%20Shapiro,%20Daisie%20D.%20Boettner,%20Margaret%20B.%20Bailey%20-
%20Fundamentals%20of%20Engineering%20Thermodynamics%20(2014,%
20Wiley).pdf

Murata, K., Williams, D., Griffith, R., Gido, R., Tadios, E., Davis, F., et al. (1997). Code
manual for CONTAIN 2.0: a computer code fornuclear reactor containment analysis,
Albuquerque, NM, UnitedStates: Nuclear Regulatory Commission, Washington,DC
(United States). Div. of Systems Technology; Sandia National Labs., Albuquerque,NM
(United States); Tills (Jack) and Associates, Inc.,

Norberg, J. A., Bingham, G. E., and Schmitt, R. C. (1969). Simulated design basis
accident tests of the Carolinas Virginia tube reactor containment: preliminary results.
Denton, Texas: UNT Digital Library. doi:10.2172/4753505

Frontiers in Energy Research frontiersin.org12

Huang et al. 10.3389/fenrg.2024.1332476

https://doi.org/10.1016/j.nucengdes.2007.08.006
https://doi.org/10.1016/j.nucengdes.2007.08.006
https://doi.org/10.1016/0893-9659(89)90079-7
https://doi.org/10.1016/0029-5493(72)90149-5
https://doi.org/10.2139/ssrn.4077541
https://doi.org/10.1016/j.nucengdes.2018.05.001
https://doi.org/10.17230/ingciencia.13.26.3
https://doi.org/10.17230/ingciencia.13.26.3
https://doi.org/10.1016/s0377-0427(99)00134-x
https://doi.org/10.1007/s40995-021-01141-0
http://ftp.demec.ufpr.br/disciplinas/TM104/Termodinamica/Moran-Thermo-Book/Michael%20J.%20Moran,%20Howard%20N.%20Shapiro,%20Daisie%20D.%20Boettner,%20Margaret%20B.%20Bailey%20-%20Fundamentals%20of%20Engineering%20Thermodynamics%20(2014,%20Wiley).pdf
http://ftp.demec.ufpr.br/disciplinas/TM104/Termodinamica/Moran-Thermo-Book/Michael%20J.%20Moran,%20Howard%20N.%20Shapiro,%20Daisie%20D.%20Boettner,%20Margaret%20B.%20Bailey%20-%20Fundamentals%20of%20Engineering%20Thermodynamics%20(2014,%20Wiley).pdf
http://ftp.demec.ufpr.br/disciplinas/TM104/Termodinamica/Moran-Thermo-Book/Michael%20J.%20Moran,%20Howard%20N.%20Shapiro,%20Daisie%20D.%20Boettner,%20Margaret%20B.%20Bailey%20-%20Fundamentals%20of%20Engineering%20Thermodynamics%20(2014,%20Wiley).pdf
http://ftp.demec.ufpr.br/disciplinas/TM104/Termodinamica/Moran-Thermo-Book/Michael%20J.%20Moran,%20Howard%20N.%20Shapiro,%20Daisie%20D.%20Boettner,%20Margaret%20B.%20Bailey%20-%20Fundamentals%20of%20Engineering%20Thermodynamics%20(2014,%20Wiley).pdf
http://ftp.demec.ufpr.br/disciplinas/TM104/Termodinamica/Moran-Thermo-Book/Michael%20J.%20Moran,%20Howard%20N.%20Shapiro,%20Daisie%20D.%20Boettner,%20Margaret%20B.%20Bailey%20-%20Fundamentals%20of%20Engineering%20Thermodynamics%20(2014,%20Wiley).pdf
https://doi.org/10.2172/4753505
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1332476


O’Dell, C R, and Wong, K (2010). COCOSYS – New Modelling of Safety Relevant
Phenomena and Components. Heling 111, 846.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007).
Numerical recipes: the art of scientific computing. Cambridge, United Kingdom:
Cambridge University Press.

Süli, E., and Mayers, D. (2003). An introduction to numerical analysis. Cambridge,
United Kingdom: Cambridge University Press.

Tagami, T. (1965). Interim report on safety assessment and facilities
establishment project in Japan for period ending. NUREG-75/087. National
Reactor Testing Station.

Thohura, S., and Rahman, A. (2013). Numerical approach for solving stiff differential
equations: a comparative study. Glob. J. Sci. Front. Res.,

Uchida, H., Oyama, A., and Togo, Y. (1964). Evaluation of post-incident
cooling systems of light-water power reactors. A/CONF.28/P/436. Tokyo:
Tokyo Univ.,

Wille, D. R. (1998). Experiments in stepsize control for Adams linear multistep
methods. Adv. Comput. Math. 8 (4), 335–344. doi:10.1023/a:1018960717197

Yuan, Y. (2000). “A review of trust region algorithms for optimization,” in Iciam 99:
proceedings of the fourth international congress on industrial and applied mathematics,
edinburgh (USA: Oxford University Press).

Frontiers in Energy Research frontiersin.org13

Huang et al. 10.3389/fenrg.2024.1332476

https://doi.org/10.1023/a:1018960717197
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1332476


Nomenclature

Acronyms

ODE Ordinary differential equation

IVP Initial value problem

LOCA Loss of coolant accidents

MSLB Main steam line breaks

English symbols

M Mass (kg)

Cp Specific heat (J/(kg·K))

G Mass flow rate (kg/s)

h Specific enthalpy (kJ/kg); elevation (m)

_Q Heat exchange rate (kJ/s)

k Thermal conductivity (kW/(m·K))

P Pressure (MPa)

T Temperature (K)

A Cross-section area (m2)

l Junction length (m)

V Volume (m3)

�F Nonlinear equation set vector

�y Unknow variables vector

Greek symbols

[fx17] Density (kg/m3)

ε Perturbation parameter

ξ Frictional factor

Δt Time step

Δx Space step

Subscript

steam Steam component

water Water component

i Non-condensable gas component; the i-th scalar cell

in Inlet

out Outlet

g Vapor phase

f Liquid water phase

i+1 The (i+1)-th scalar cell

Superscript

n The n-th time layer

n+1 The (n+1)-th time layer

k The k-th iteration step

k+1 The (k+1)-th iteration step
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