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Transient synchronization
stability of photovoltaics
integration by singular
perturbation analysis
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The integration of large-scale photovoltaics (PVs) into the power grid has
significantly altered the transient synchronization dynamics of traditional
power systems dominated by synchronous generators (SGs) and posed great
challenges to modeling and analysis of PVs integration. In this paper, the
transient synchronization stability of the PV-SG system is studied using
the singular perturbation technique. Firstly, a nonlinear model of a PV-
SG system is established to reveal the multiscale transient synchronization
characteristics. Further, the full system is decomposed into a slow subsystem
and a fast subsystem by the singular perturbation technique. The fast subsystem
containing the dynamics of the DC voltage control, terminal voltage control,
and phase-locked loop, and the slow subsystem containing the dynamics of
rotor motion can perfectly reflect the dynamics of the full system within the
electromagnetic and electromechanical timescales, respectively. The proposed
model provides a clearer physical picture of dynamics in the PV-SG system
within the electromagnetic and electromechanical timescales. Subsequently,
the stability of the slow and fast subsystems is investigated using the energy
function and eigenvalue analysis methods, respectively. Meanwhile, the impacts
of various operating, control, and structural parameters on the transient
synchronization stability are uncovered. Different from the most existing
research endeavors on the wide simulations of the PVs integration, the impact of
PVs on the synchronization dynamics of SGs without considering the dynamical
characteristics of the PV system, and the transient synchronization stability
analyses of the PLL-based voltage source converter systems, it is the key
contribution to study the transient synchronization dynamical characteristics of
the PV system and its interactionwith the SG under different timescales. All these
are helpful and easy to extend to more complicated PV-SG systems. Finally, the
analysis results are validated by extensive simulations.

KEYWORDS

photovoltaics, synchronous generators, transient synchronization stability, multi-
timescale, singular perturbation

1 Introduction

The integration of large-scale photovoltaics (PVs) into the grid has significantly
altered the dynamics of traditional power systems dominated by synchronous
generators (SGs). It has brought great impacts and challenges to the modeling
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and analysis of power systems integrated with PVs (Shah et al.,
2015; Kabeyi and Olanrewaju, 2022; Xiong et al., 2022). PVs are
connected to the grid through power electronic equipment. The
transient characteristics with PV integration differ significantly
from those of traditional power systems, and the transient
stability issues are increasingly prominent (Gandhi et al., 2020;
He H. et al., 2022; Seane et al., 2022). It has been reported that a
phase-to-phase fault of a 500 kV transmission line in California
resulted in an approximately 900 MW PV off-grid, with one of
the primary causes being the loss of synchronization (NERC Joint
and WECC Staff, 2018). Hence, it is urgent to uncover the
transient synchronization mechanism for the power systems
integrated with PVs.

Voltage source converter (VSC) is a fundamental component
of power electronic equipment, and its dynamical behaviors are
primarily dominated by control units, which differ significantly
from those of SGs dominated by the rotor motion (Wang et al.,
2020; Chen et al., 2023). The rotor motion is represented by
the second-order swing equation within the electromechanical
timescale (Kundur, 1994). For the transient stability analysis of
power-electronic-dominated power systems, several approaches
have been developed, including the time-domain simulation
(Zhao et al., 2021), energy function (Zhang et al., 2022), equal-
area criterion (Xu et al., 2023), phase portrait (Wu and Wang,
2020), hyperplane method (Ma et al., 2023a), basin of attraction
(Zhang et al., 2020), and bifurcation analysis (Ma et al., 2022a).
Usually, the transient synchronization of the VSC grid-tied
systems belongs to the electromagnetic timescale, including the
DC voltage control timescale and AC current control timescale
(Yuan et al., 2017; Ma et al., 2023b). Corresponding models for
the single-VSC system have been developed in (Ma et al., 2020;
Yang et al., 2020).

There are already several studies on the transient stability
analysis of power systems integrated with the PVs. The response of
the relative rotor angle is investigated in a large-scale system with
the PV penetration levels of 0% and 20% under three-phase faults
(Eftekharnejad et al., 2013). It has been found that the impact of PV
integration depends on the system topology, PV penetration levels,
fault types, and fault locations as well. Based on the Texas 2000-
bus system, the effects of large-scale PVs on the transient stability
are studied (Kumar et al., 2019). As demonstrated, the benefits of
PV integration are strongly related to the factors such as the node
criticality, type, location and penetration of PVs, as well as types
of transients. The impacts on the transient stability are analyzed in
the 39-bus and 118-bus systems, under different grounding fault
locations and various reactive power control strategies (Rezaei et al.,
2022). It is found that they depend on the disturbance types, PV
installation locations, and network structure. The impact of PV
penetration level on the transient stability of Ontario power system
is also assessed and it is demonstrated that distributed PVs can
considerably improve system stability (Tamimi et al., 2013). An
online transient stability assessment criterion is proposed for the
grid-connected PV generator by monitoring the energy swing of
the dc link capacitor (Priyamvada and Das, 2020a; Priyamvada and
Das, 2020b). In Hossain and Ali (2015), three nonlinear controllers
are proposed to enhance the transient stability of a large-scale
hybrid power system. Bymaking the PV inverter’s dc link capacitors
absorb some of the SG kinetic energy, novel control schemes for PV

inverters are also proposed in (Zevallos et al., 2021; Landera et al.,
2022), to improve the transient stability of the SG in the radial and
meshed power systems, respectively. However, most of these studies
are based on simulations, making it difficult to provide mechanistic
explanations for the transient stability of power systems integrated
with PVs in general.

On the other hand, for the mechanistic analysis of the transient
synchronization stability, many studies focus on the phase-locked
loop based (PLL-based) VSC systems. In addition, recently a
detailed model for the multi-machine PV-SG power systems is
established in (Pico and Johnson, 2019), but its application is
difficult due to its complexity. By neglecting the PLL dynamics and
accounting for the algebraic constraints caused by the existence
of its equilibrium point, the impact of the VSC on the transient
stability of the SG is investigated in He and Geng (2021). Based
on their respective synchronization loops, a second-order model
for the relative angle and frequency is developed and a unified
stability criterion is proposed in (He C. et al., 2022). The interaction
term of two VSCs is modeled and the equal area criterion is
adopted to study the transient synchronization stability of the
two-VSC grid-connected system (Fu et al., 2022; He and Geng,
2022). Further, a dual-iteractive equal area criterion is proposed
in Li et al. (2023). A mathematical model of the paralleled VSC
and virtual synchronous generator is established and the transient
synchronization stability is studied based on extended equal
area criterion theory and Lyapunov’s function (Shen et al., 2021).
Nevertheless, these studiesmainly focus on the synchronization loop
PLL and ignore the outer control loops. A clear picture of transient
synchronization characteristics, modeling, and stability with PVs
integration still lacks.

To address the aforementioned challenging issues, the singular
perturbation technique is used to investigate the transient
synchronization stability of the PV-SG system. The main
contributions of the paper are summarized as follows:

1) By utilizing the singular perturbation technique, we
divide the full system into two slow and fast subsystems, which
reflect the electromechanical and electromagnetic timescale
dynamics, respectively.The proposed model offers a clearer physical
picture for the PV-SG system dynamics and the interactions
between the PV system and the SG under different timescales
become clearer.

2) Based on the reduced-order slow and fast subsystems,
the transient synchronization stability analysis of the full system
is studied and the parameter impacts on the stability are
uncovered.

The paper is organized as follows. In Section 2, a nonlinear
model for the PV-SG system is established and its transient
synchronization characteristics are revealed. In Section 3, by
employing the singular perturbation technique, the multi-timescale
decomposition is carried out to divide the full system into two
independent slow and fast subsystems. In Section 4, the stability
of the slow and fast subsystems is analyzed by using the energy
function and eigenvalue analysis methods, and the impacts of
various parameters on stability are uncovered. In addition, Section 5
conducts extensive electromagnetic transient (EMT) simulations
with the aid of MATLAB/Simulink, which verifies the validity
of the analytical results. Finally, conclusions and discussions are
presented in Section 6.
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Here, we would like to emphasize that in our recent conference
paper (Wu et al., 2023), the singular perturbation technique has
been used to model the multi-machine power systems integrated
with PVs. The multi-machine model in Wu et al. (2023) clarifies
variable relations between the equipment and network, and lays
a foundation for some further stability analyses. Here, in this
paper, we mainly focus on the interactions between the PV system
and the SG under different timescales and perform the transient
synchronization stability analysis.

2 Nonlinear modeling of the PV-SG
system

2.1 Control scheme and model
assumptions

Figure 1 shows the circuit topology and control block diagramof
the PV-SG parallel system. The single-stage PV array is connected
to the system through the VSC, connected in parallel with the
SG and then connected to the infinite grid. The PV grid-tied
system adopts the vector control scheme, comprising the outer
loop voltage control, alternating current control (ACC), and phase-
locked loop (PLL) control. The linear proportional-integral (PI)
controllers are adopted, which have been widely used in industrial
control systems. The outer loop voltage control includes the DC
voltage control (DVC) and the terminal voltage control (TVC).
For the single-stage PV grid-tied system, the maximum power
point tracking (MPPT) control regulates the DC voltage reference
to operate at the maximum power-point based on the output
current and the DC voltage of the PV array as well as inherent
algorithms. Common MPPT algorithms include the perturb and
observe algorithm and the incremental conductance algorithm. By
comparing the DC voltage and the terminal voltage with their
corresponding references, the current references in the dq reference
frame are obtained.Then, the ACC compares the current references
with their actual values to generate the voltage references in the dq
reference frame. Moreover, the output angle of the synchronization
loop PLL is used for the coordinate transformation to obtain the
voltage references in the xy reference frame. Subsequently, the
voltage references are modulated to control the switching states of
the six insulated gate bipolar transistors (IGBTs) by the pulse width
modulation technique.

For modeling, the SG adopts the classical second-order model
and can be represented as a constant transient potential connected
to the network through a transient inductance L′d. Since the ACC
is much faster than the outer loop voltage control and PLL control,
the dynamics of the ACC are ignored. It is assumed that the
output current values of the PV system can simultaneously track
their respective reference values in the dq reference frame, i.e.,
id = idref and iq = iqref. Furthermore, the dynamics of the inductors
are neglected, and the network is described by the phasor model.
Usually, the change of environmental temperature and irradiance
is a relatively slow process, so it is not considered in the transient
analysis. The MPPT control of the PV system is also not taken into
account, meaning that the reference value of the DC side remains
constant under the given external environmental conditions. The
VSC is modeled by the average model, and the converter losses

FIGURE 1
Schematic show of the PV-SG parallel system and its controls.

FIGURE 2
Schematic show of the redrawn control block diagram of the PV-SG
parallel system under some simplifications.

and line resistance are also neglected. Under these assumptions, the
SG can be treated as a voltage source, while the PV system can be
regarded as a controlled current source. The control diagram of the
PV-SG parallel system can be redrawn in Figure 2. X1 is defined as
the sum of the transient reactance X′d of the SG (X

′
d = ω0L

′
d) and the

reactance X0 of the connected line (X0 = ω0L0). X2 represents the
equivalent line reactance of the PV integration (X2 = ω0L2) and Xg
represents the grid reactance (Xg = ω0Lg). Here, ω0 represents the
working frequency.

The phase relations between the xy reference frame and the
dq reference frame are shown in Figure 3. The vector in the
xy reference frame is represented by a bold variable, such as
U = ux + juy = Uejθ, where ux and uy are the xy components of
U. U and θ denote the amplitude and phase of U, respectively.
The bold variable with the superscript “c” denotes the vector in
the dq reference frame, such as Uc = ud + juq, where ud and uq
are the dq components of Uc. The xy reference frame rotates at
a fundamental speed ω0, with the x-axis aligned with the voltage
vector Ug of the infinite grid. The dq reference frame rotates at
a variable speed ωpll, and the angle difference between the dq
reference frame and xy reference frame is θpll. The voltage vector
E′ of the SG rotates at a variable speed ωg, and its phase in the xy
reference frame is θg.
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FIGURE 3
Schematic show of the xy reference frame, rotating at the fundamental
speed ω0, and dq reference frame, rotating at the variable speed ωpll.

2.2 Modeling of the SG

The SG adopts the classical model and can be represented as a
voltage source connected to the network through a transient reactor.
The amplitude E′ of the voltage source is constant. The dynamics of
the rotor angle are represented by the second-order swing equation:

{
̇θg = (ωg − 1)ωo

Tjω̇g = Pm − P1 −D0 (ωg − 1)
(1)

where θg and ωg denote the rotor angle and angular speed,
respectively, Pm and P1 represent the mechanical power and
electromagnetic power, respectively, and Tj and D0 are the inertial
time constant and damping, respectively. Note that P1 should be
obtained from the network.

2.3 Modeling of the PV grid-tied system

2.3.1 PV array
The PV array adopts the commonly used model in engineering

(Villalva et al., 2009; Liu et al., 2011). The output current of the PV
array is a nonlinear function on the DC voltage, that is,

Ipv = Isc −C1Isc (e
Udc/(C2Uoc) − 1) (2)

where
C1 = (1− Impp/Isc)e

−Umpp/(C2Uoc) and C2 = (Umpp/Uoc − 1)[ln(1− Impp/Isc)]
−1.

Uoc, Isc, Umpp, and Impp are the open-circuit voltage, short-
circuit current, and voltage and current at themaximumpower point
of the PV array, respectively.

Thus, the output power of the PV array becomes a nonlinear
function of Udc,

Ppv = Udc (Isc −C1Isc (eUdc/(C2Uoc) − 1)) (3)

2.3.2 VSC
The standard form of the PI controller, with u(t) as the input and

y(t) as the output, is represented as

y (t) = Kp [u (t) +
1
τ
∫
t

0
u (t)dt] (4)

where the integral time constant τ = Kp/Ki, and Kp and Ki are
the proportional and integral coefficients of the PI controller,
respectively.

Selecting the state variable x as the output of the integrator:

x (t) = 1
τ
∫
t

0
u (t)dt (5)

yields

{
̇x (t) = u (t)/τ

y (t) = Kp (u (t) + x (t))
(6)

1) DVC & TVC: Let the state variables x1 and x2 denote the
output of the integrators in the DVC and TVC, respectively, we have
their differential equations:

{
̇x1 = (Udc −Udcref)/τ1
̇x2 = (Ut −Utref)/τ2

(7)

Correspondingly, the output currents are represented by the
algebraic equations

{
id = Kp1 (Udc −Udcref + x1)
iq = Kp2 (Ut −Utref + x2)

(8)

where Ut is obtained from the network.
2) PLL:The PLL comprises an integrator and a PI controller.The

x3 represents the output of the integrator in the PI controller, and the
corresponding differential equations are

{
̇x3 = sin(θt − θpll)/τ3
̇θpll = Kp3 (sin(θt − θpll) + x3)

(9)

where θt is also obtained from the network.
3) Dynamics of the DC capacitor: The mismatch between the

input and the output powers is the derivative of the energy on the
DC capacitor, namely,

U̇dc =
Ppv − P2
CdcUdc

(10)

where the output electromagnetic active power P2 of the PV system
is obtained from the network.

In addition, the amplitude and phase of the output current vector
I can be derived as

{
{
{

I = √i2d + i
2
q

θI = ϕI + θpll
(11)

where ϕI denotes the phase in the dq reference frame of the current
vector I. ϕI = arctan (iq/id).

2.4 Modeling of the terminal voltage and
active powers

Based on the superposition theorem on the circuit in Figure 2
including the three branches: 1) an infinite bus Ug with a series Xg,
2) a transient potential E′ with a series X1, and 3) a current source I
from the PV system, the parallel bus voltage vectorUc of the SG and
the PV system can be obtained by

Uce
jθc = K1Uge

j0 +K2E
′ejθg + jX3Ie

jθI (12)
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where K1 = X1/(X1 + Xg), K2 = Xg/(X1 + Xg), and X3 = X1
Xg/(X1 + Xg).

The output electromagnetic active powers of the SG and the PV
system can be derived as

{
P1 = E′Ug sinθg/(X1 +Xg) −K2E

′I cos(θg − θI)
P2 = K1UgI cosθI +K2E

′I cos(θg − θI)
(13)

The xy components of the terminal voltage vector Ut of the
PV system is

{
utx = K1Ug +K2E

′ cosθg − (X2 +X3) I sinθI
uty = K2E

′ sinθg + (X2 +X3) I cosθI
(14)

Thus, the amplitude and phase of the terminal voltage vector Ut
can be obtained:

{
{
{

Ut = √u
2
tx + u

2
ty

θt = arctan(uty/utx)
(15)

2.5 Bulk transient synchronization
characteristics of the PV-SG system

The dynamics of the SG are dominated by the rotor
motion and its transient synchronization process belongs to
the electromechanical timescale. In contrast, the PLL provides
the reference angle between the dq and xy reference frames,
and its electromagnetic timescale dynamics are dominant. The
synchronization of the PV-SG system can be regarded as the
synchronization between the state variables of the rotor angle θg
and the PLL output angle θpll (Ma et al., 2023c; Zhang et al., 2023).
From (11), (14), and (15), it becomes evident that the magnitude Ut
and phase θt of the terminal voltage vector of the PV system depend
on the variables θg, id, iq, and θpll. As a result, the control diagram of
the PV-SG system is illustrated in Figure 4A, where the functions f1
and f2 are determined by (11), (14), and (15).

When a fault occurs, the PV-SG system experiences a sequence
of changes. Here, we divide the whole process into three stages for a
stable case. In stage I, the rotor angle θg is essentially unchanged in
the early stage. The transient behaviors of the PLL output angle θpll
are dominated by the dynamics of the DVC, TVC, and PLL, showing
electromagnetic timescale dynamics, as shown in Figure 4B. In stage
II, after hundreds of milliseconds, the response of electromagnetic
timescale dynamics of the PV system finishes. The DC voltage,
terminal voltage, and PLL output angle essentially equal to their
corresponding reference values, i.e., Udc ≈ Udcref, Ut ≈ Utref, θpll ≈ θt.
Thus, the output currents id and iq remain essentially unchanged.
At this point, the transient behaviors are dominated by the swing
equation of the SG, showing electromechanical timescale dynamics
in a long term, as shown in Figure 4C. Finally, in stage III, the
response of electromechanical timescale dynamics of the SG finishes
and the system reaches a steady state again.

Consequently, the transient synchronization processes of
the PV-SG system show multi-timescale dynamics. The rotor
angle θg of the SG consistently performs electromechanical
timescale dynamics, whereas the PLL output angle θpll belongs
to the electromagnetic timescale and is dominant in the early
stage of the fault. Subsequently, the electromagnetic timescale

FIGURE 4
Schematic shows of the control diagram of the PV-SG parallel system
for (A) the whole transient process, (B) in the early stage after the fault,
and (C) after hundreds of milliseconds.

dynamics of the PLL output angle θpll rapidly attenuate. The
long-term behavior of the rotor angle θg is dominant and
the PLL output angle θpll also becomes the electromechanical
timescale.

3 Reduced-order model

3.1 Introduction of singular perturbation
theory

According to the theory of integral manifolds, the singular
perturbation technique can be applied to analyze multi-timescale
characteristics in nonlinear dynamics. Essentially, it replaces the
integral manifold of a high-dimensional system with the integral
manifold of a low-dimensional system, and thus decomposes the full
system into two fast and slow subsystems (Shchepakina et al., 2014).

A standard singular perturbed system is

{
Ẋ = f (X,Y,ε)
εẎ = g (X,Y,ε)

(16)

where X and Y are the slow and fast variables, X ∈ ℝm, and Y ∈ ℝn

ɛ denotes a small positive parameter, and 0 < ɛ≪ 1.
Let ɛ = 0 in (16), we have the slow subsystem

{
Ẋ = f (X,Y,0)
0 = g (X,Y,0)

(17)

The timescale transformation is performed by
taking τ = t/ɛ in (16) to derive the fast subsystem.
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Then, the equivalent singular perturbation system can
be written as

{
X′ = dX/dτ = εf (X,Y,ε)
Y′ = dY/dτ = g (X,Y,ε)

(18)

Similarly, by setting ɛ = 0 in (18), the fast subsystem can
be derived:

{
X′ = 0
Y′ = g (X,Y,0)

(19)

By utilizing the singular perturbation technique, the full system
can be reduced to two independent fast and slow subsystems.
By their stability analyses, the stability of the full system can be
assessed. Only when both the fast and slow subsystems are stable,
the full system is stable (Khalil, 2002). The full PV-SG system can
be represented by a set of nonlinear differential algebraic equations.
Therefore, according to the time constants of the state variables in the
differential equations, we can perform the timescale decomposition
to derive the corresponding fast and slow subsystems.

3.2 Slow subsystem

According to (1), (7), (9), and (10), we have the differential
equations of the full system:

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

τ1 ̇x1 = Udc −Udcref

τ2 ̇x2 = Ut −Utref

τ3 ̇x3 = sin(θt − θpll)
τpll ̇θpll = sin(θt − θpll) + x3
τCU̇dc = Ppv − P2
τ4 ̇θg = (ωg − 1)ωo

τ5ω̇g = Pm − P1 −D0 (ωg − 1)

(20)

Take the parameters in Supplementary Material S1, we have
τ1 = Kp1/Ki1 = 0.025 s, τ2 = Kp2/Ki2 = 0.01 s, τ3 = Kp3/Ki3 = 0.025 s,
τpll = 1/Kp3 = 0.02 s, τC = Cdc = 0.1 s, τ4 = 1 s, and τ5 = Tj = 5 s. The
values of τ1, τ2,τ3, τpll, and τC are between 0.01 s and 0.1 s, while τ4
and τ5 are between 1 s and 10 s. Thus, x1, x2, x3, θpll, and Udc (for
the PV system) are fast variables, and θg and ωg (for the SG) are
slow variables.

Setting τ1, τ2, τ3, τpll, τC = 0 in (20), we have the second-order
differential equations of the slow subsystem:

{
τ4 ̇θg = (ωg − 1)ωo

τ5ω̇g = Pm − P1 −D0 (ωg − 1)
(21)

The differential equations for the fast variables in the full system
degenerate into the algebraic equations:

{{{
{{{
{

Udc = Udcref,Ut = Utref

utq = 0,θt = θpll
P2 = Ppv

(22)

It can be found that the fast variables quickly follow their
corresponding reference values during the transient processes.
Therefore, the output characteristics of the PV system shift from

a controlled current source to an active power source (Ppv) with
a constant voltage magnitude (Utref), as P2 = Ppv and Ut = Utref.
Meanwhile, the dynamics of the slow subsystem are dominated by
the rotor swing equation within the electromechanical timescale.

In order to better handle the interface relations between the
SG, the PV system, and the network within the electromechanical
timescale, the output of the PV system is treated as a voltage
vector with a current vector as its input. Applying the superposition
theorem again on the modified circuit in Figure 2 including the
three branches: 1) an infinite bus Ug with a series Xg, 2) a transient
potential E′ with a series X1, and 3) a voltage source Ut with a series
X2 from the PV system, the voltage vector Uc can be derived:

Uce
jθc = K′1Uge

j0 +K′2E
′ejθg +K′3Ute

jθt (23)

where K′1 = (X1//X2)/(Xg +X1//X2), K
′
2 = (X2//Xg)/(X1 +X2//Xg),

and K′3 = (X1//Xg)/(X2 +X1//Xg).
The output electromagnetic active power of the SG can be

further obtained by

P1 = K
′
1E
′Ug sinθg/X1 +K

′
3E
′Ut sin(θg − θt)/X1 (24)

The xy components of the input current vector of the PV system
can be obtained:

{
ix = (1−K′3)Ut sinθt/X2 −K′2E′ sinθg/X2

iy = −(1−K′3)Ut cosθt/X2 +K
′
1Ug/X2 +K′2E′ cosθg/X2

(25)

and I = √i2x + i2y, θI = arctan (iy/ix).
Thus, the output voltage magnitude and phase of the PV system

can be derived:

{
Ut = Utref

θt = θI + arccos(Ppv/(UtrefI))
(26)

It can be found that the output voltage vector of the PV
system is determined by its inherent characteristics within the
electromechanical timescale and the input current vector derived
from the network. At this point, the input-output relationship
between the PV system and the network is illustrated in Figure 5A.

3.3 Fast subsystem

Similarly, taking τ = t/ɛ in (20) and performing the timescale
transformation, the equivalent singular perturbation system can
be obtained. Then, we have the differential equations of the fast
subsystem:

{{{{{{{{
{{{{{{{{
{

τ1 ̇x1 = Udc −Udcref

τ2 ̇x2 = Ut −Utref

τ3 ̇x3 = sin(θt − θpll)
τpll ̇θpll = sin(θt − θpll) + x3
τCU̇dc = Ppv − P2

(27)

Meanwhile, the differential equations for the slow variables (θg
and ωg) should be transformed into algebraic equations. Namely,
θg = θg0 andωg = ωg0, which are determined by the initial power flow

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1332272
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wu et al. 10.3389/fenrg.2024.1332272

FIGURE 5
Input-output relationships between the PV system and the network
within (A) the electromechanical timescale and (B) the
electromagnetic timescale.

of the full system. Consequently, the SG is equivalent to a constant
voltage source, while the output of the PV system still functions as
a controlled current source. The dynamics of the fast subsystem are
dominated by the DVC, TVC, and PLL of the PV system within the
electromagnetic timescale. Hence, the voltage vectorsUc andUt, and
electromagnetic active power P1 and P2, are the same as in (12), (13),
(14) and (15), except that the slow variable θg is taken as θg0. At this
point, the input-output relationship between the PV system and the
network is illustrated in Figure 5B.

4 Transient synchronization stability
analysis of the PV-SG system

4.1 Stability analysis of the slow subsystem

According to Eq. (21), the differential equations of the slow
subsystem can be unified as

M ̈θg +D ̇θg + P(θg) = 0 (28)

where M = Tj/ω0, D = D0/ω0, P (θg) = P1 − Pm, and P1 denotes the
output active power of the SG after the fault.

Then, the energy function can be constructed (Chiang, 2011):

V(θg, ̇θg) =
1
2
M[ ̇θg (t)]

2 +∫
θg(t)

θg(t0)
P (θ)dθ (29)

as

dV
dt
= ∂V
∂ ̇θg

d ̇θg
dt
+ ∂V
∂θg

dθg
dt
= −D(

dθg
dt
)
2

< 0 (30)

In addition, the critical energy Vcr is the energy at the unstable
equilibrium point θgu after the fault;

Vcr =
1
2
M[ ̇θgu]

2 +∫
θgu

θgs
P (θ)dθ (31)

The stable equilibrium point θgs and the unstable equilibrium point
θgu can be obtained by solving the differential algebraic equations of
the slow subsystem after the fault.

The θg0 denotes the stable equilibrium point of the slow
subsystem before the fault. By comparing the energy V0 at θg0
before the fault and the critical energy Vcr, the stability of the
slow subsystem can be judged. The stability condition of the slow
subsystem is V0 < Vcr, namely,

∫
θgu

θg0
P (θ)dθ > 0 (32)

Clearly the stability of the slow subsystem primarily relies on the
operating parametersPm andPpv, aswell as the structural parameters
Xg, X1, and X2, while it is unaffected by the control parameters and
DC capacitance of the PV system.

According to the stability condition Eq. (32), for example, for a
grid voltage dip fault, the critical grid voltage and grid reactances
for a stable subsystem can be obtained. The result is illustrated in
Figure 6A, where it is evident that larger Ug is beneficial for the
system stability. The stable regions of the slow subsystem under
different levels of PV penetration are shown in Figure 6B.The output
active power Ppv of the PV system corresponds to 0.8 pu, 0.9 pu,
and 1.0 pu, respectively. As illustrated, the range of the stable region
diminisheswith increasingPpv.Therefore, a smallerPpv improves the
system stability.The impact of the equivalent line reactanceX2 is also
investigated and the result is shown in Figure 6C. The reactance X2
corresponds to 0.1 pu, 0.3 pu, and 0.5 pu, respectively. As observed,
the stable region of the slow subsystem reduces with increasing X2.
Thus, a smaller X2 is beneficial for the system stability.

4.2 Stability analysis of the fast subsystem

The fast subsystem is regarded as a small disturbance of the
slow subsystem, and the stability analysis can be carried out by
linearization analysis methods (Kokotović et al., 1999; Ma et al.,
2022b). By linearizing the fast subsystem on the operation point, the
JacobianmatrixA of the fast subsystem can be obtained, as shown in
Supplementary Material S2. If all the real parts of the eigenvalues of
A are negative, the fast subsystem is asymptotically stable (Kundur,
1994). Based on A, it can be observed that the stability of the fast
subsystem is affected by the control parameters of the DVC, TVC,
and PLL, the steady-state operating parameters, and the structural
parameters. Similarly, according to this stability condition of the fast
subsystem, the stable region for different grid voltage Ug and grid
reactance Xg under the grid voltage dips is illustrated in the purple
region in Figure 7. In addition, the participation factor analysis is
conducted. It is found that the state variables x1, x3, θpll, and Udc
show significant participation in the conjugate eigenvalues near the
imaginary axis. Consequently, the stability of the fast subsystem is
primarily affected by the DVC, PLL, and the dynamics of the DC
capacitor, while the impact of the TVC is relatively slight.
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FIGURE 6
Stable regions of the slow subsystem based on the energy function analysis under (A) Ppv = 0.9 pu and X2 = 0.1 pu, (B) increasing Ppv = 0.8, 0.9, and 1.0
pu, and (C) increasing X2 = 0.1, 0.3, and 0.5 pu.

FIGURE 7
Comparison of stable regions under grid voltage dips. The bule region
is the stable region of the slow subsystem based on the energy
function analysis and the purple region is the stable region of the fast
subsystem based on the eigenvalue analysis. Their intersection is the
predicted stable region of the full system for both the slow and fast
stable subsystems, while the region bounded by the red dashed line is
the stable region of the full system based on the EMT simulations.

Next let us study the parameter impacts. With increasing the
proportional coefficient Kp1 and integral coefficient Ki1 of the
DVC, the eigenvalue loci of the fast subsystem are illustrated
in Figures 8A,B, respectively. As Kp1 increases, the conjugate
eigenvalues λ1 and λ2 gradually approach the imaginary axis from
the right-half plane to the left-half one. The system stability is
enhanced. Conversely, with the increase of Ki1, the conjugate
eigenvalues λ1 and λ2 gradually move towards the imaginary axis
from the left-half plane to the right-half one, and the systembecomes
unstable. Therefore, the larger Kp1 and smaller Ki1 of the DVC
improve the stability of the fast subsystem.

AsKp3 andKi3 of the PLL increase, the eigenvalue loci are shown
in Figures 8C,D, respectively. It can be found that the larger Kp3 and
smaller Ki3 of the PLL enhance the stability of the fast subsystem.

The eigenvalue loci with increasing the DC capacitance are
illustrated in Figure 8E. As Cdc increases, the conjugate eigenvalues

λ1 and λ2 gradually approach the imaginary axis from the left-half
plane to the right-half one. Subsequently, they cross the imaginary
axis again and move back towards the left-half plane. Therefore, as
Cdc increases, the stability of the fast subsystem is initially weakened
and subsequently improved.

In addition, the eigenvalue loci with increasing the equivalent
line reactance X2 are shown in Figure 8F. As X2 increases, the
conjugate eigenvalues λ1 and λ2 shift from the left-half plane to
the right-half one, thereby deteriorating the stability of the fast
subsystem. Consequently, a smaller X2 improves the stability of the
fast subsystem.

5 Simulation verification

5.1 Verification of the reduced-order
model

In order to verify the validity of the fast and slow subsystem
models, the time-domain simulation is conducted under the grid
voltage dips. For the PV-SG parallel system in Figure 2, as a test, the
system has reached a steady state before t = 1 s. At t = 1 s, again the
grid voltage Ug suddenly dips from 1.0 pu to 0.8 pu, and the time
domain responses of the rotor angle θg of the SG and the PLL output
angle θpll are shown in Figure 9. The blue solid line represents the
results of the full model, while the red dashed line and the purple
dash-dotted line represent those of the slow and fast subsystem
models, respectively.

In Figure 9A, the rotor angle θg oscillates and ultimately
converges within the electromechanical timescale. The oscillation
of the PLL output angle θpll within the electromagnetic timescale
attenuates rapidly in the early stage after the fault [for the zoom-
in plot in Figure 9B] and it shows electromechanical timescale
dynamics in a long term. The response trajectories of the slow
subsystem model essentially coincide with those of the full system.
Additionally, the fast subsystemmodel captures the dynamics of the
PLL output angle θpll in the early stage after the fault within the
electromagnetic timescale. Therefore, the slow and fast subsystem
models can truly reflect the dynamical behaviors of the full system
during different transient processes, thereby verifying the validity
and efficiency of the proposed model.
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FIGURE 8
Eigenvalue loci with increasing control parameters of the DVC and PLL, and structural parameters: (A) Kp1, (B) Ki1, (C) Kp3, (D) Ki3, (E) Cdc, and (F) X2.

FIGURE 9
Time-domain simulation results of (A) the rotor angle θg and (B) the
PLL output angle θpll of the full model (solid line), the slow subsystem
model (dashed line), and the fast subsystem model (dash-dotted line)
when the grid voltage Ug dips from 1.0 pu to 0.8 pu at t = 1 s under
Xg = 0.1 pu.

5.2 Verification of the stable regions

When both the slow and fast subsystems are stable, the
full system is stable. Thus, the stable region of the full system
corresponds to the intersection of the stable regions of the fast and
slow subsystems, as illustrated by purple and blue, respectively, in
Figure 7. The region bounded by the red dashed line represents
the stable region of the full system obtained directly from the
EMT simulations, which is essentially consistent with the analyses.
Therefore, it is reasonable to catch the stability of the full

FIGURE 10
Time-domain simulation results of (A) the rotor angle θg and (B) the
PLL output angle θpll. Similar to Figure 9, but for Ug dips to 0.7 pu
under Xg = 0.3 pu, instead. Now the fast subsystem is stable, but the
slow subsystem is unstable.

system by performing the stability analysis of its fast and slow
subsystems.

5.3 Verification of the stability analysis

So far, we have studied the case that both the fast and
slow subsystems are stable, and hence the full system is stable
in Figure 9, which corresponds to point A in Figure 7. Next let
us study several other cases represented by points B, C, and
D in Figure 7.
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FIGURE 11
Time-domain simulation results of (A) the rotor angle θg and (B) the
PLL output angle θpll. Similar to Figure 9, but for Ug dips to 0.45 pu
under Xg = 0.1 pu, instead. Now the slow subsystem is stable, while the
fast subsystem is unstable.

FIGURE 12
Time-domain simulation results of (A) the rotor angle θg and (B) the
PLL output angle θpll. Similar to Figure 9, but for Ug dips to 0.5 pu
under Xg = 0.3 pu, instead. Now both the fast and slow subsystems
are unstable.

At t = 1 s, the grid voltage Ug dips from 1.0 pu to 0.7
pu under Xg = 0.3 pu, corresponding to point B in Figure 7.
The time domain responses of the rotor angle θg and the PLL
output angle θpll of the full system as well as the fast and
slow subsystems are illustrated in Figure 10. The fast subsystem
is stable while the slow subsystem is unstable, resulting in
the instability of the full system. At this point, the response
trajectories of the slow subsystem are roughly consistent with the
full system.

FIGURE 13
Time-domain simulation results of (A) the rotor angle θg and (B) the
PLL output angle θpll. Transient responses of the rotor angle θg and the
PLL output angle θpll under different Cases when the grid voltage Ug

dips from 1.0 pu to 0.5 pu at t = 1 s.

FIGURE 14
Transient responses of the rotor angle θg when the grid voltage Ug dips
from 1.0 pu to 0.65 pu at t =1 s under different levels of PV penetration
and equivalent line reactances. (A) Ppv = 0.8 pu and 1.0 pu under Xg =
0.2 pu. (B) X2 = 0.1 pu and 0.5 pu under Xg = 0.1 pu.

The grid voltage Ug dips to 0.45 pu under Xg = 0.1 pu,
corresponding to point C in Figure 7. The time domain responses
of θg and θpll of the full system as well as the fast and slow
subsystems are illustrated in Figure 11. Now the slow subsystem
is stable while the fast subsystem is unstable, and the full system
is unstable.

The grid voltage Ug dips to 0.5 pu under Xg = 0.3 pu,
corresponding to point D in Figure 7.The time domain responses of
θg and θpll of the full system as well as the fast and slow subsystems
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are illustrated in Figure 12. Here both the fast and slow subsystems
are unstable, and the full system is unstable.

Therefore, the above simulation results perfectly verify that
the full system is stable when both the fast and slow subsystems
are stable. Moreover, when the fast subsystem is stable, the slow
subsystem can reflect the dynamical behaviors of the full system in
a long time perspective.

5.4 Verification of the parameter impacts

To verify the impacts of different parameters obtained from the
theoretical analysis, broad EMT simulations have been conducted.
For example, in Case 1, the parameters are set as follows: kp1 = 3.5,
ki1 = 140, kp3 = 50, ki3 = 2000, Cdc = 0.1 pu. We can change one
parameter each time in different Cases: e.g., kp1 = 7 (Case 2); ki1 = 60
(Case 3); kp3 = 100 (Case 4); ki3 = 200 (Case 5); Cdc = 0.01 pu (Case
6); Cdc = 0.5 pu (Case 7). At t = 1 s, the voltage Ug suddenly dips
from 1.0 pu to 0.5 pu. Figure 13 shows the time domain responses
of the rotor angle θg and the PLL output angle θpll under these
Cases. As illustrated, the system remains stable under all these Cases,
except for Case 1. Therefore, larger Kp1 and Kp3, and smaller Ki1
and Ki3 can enhance the system stability. The system stability is
initially weakened and then improved with an increase of Cdc. In
addition, the impacts of levels of PV penetration and equivalent line
reactances are also investigated. At t = 1 s, the grid voltage Ug dips
from 1.0 pu to 0.65 pu. The corresponding responses of the rotor
angle θg under different levels of PV penetration and equivalent
line reactances are illustrated in Figures 14A,B, respectively. It is
evident that smallerPpv andX2 improve the system stability. All these
simulation results are consistent with the findings of the previous
theoretical analysis.

6 Conclusion and discussion

In conclusion, the transient synchronization stability of the
PV-SG system is studied by using the singular perturbation
technique. Compared to the most existing research endeavors on
the wide simulations of the PVs integration, the impact of PVs
on the synchronization dynamics of SGs without considering the
dynamical characteristics of the PV system, and the transient
synchronization stability analyses of the PLL-based VSC systems,
this paper provides a clearer physical picture for the dynamical
characteristics of the PV system and deeply studies its interaction
with the SG under different timescales. The main conclusions are
summarized as follows:

1) The dynamical behaviors of the PV-SG system show multi-
timescale characteristics during the transient processes. The
proposed reduced-order fast-slow subsystem model can
effectively reflect the dynamical behaviors of the full system
within the electromagnetic and electromechanical timescales.
Moreover, when the fast subsystem is stable, the slow
subsystem can describe the transient process of the full system,
especially in a long time perspective.

2) Based on the slow and fast subsystems, the stability of the
full PV-SG system is analyzed using the energy function and

eigenvalue analysis methods. In addition, the full system is
stable only when both the fast and slow subsystems are stable.

3) Lower levels of PV penetration, smaller equivalent line
reactance, larger proportional coefficients, and smaller integral
coefficients of the DVC and PLL enhance the system stability.
Furthermore, as the DC capacitance increases, the system
stability is initially weakened and then improved.

For discussions, it is necessary to give some important points:

1) The transient characteristics of the PV-SG system remain
essentially unchanged when considering the damper and
excitationwindings of the SG.Thedynamics of the damper and
excitation windings belong to the ACC and electromechanical
timescales, respectively, and the rotor angle is still dominated
by the electromechanical timescale dynamics. The dominant
dynamical behaviors of the PLL output angle is slightly affected
by the damper and excitation windings of the SG in the
early stage after the fault. Consequently, it is reasonable and
effective to use the classical second-order model of the SG
for studying the transient synchronization stability of the
PV-SG system.

2) For the transient synchronization stability of the PV-SG
system, it is difficult to directly use the energy functionmethod
in the full high-order PV-SG system. In this paper, the full
seventh-order PV-SG system is decomposed into a second-
order slow subsystem and a fifth-order fast subsystem by using
the singular perturbation technique. Further, the transient
synchronization stability of the PV-SG system is investigated
using the energy function and eigenvalue analysis methods.
Compared to the most existing methods, this paper provides
a clearer physical picture for the dynamical characteristics
of the PV system and deeply studies its interaction with the
SG under different timescales. In addition, we utilize a PV-
SG parallel system to study the transient synchronization
stability of PVs integration in this paper. The reduced-order
modeling method in this paper is also applicable to multi-
machine power systems integrated with PVs, and some work
has been done in our recent research (Wu et al., 2023). The
transient synchronization stability of the full system can
also be studied based on the slow and fast subsystems.
However, due to the high-order and strong coupling of
multi-machine systems, it is still very challenging to perform
the transient synchronization stability analysis of multi-
machine systems, which needs further consideration in our
future work.

3) For the impacts of different PV penetration levels, it is
found that lower levels enhance the transient synchronization
stability of the PV-SG system in this paper. However,
this conclusion is derived from the simple PV-SG parallel
system and cannot be directly extended to a more
generalized PV-SG system. Due to various influencing
factors, a unified perspective on whether lower PV
penetration levels enhance transient synchronization
stability still lacks, which needs further investigation.
Nevertheless, the reduced-order modeling and stability
analysis methods, based the slow and fast subsystems, are
equally applicable to a more generalized PV-SG system. The
impacts of different PV penetration levels on the system
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stability can be analyzed similarly from the perspective of
corresponding subsystems.

4) While many studies focus on the second-order PLL for the
transient synchronization stability of the PLL-based VSC
system, they assume the outputs from outer DVC and TVC
(i.e., the current references) are constant, which is only valid
for certain situations, such as the low voltage ride through.
The current references of the PV-SG system change during
the transient processes. Thus, it is inappropriate to only
consider the PLL and neglect the DVC in the modeling and
analysis of the PV-SG system for generalized situations. In
(Ma et al., 2023d), it is uncovered that not only the PLL but
also the DVC plays an important role in transient dynamics.
Moreover, in this paper, it is found that the DVC affects
the stability of the fast subsystem and may lead further
instability in the full system. For the DVC parameters, they
only influence the stability of the fast subsystem, with no
effect on the stability of the slow subsystem. It is revealed
that a larger proportional coefficient and a smaller integral
coefficient of the DVC enhance the stability of the fast
subsystem. Consequently, when the fast subsystem becomes
unstable after a fault due to improper DVC parameters, the
full system also becomes unstable. When the fast subsystem
remains stable after a fault, the dominant dynamical behaviors
of the full system are unaffected by DVC parameters, as
the full system is then dominated by the slow subsystem
dynamics. In this paper, the fifth-order fast subsystem is
treated as a small disturbance of the slow subsystem and
analyzed by the linearization analysismethod. For the transient
synchronization stability of the PV-SG system, the effective
nonlinear analysis methods still lack, which should be
further studied.
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