
The driving factors of spatial
differences on thewhole life cycle
carbon emissions of the
construction industry: from the
analysis perspective of total factor
productivity

Zhengyan Zhang, Zhaoqi Wu, Xiaolu Yang, Binqing Cai* and
Zhensi Lin

School of Management, Fujian University of Technology, Fuzhou, China

The energy saving and emissions reduction of the construction industry are
crucial for China to achieve the “carbon peaking and carbon neutrality” goals. In
order to promote the green development of the life cycle of the construction
industry and improve the efficiency of emissions reduction. This paper examines
the spatial-temporal distribution of life cycle carbon emissions in China’s
construction industry (LCCECI) from 2004 to 2018. It uses the SBM-Malmquist
total factor productivity (TFP) index to measure technological progress and
establishes the spatial econometric model based on the STIRPAT model. The
study investigates the driving factors of the LCCECI at the provincial and regional
levels, aiming to provide suggestions for low-carbon development in the
construction industry. The research results are as follows. ① The growth in
the SBM-Malmquist TFP index of the construction industry distinctly curbs the
LCCECI. ② Total population and urbanization level are not the primary driving
factors for the LCCECI. The growth of per capita GDP significantly induces the
LCCECI, while concurrently exhibiting a notable inhibitory effect on the LCCECI
of neighboring regions. ③ The improvement of the SBM-Malmquist TFP index is
conducive to the reduction of the LCCECI in the three major regions. The per
capita GDP has the largest positive driving effect of the LCCECI in the eastern
region, and the urbanization level the urbanization rate only significantly inhibits
the growth of the LCCECI in the central region.
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1 Introduction

In recent years, climate change has had an unprecedented impact on a global scale. The
frequent occurrence of extreme and unusual weather has led to threats to food production,
and the accelerated rise in sea level has exacerbated the extent of marine disaster causation.
The main cause of climate change is excessive CO2 emissions. The 2018 Global Status
Report on Energy and Carbon Dioxide published by the International Energy Agency states
that the total amount of carbon dioxide produced by global energy consumption reached a
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historical high of 33.1 billion tons in 2018 (IEA, 2019). In order to
deal with climate change, the Paris Agreement, adopted in 2015 and
signed by 186 countries worldwide, aims to significantly reduce
global greenhouse gas emissions and limit the global temperature
increase to below 2°C (Cheng et al., 2020). As a rapidly developing
carbon-emitting country, China has committed to peak carbon
emissions by 2030 and achieve carbon neutrality by 2060. Since
the reform and opening up, in pursuit of rapid economic
development, China’s long-term extensive development mode has
resulted in a large amount of energy consumption and excessive
carbon dioxide emissions. Along with the economic development
and the continuous improvement of urbanization level, the carbon
emissions of construction industry (CECI) and its proportion of
total carbon emissions are increasing continuously. According to
data from the China Statistical Yearbook, the CECI accounted for
approximately 27.9%–34.3% of the total CO2 emissions during
1995–2016 (Wang et al., 2019). It can be seen that the
construction industry is one of the important sources of global
greenhouse gas emissions, and building carbon reduction is an
important task in addressing climate change. Therefore, energy
conservation and emissions reduction in the construction
industry are crucial for China to achieve the carbon peaking and
carbon neutrality goals.

Recently, more andmore scholars have begun to pay attention to
the CECI and its driving factors (Zhu et al., 2022; Zhang et al., 2022;
Zhang et al., 2021; Sun et al., 2023; Li et al., 2021; Yang et al., 2021).
Technological progress, as one of the key driving factors, has
received widely attention. Because of the abstract nature of
technological progress, there is no direct measurement of
technological progress level. Most scholars use the energy
efficiency which is single input and single output as a
measurement of technological progress to study the impact of
technological progress on the CECI (Xu and Wang, 2020; Shi
et al., 2017; Lu et al., 2016; Song et al., 2018). However,
technological progress is a broad concept. And compared to the
energy efficiency of single input and single output, the total factor
productivity (TFP) can reflect the input-output situation of the
construction industry more comprehensively, so as to measure the
technical progress of the construction industry more systematically.
At the same time, existing studies are mostly conducted under the
framework of non-spatial econometrics, which often ignores spatial
characteristics, leading to the failure of traditional models (Yandell
and Anselin, 1990). The CECI in each province of China and its
influencing factors are not independent entities, and the links among
the provinces are becoming closer with the evolution of
socioeconomic activities and urbanization process, which has led
to more complex spatial connections between the provincial CECI.
In addition, previous studies lack relevant research on the CECI and
its driving factors from the life cycle perspective. As a frequently
overlooked member of the high-carbon industries, the CECI is not
only generated during the construction phase, but also encompass
the stages of building materials manufacturing and transportation,
building operation and demolition from the life cycle perspective.
And each of these stages contains enormous potential for carbon
reduction and energy conservation. Understanding the changing
trend of the CECI’s footprint in various provinces of China from the
life cycle perspective can help achieve carbon neutrality throughout
the life cycle of the construction industry, including design,

construction, operation and other stages. Therefore, by analyzing
the spatial characteristics and driving factors of the CECI from a life
cycle perspective, we can better understand the contribution of each
factor to carbon emissions. This will help us identify priority areas
for improvement and regions that require focused attention, in order
to formulate targeted and effective low-carbon policies and
measures. Considering spatial characteristics and driving factors
in the formulation of policies for environmental sustainability and
low-carbon development in the construction industry will provide
policymakers with comprehensive and accurate information and
guidance to achieve sustainable development goals.

Based on the above analysis, this study has three main
contributions to the literature. Firstly, this paper described the
spatiotemporal distribution pattern of the life cycle carbon
emissions of the construction industry (LCCECI) in China,
which provided a new perspective for the analysis of the CECI.
Secondly, this paper proposed an extended Stochastic Impact by
Regression on Population, Affluence, and Technology (STIRPAT)
model and optimized the indicator representing technological
progress. The SBM-Malmquist TFP was taken as the index of
technological progress, which can measure the technological
progress of the construction industry in a more comprehensive
and systematic way. Finally, a spatial econometric model was
established to explore the spatial-temporal correlation and
heterogeneity of the driving factors on the LCCECI. The
statistical inference was more accurate and reasonable when
considering the spatial characteristics of the LCCECI among
provinces in China.

The remainder of the study is organized in the following
manner. The review of previous literature is given in the second
section, the third section describes the methodology and data
adopted to achieve the objectives of the study fourth section
provides the results and discussion over the finding of the study
at the last recommendations suggested by the authors are narrated.

2 Literature review

With the increasing global population and rapid urbanization,
the development of the construction industry has exerted
tremendous pressure on energy consumption and environmental
pollution. Researching carbon emissions in the construction
industry is of great significance in understanding climate change,
promoting sustainable development, achieving economic benefits,
and improving environmental health. Existing literature research on
carbon emission mainly focuses on three aspects, including the
analysis of carbon emission research perspective, the driving factors
of technological progress and the analysis of research methods.

The research on the driving factors of the CECI has been widely
concerned by scholars at domestic and overseas. From the national
level, scholars abroad have studied the impact of technological progress
on the construction industry in Norway and Pakistan (Grepperud and
Rasmussen, 2004; Khan et al., 2020). However, in recent years, most
studies on the driving factors of the CECI have focused on China. For
examples, Shi et al. (2017) used the structural decomposition analysis
method to analyze the contribution value of various driving factors to
the increment of the CECI. Li et al. (2017) used ridge regression to
quantitatively analyze the impact of various explanatory variables on the
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CECI in China. From the regional level, Sun et al. (2023) characterized
the spatiotemporal evolution of the CECI at the provincial level. Huo
et al. (2022) analyzed the network structure characteristics and driving
factors of the CECI based on provincial data in China. In addition, some
scholars have studied variables related to the CECI in China, such as the
marginal abatement cost, the ecological economic efficiency, the carbon
emission intensity, the carbon emission efficiency, the embodied carbon
emission, and the energy-economic efficiency (Feng and Wang, 2015;
Hui and Sui, 2018; Song et al., 2018; Chen et al., 2019; Cao et al., 2022;
Xu et al., 2022; Zhu et al., 2022). However, althoughmany scholars have
studied the driving factors that influence the CECI, few studies have
analyzed the driving factors of carbon emissions from the perspective of
life cycle. Understanding the carbon footprint trends of the construction
industry in various provinces in China from the life cycle perspective
will help to achieve carbon neutrality of the construction industry in the
life cycle from the design, construction, operation, and other stages to
make corresponding emissions reduction strategies (Wu et al., 2019).

Compared to reducing CO2 emissions by controlling economic
growth, promoting technological progress in the construction industry
is a more reasonable approach (Wen et al., 2020). Selecting reasonable
indicators of technological progress is a prerequisite for studying the
impact of technological progress on the CECI. There have been many
studies that have revealed the role of technological factors in reducing
the CECI, and have attempted to measure technological progress from
different perspectives. Some scholars used the energy intensity (EI) to
represent the technological progress, and the results shown that
reduction of EI can significantly reduce carbon emissions from
urban residential buildings and CECI in China (Li et al., 2017; Huo
et al., 2020; Zhang et al., 2021). Besides, some studies expressed
technological progress in terms of the technical assembly rate in the
construction industry. These studies believed that the improvement of
the technical assembly rate in the construction industry can significantly
promote the carbon productivity, the ecological economic efficiency
and the energy environmental efficiency (Feng and Wang, 2015; Xiang
and Zhang, 2020). In addition, some scholars used the number of
patents in the construction industry and the energy-saving technology
level (GDP generated per unit of energy consumption) as indicators of
technological progress in the construction industry (Hui and Sui, 2018;
Cao et al., 2022). However, the technological progress is a conceptwith a
relatively broad scope. Compared with the measure of the indicators of
technological progress from a single perspective in the above studies, the
TFP considering multi-input and multi-output can more
comprehensively and systematically measure the technological
progress of the construction industry.

Currently, two decomposition methods, which are structural
decomposition method (SDA) and index decomposition analysis
(IDA), are commonly adopted when analyzing the changes in
energy consumption and CO2 emissions caused by different
driving factors (Wang and Feng, 2018). In the relevant studies on
the SDA, Shi et al. (2017) used the SDA method to study the drivers
of the CECI in China. However, because this method is based on
input-output table, the use of this method is limited (Wang and
Feng, 2018). Compared with SDA method, IDA method is more
convenient to build model, and the data requirement is relatively low
(Zhang et al., 2021). Commonly used IDA methods include the
Kaya, LMDI and STIRPAT model. For example, Song et al. (2018)
conducted a decomposition analysis of the driving factors of the
CECI from four aspects based on the LMDI model. Zhang et al.

(2021) and Huo et al. (2020) used the STIRPATmodel to explore the
impact of urbanization on the CECI. In addition, there are also some
studies that used econometric model to explore the driving factors of
the CECI. For example, some scholars used the Spatial Durbin
Model (SDM) to study the heterogeneity of marginal abatement
costs in the construction industry of China from the perspective of
factor flows (Cao et al., 2022). And some scholars used the spatial
econometric model to analyze the spatial distribution and the
driving factors of the CECI in China (Wen er al., 2020). In
summary, some literature has studied the driving factors of the
regional CECI using the STIRPAT model and panel data, but there
are relatively few studies that combine spatial econometric models
with the STIRPAT model. However, considering the spatial
characteristics of the LCCECI in different provinces in China, the
statistical inference will be more accurate and reasonable.

In conclusion, there still exist certain deficiencies in existing
research: 1) Most studies only covered certain stages of the CECI,
but few literature analyzed the CECI from the life cycle perspective.
2) Most of the indicators of technological progress in the literature
only measured technological progress from a single perspective,
which cannot comprehensively evaluate the effect of technological
progress on the CECI. 3) Existing studies rarely take into account
the spatial correlation of the CECI in different regions and the
spatial heterogeneity of the CECI by different driving factors,
which make the model inference not accurate enough.

In order to solve the above problems, based on the perspective of
the life cycle, this paper analyzes the spatial and temporal
distribution pattern of the LCCECI in China. The SBM-
Malmquist TFP index is used as an indicator to measure
technological progress. At the same time, based on the STIRPAT
model, a spatial econometric model is established to study the
driving factors of the LCCECI in provinces and three main
regions of China, in order to provide suggestions for promoting
low-carbon development of construction industry in China.

3 Methodology and data

3.1 Research method

The main research methods used in this paper are STIRPAT
model and spatial econometric model. Firstly, STIRPAT model is
used to select indicators, and then, based on STIRPATmodel, spatial
econometric model is used to analyze the spatial autocorrelation and
spatial spillover effects of LCCECI in different provinces of China.

3.1.1 STIRPAT model
The IPAT model is a classic approach to study environmental

influences, which characterizes the relationship between
environmental loads and economic growth by linking population
size, affluence and technology progress. On this basis, Dietz and
Rosa (1997) proposed the random regression impact model of IPAT,
namely, the STIRPAT model:

ln I � ln a + α ln Pit + β ln Ait + θ ln Tit + εit (3.1)
where I represents environmental effects; P represents the
population size; A represents the degree of affluence; T
represents the level of technology; a represents the intercept
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term; α, β, and θ represents the elasticity coefficients of the
environmental impacts of P, A, T; εit is the random error term;
and i represents the regional unit, t represents the year.

Considering the development of China’s construction
industry, and referring to relevant studies (Hui and Su, 2018;
Song et al., 2018; Zhu et al., 2022), the total population
and urbanization rate were selected as indicators of
population size, per capita GDP as indicators of affluence,
and SBM-Malmquist TFP index as indicators of the level of
technology. The construction intensity and the energy
consumption structure of the construction industry are
used as control variables. The extended STIRPAT model is
as follows:

ln I � ln a + β1 ln Pit + β2 lnURit + β3 lnAit + β4 ln Tit + β5 ln CIit

+ β6 ln ESit + εit

(3.2)
where I is the LCCECI in China (106 tons), P is the total population
(104 people), UR is the urbanization rate (%), A is the GDP per capita
(Yuan/person), T is the SBM-Malmquist TFP index, CI is the
construction intensity (104 m2), and ES is the energy
consumption structure (%).

3.1.2 Spatial econometrics model
The spatial dependence that geographic regions have on each

other breaks the assumption of classical econometric models
that samples are independent of each other. Therefore, the
spatial econometric model is adopted to reflect the spatial
correlation of samples. The analysis of Moran’s I index is a
method of measuring spatial autocorrelation by correlating the
similarity of spatial values adjacent to regions (Anselin et al.,
1991). In this paper, Moran’ I index is used to calculate the
spatial autocorrelation of the LCCECI in each province of China,
and to analyze the spatial dependence of the LCCECI in each
province of China. The equation for Moran’ I index is
shown below:

Moran′s I � n∑n
i�1∑n

j�1ωij xi − �x( ) xj − �x( )∑n
i�1∑n

j�1ωij∑n
j�1 xi − �x( )2 (3.3)

where n represents the number of provinces; xi and xj are the
LCCECI in provinces i and j, respectively; �x represents the mean
value of variable x; and ωij represents the spatial weight matrix. In
this paper, the 0–1 adjacency matrix is chosen and the resulting
matrix is normalized.

At present, spatial econometric models mainly include the
Spatial Autoregressive Model (SAR), the Spatial Error Model
(SEM), and the Spatial Durbin Model (SDM) (Wen et al., 2020).
Among them, the SDM combines the above two models and
considers both the spatial autocorrelation of the explanatory and
explained variables. Therefore, this paper intends to use the SDM
model to analyze the spatial spillover effect of the LCCECI. The
model expression is as follows:

Yit � α + ρ∑N

j�1,j ≠ i
wijYit + Xitβ +∑N

j�1witXijtθ + μi + νt + εit

(3.4)
where ρ is the spatial autocorrelation coefficient; w is the spatial
weight matrix; β is the regression coefficient of the explanatory
variables; wijYit is the lagged term of the explanatory variables;
wijXijt is the lagged term of the explanatory variables; μi, νt and εit
are the individual effect, the time effect, and the randomized
perturbation term, respectively.

In this paper, the LCCECI of a district are influenced not only by
its own population size, affluence and technology progress, but also
by those of surrounding areas. Therefore, this paper combines the
spatial econometric model and STIRPAT model, and the model
expression is as follows:

ln Iit � α + ρ∑N

j�1,j ≠ i
wij ln Iit + Xitβ +∑N

j�1wijXijtθ + μi + νt + εit

(3.5)
where Iit is the explained variable, that is, the LCCECI; X is the
independent variable (including total population, urbanization rate,

TABLE 1 Explanation of model variables.

Abbreviation Name Definition Unit Mean Std Dev Min Max

I Life cycle carbon emission
of the construction industry

The carbon emissions in the construction industry
based on the life cycle

106 t 213.05 215.74 6.76 1,425.16

T Total factor productivity Total factor productivity index based on SBM-
Malmquist method

% 1.52 0.27 1.20 2.64

P Total population The total population by province at the end of the
year

104 people 4,454.26 2,675.59 539 11,346

UR Urbanization rate The ratio of regional urban population to total
regional population

% 1.53 0.14 1.26 1.90

A Per capita GDP Real GDP per capita of each province deflated by
2005 as the base period

Yuan/
people

28,144.23 18,397.56 4,244 11,733.60

CI Construction intensity Construction area by province 104 m2 28,430.20 38,806.35 346.80 249,420.00

ES Energy consumption
structure

The ratio of life cycle raw coal consumption in the
construction industry to life cycle energy
consumption in the construction industry

% 1.54 0.22 1.01 1.95
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per capita GDP, SBM-Malmquist TFP and other control variables),
and the remaining variables are the same as Eq. 3.4.

3.2 Data sources and processing

Due to the lack of building materials consumption data for
each province before 2004 and the special factor of the COVID-
19 pandemic causing economic production to halt at the end of
2019, this paper has chosen data from 2004 to 2018 for a period of
15 years (three 5-year periods) to avoid the influence of these
factors on the calculation of carbon emissions in the construction
industry. The research sample covers 30 provinces in China,
excluding Tibet and Hong Kong, Macao and Taiwan. According
to China’s division of administrative regions, the eastern region
includes 11 provinces and cities: Beijing, Tianjin, Hebei,
Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Guangdong,
Shandong and Hainan; the central region includes 8 provinces
and cities: Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan,
Hubei and Hunan. The western region consists of 11 provinces
and cities: Inner Mongolia, Guangxi, Chongqing, Sichuan,
Guizhou, Yunnan, Shaanxi, Gansu, Ningxia, Qinghai and
Xinjiang. Based on the existing research, six driving factors

related to the LCCECI were selected as explanatory variables
in this paper, namely, total population, urbanization rate, GDP
per capita, SBM-Malmquist TFP index, construction intensity
and energy consumption structure. The definitions and data
sources of variables are shown in Table 1. The underlying data
of all variables are obtained from the China Statistical Yearbook,
the China Statistical Yearbook of Construction Industry and the
China Energy Statistical Yearbook.

3.2.1 LCCECI (I)
As the dependent variable of this paper, the LCCECI is divided

into 6 stages, including building materials manufacturing stage,
building materials transportation stage, building construction
stage, building operation stage, building demolition stage,
construction and demolition (C&D) waste disposal stage, with
reference to the research method of Zhang and Wang, (2016).
The LCCECI is equal to the sum of the emissions from all six
stages. The CO2 emissions for each stage are calculated according to
the methodology recommended by the IPCC:

Emission � AD*EF (3.6)
where AD is activity data, and EF is the emission factor, which is the
emission per unit activity. The specific definitions of AD and EF

FIGURE 1
Spatial-temporal distribution pattern of China’s LCCECI from 2004 to 2018.
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varied in the different stages. In the material manufacturing stage,
AD is the quantity of a certain material, and EF is the CO2 emission
factor when that material is produced. In the material transportation
stage and waste disposal stage, AD is the quantity of transportation
multiplied by the transportation distance, and EF is the emission
factor for a specific transportation method. In the building
construction stage, building operation stage and demolition stage,
AD is the energy consumed by various activities in each stage, and
EF is the emission factor of a particular energy source such as coal,
oil, or gas. The results of the calculations are shown in
Supplementary Tables S1, S2 of the appendix.

3.2.2 SBM-Malmquist TFP index (T)
As an independent variable for measuring technological

progress in this paper, the SBM-Malmquist TFP index with
multiple inputs and multiple outputs can reflect technological
progress more comprehensively than the energy intensity or
technical assembly rate of single input and output commonly
used in existing studies. Therefore, this paper takes the SBM-
Malmquist TFP index as an indicator to measure the
technological progress and fill the research gap. The calculation
formula is as follow:

M xt+1, yt+1, xt, yt( ) � �����������������������
Et xt+1, yt+1( )
Et xt, yt( ) Et+1 xt+1, yt+1( )

Et+1 xt, yt( )
√

(3.7)

where M(xt+1, yt+1, xt, yt) is the Malmquist index, which indicates
the change of the TFP in two adjacent periods t and t+1. Et(xt, yt)
and Et+1(xt+1, yt+1) are the technical efficiency values in two periods
respectively. If Malmquist index >1, the productivity has increased,
and if Malmquist index <1, the productivity has decreased. In this
paper, the consumption of building materials, the energy
consumption, the number of employees, the total power of
machinery and equipment owned (Year-end), and the total assets
of the construction industry are taken as input indicators, the total
output value and the completed area of the construction industry are
taken as desired output indicators, and the LCCECI is taken as
undesirable output indicators. Based on this, the SBM-Malmquist
TFP index of the construction industry in each province of China is
calculated. The results of the calculations are shown in
Supplementary Table S3 of the appendix.

4 Empirical results and analysis

4.1 Spatial-temporal evolution of
the LCCECI

This paper calculates the CO2 emission of the construction
industry in each stage of the whole life cycle and the LCCECI in
each province of China (excluding Tibet, Hong Kong, Macao and
Taiwan) from 2004 to 2018. From the stage level, according to the
calculations, the LCCECI mainly comes from the building materials
manufacturing stage and the building operation stage, which
account for 97.01% of the total emissions. At the regional level,
the eastern region accounts for over half of the national carbon
emissions, while the central region’s carbon emissions are slightly
higher than the western region by 5%. The eastern region
consistently remains the primary source of China’s LCCECI, and
the average annual growth rate of carbon emissions in the eastern
region is the highest among the three regions, which is 27.67%. In terms
of the spatial-temporal distribution pattern of China’s LCCECI
(Figure 1), there is a decreasing gradient from the eastern coastal
areas to the western regions. And over the past 15 years, the proportion
of provinces with carbon emissions between 200 and 500 million tons
has increased from 6.65% in 2004 to 36.67% in 2018.

4.2 SBM-Malmquist TFP index

The SBM-Malmquist index greater than 1 indicates that the
efficiency has increased compared with the previous year. Figure 2
shows the SBM-Malmquist index of the construction industry in the
three major regions during 2004–2018. From the figure, we can find
that the SBM-Malmquist index of the construction industry in China is
greater than 1 in all years except for the period from 2007 to
2008、2010 to 2011 and 2013 to 2014. And the national average
value is 1.06, which indicates that the life cycle total factor
productivity of the construction industry in China has greatly
improved during 2004–2018, with an improvement of 6%.
Comparing the SBM-Malmquist index of the construction
industry in the three regions. It can be seen that in the initial
stage, there was a significant gap in the SBM-Malmquist TFP index
of the construction industry in the three regions, which may be

FIGURE 2
The SBM-Malmquist TFP index of the construction industry in the three regions of China during 2004–2018.
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caused by the unequal economic development level and resource
distribution among the regions. With the passage of time, the
progress of technology, the promotion of policies and the optimal
allocation of resources, the SBM-Malmquist TFP index of the
construction industry in the three regions gradually converged,
indicating that there is uneven regional variation in the changes in
TFP of the construction industry and certain spatial
disparities exist.

4.3 Spatial autocorrelation analysis and
model selection

4.3.1 Spatial autocorrelation analysis
In this paper, the spatial weight matrix W1 � (ωij)n×n of

0–1 adjacency matrix is selected to measure the global Moran’s I
index of the LCCECI from 2004 to 2018, and the results are shown in
Table 2. TheMoran’s I index of the LCCECI are all greater than 0, and all
the years pass the different levels of the significance test. This indicates
that in the whole life cycle, there is obvious spatial correlation of the
CECI in all provinces, and the spatial distribution pattern of carbon
emissions is not characterized by random distribution.

4.3.2 Spatial econometric models
In order to verify the feasibility of each variable and improve the

reliability of the model, multicollinearity, panel unit root and
cointegration tests were carried out on each variable. The results
showed that the tolerance of explanatory variables and variance
expansion factor all met the conditions, there was no serious
multicollinearity, and the data of each variable were all integrated
of order 1 and the sequence was stable.

Then, on this basis, the spatial econometric model is selected.
Firstly, the applicability of the SEM and the SAR model was
investigated by performing traditional and robust LM tests based
on the mixed OLS regression model. The null hypothesis of the LM
test is no spatial autocorrelation. According to the discriminant
criteria proposed by Anselin et al. (1991), if LMerr is more significant
than LMlag, the SEM model cannot be rejected, and vice versa, the
SAR model cannot be rejected. If LMerr and LMlag are both
significant, but Robust LMerr is significant, and Robust LMlag is
not significant, the SEMmodel cannot be rejected, and vice versa, the
SAR model cannot be rejected. If LMerr, LMlag, Robust LMlag and
Robust LMerr are significant, the SDM model is selected. As can be
seen from Table 3, all these statistics are significant, so SDMmodel is
more suitable for this study.

Secondly, LR test and Wald test are used to verify whether the
SDM model will degenerate into a SEM model or a SAR model,
because the SEMmodel and SARmodel are special cases of the SDM
model. The results are presented in Table 4. Both LR and Wald tests
reject the null hypothesis that the SDM degenerates into either a
SEM or a SAR model, indicating a good fit of the SDMmodel. Thus,
this paper establishes the SDM model with two-way fixed effects to
decompose and analyze the spatial effects of the driving factors of
the LCCECI.

4.4 Spatial spillover effect analysis

4.4.1 Spatial effect decomposition and analysis
The R2 of the two-way fixed effects SDM model which is 0.851

(see Table 6), indicating that the selection of the six factors driving of
the LCCECI is reasonable. In other words, the total population,
urbanization rate, per capita GDP, SBM-Malmquist TFP index,
construction intensity, and energy consumption structure can
explain 85.1% of the LCCECI variation. The SDM model
considers the spatial correlation between the explanatory and
explained variables in different regions. However, the spatial lag
term contained in the model will cause that the estimated coefficient
corresponding to the explanatory variables to be no longer simply
interpreted as the marginal effect between variables. Therefore, the
marginal spillover effect needs to be decomposed into direct effects
and indirect effects (Wang and Kong, 2021). The decomposition
results are shown in Table 5.

TABLE 2 Moran’s I index of the LCCECI in China from 2004–2018.

Year 2004 2005 2006 2007 2008 2009 2010 2011

Moran’s I Index 0.196 0.170 0.151 0.137 0.129 0.123 0.119 0.117

Z-value 2.082 1.87 1.708 1.593 1.513 1.459 1.421 1.396

p-value 0.019 0.031 0.044 0.056 0.065 0.072 0.078 0.081

Year 2012 2013 2014 2015 2016 2017 2018

Moran’s I Index 0.115 0.114 0.113 0.113 0.112 0.112 0.112

Z-value 1.378 1.365 1.357 1.351 1.347 1.344 1.343

p-value 0.084 0.086 0.087 0.088 0.089 0.089 0.090

TABLE 3 The results of LM test.

Statistic Value p-value

Moran’s I 2.962 0.003

LMerr 7.022 0.008

Robust LMerr 3.785 0.052

LMlag 10.330 0.001

Robust LMlag 7.093 0.008
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(1) From the perspective of technology level factor, the estimated
values of the direct effect and total effect of the SBM-
Malmquist TFP index are significantly negative at the level
of 1%, which indicates that the improvement of the TFP of the
construction industry in a certain province will reduce the
LCCECI of that province. This finding is consistent with the
research results of Zhou et al. (2023) who all believe that the
improvement of technological level has a significant
inhibition effect on carbon emissions. The improvement of
technological levels will promote energy efficiency (Berkhout
et al., 2000; Hanley et al., 2009), accelerate the development
and application of new energy, reduce its use cost, and realize
the substitution between fuels (Kang et al., 2018). Therefore,
by improving the technical level of all stages of the whole life
cycle of the construction industry, the current extensive
development model with high energy consumption and
high carbon emissions can be changed, so as to improve
the energy utilization efficiency of the construction industry
and reduce the LCCECI. For example, improve the main
building materials production technology in the building
materials manufacturing stage and encourage construction
enterprises in the construction stage to adopt more advanced
and environmentally friendly construction methods and
equipment, such as modular buildings, prefabricated
components, etc., which can effectively reduce the LCCECI.

Furthermore, although the estimated indirect effects of SBM-
Malmquist TFP index are negative, they have not passed the
significance test, indicating that the spatial spillover effects of
SBM-Malmquist TFP index are not significant. On the one hand,
due to the regional effect of technology diffusion in the promotion of
construction technology, that is, the province with the best
application of a certain construction technology will be the
center to promote and publicize the technology to the
surrounding areas, and the diffusion effect will become worse
and worse, resulting in an insignificant spatial spillover effect of
SBM-Malmquist TFP index. On the other hand, because some
provinces may have strong barriers to the flow of technology,
with technological elements being influenced by these barriers,
interprovincial technology transfer becomes more challenging,
which leads to the insignificant spillover effect of SBM-
Malmquist TFP index.

(2) From the perspective of population size factor, the estimated
value of the direct effect, indirect effect, and total effect of total
population and urbanization rate on the LCCECI have not
passed the significance test. This indicates that the total
population and the urbanization have no significant impact

on the LCCECI. According to previous studies, there is no
uniform conclusion on the relationship between total
population, urbanization and carbon emissions. Some scholars
argue that the total population and the urbanization lead to
increased energy consumption, thus stimulating carbon
emissions (Fan et al., 2006; Lin and Liu, 2010; Poumanyvong
and Kaneko, 2010; Madlener and Sunak, 2011; Zhou and Dai,
2013;Wang et al., 2016). However, other studies have found that
population size and urbanization significantly reduce carbon
emissions. The reason is that urbanization can improve the
efficiency of resource allocation, and the economies of scale
brought about by population and economic activities play an
important role in controlling and reducing carbon emissions
(Sharma, 2011; Sadorsky, 2014). And some scholars propose that
there may be a nonlinear relationship between urbanization and
carbon emissions (Xie and Liu, 2019). Due to the rapid
expansion of cities, a large number of people migrated from
rural areas to urban areas, leading to a rise in housing and
transportation demands. And the corresponding construction
led to an increase in carbon emissions. However, with the further
intensification of urbanization, severe environmental pollution
has forced the government to optimize the development mode
and promote clean energy technologies, leading to a reduction in
carbon dioxide emissions. Consistent with the findings of Rafiq
et al. (2016), Xie and Liu, (2019) and Lu et al. (2018), our research
also found no clear linear positive or negative correlation
between the total population, urbanization and the LCCECI.
Therefore, in the context of accelerated urbanization in China,
further increasing the urban population proportion and
advancing the urbanization process are not likely to have a
significant impact on the CECI in specific provinces or even
surrounding regions.

(3) From the perspective of affluence factor, the direct, indirect,
and total effects of per capita GDP are all significant, with
values of 1.313, −0.480, and 0.833, respectively. This indicates
that the increase in per capita GDP not only increases the
LCCECI but also significantly reduce the LCCECI of the
surrounding areas. However, some previous studies have
reached different conclusions. Some studies have shown
that economic growth and carbon emissions satisfy the
Kuznets curve, that is, they have an inverted U-shaped
relationship, with environmental pollution first increasing
until it reaches a threshold and then decreasing during
economic growth (Jeon, 2022). In other words, in the initial
stage of the economy, as the scale of economic activity increases,
the level of pollution also increases. However, in the later stage of
economic development, the environment gradually improved
due to the transformation of economic structure to service and
information-intensive industries, the formulation of stricter
environmental regulations by the government, the
improvement of people’s environmental awareness, and the
application of clean energy technologies. Since China is still in
the early stage of economic development and has long relied too
much on investment and heavy industry development, its future
economic development will still need to consume a lot of energy.
With the development of the economy and the expansion of the
construction industry, the carbon emissions of the construction
industry will continue to rise. In addition, regions with higher per

TABLE 4 The results of LR test and Wald test.

Test form Statistic value p-value

Wald test for SEM 19.93 0.0028

LR test for SEM 27.28 0.0001

Wald test for SAR 20.32 0.0024

LR test for SAR 27.04 0.0001
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capita GDP are more likely to attract talents, and the
accumulation of talents will increase infrastructure and
housing construction, promoting the development of the local
construction industry. This will produce a “siphon effect,”which
will increase the life-cycle carbon emissions of the local
construction industry while reducing the life-cycle carbon
emissions of the construction industry in the surrounding
areas, that is, there is an obvious spatial spillover emission
reduction effect of per capita GDP.

(4) Based on the estimated results of various control variables,
construction intensity has a certain promotional effect on the
LCCECI in a specific province, and there is a significant
spatial spillover effect. On one hand, the increase in
construction intensity means there are more construction
projects and longer construction periods. Buildings require a
significant amount of energy during the construction process,
such as for machinery, lighting, and heating. This leads to
increased energy consumption and, in turn, increased carbon
emissions. On the other hand, construction processes require
a large amount of building materials, such as cement, steel,
and wood. The increase in construction intensity usually
results in higher material demands and longer
transportation distances. The production and
transportation processes of these materials also require
energy, further increasing carbon emissions. The energy
consumption structure is positively correlated with the
LCCECI, and there is a significant spatial spillover effect as
well. This implies that if a specific province adjusts its energy
consumption structure in the construction industry and
reduces the proportion of raw coal usage, it can encourage
neighboring provinces to reduce the LCCECI. This proactive
approach by the specific province can stimulate neighboring
provinces and provide them with an example to follow. They
will start to appreciate the significance of reducing coal usage
and begin contemplating measures to adjust their energy
consumption structure accordingly.

4.4.2 Spatial heterogeneity analysis
According to Figure 1, the spatial distribution pattern of

LCCECI gradually decreases from the eastern coastal region to
the western region, and there are great differences of LCCECI in
the in the eastern, western and central regions of China. Therefore, it
is necessary to analyze the spatial heterogeneity of the LCCECI, so
that the government can formulate differentiated carbon emission

reduction measures according to the actual situation of different
regions. Based on the model established above, the spatial
heterogeneity analysis in the three regions is conducted. The
results are shown in Table 6, from which it can be seen:

(1) The improvement of the SBM-Malmquist TFP index is all
conducive to reducing the LCCECI in the eastern, western
and central regions. However, in different regions, the
emission reduction effect of the SBM-Malmquist TFP
index is different, and the emission reduction effect of the
central and western regions is greater than that of eastern
region. This may be due to the higher level of economic
development and marketization in the eastern region,
compared with the central and western regions, there is a
more complete construction system and technical foundation,
and the proportion of clean energy use has been much higher
than that in the central and western regions. In addition, the
overall development scale of the construction industry in the
central and western regions is small, the technology is
relatively backward, and the space for emission reduction
brought by technological progress is larger, which makes the
demonstration effect of technological progress on the central
and western regions play a role and effectively inhibits the
LCCECI of the central and western regions.

(2) The total population has no significant effect on the LCCECI
in the three regions. However, the increase of urbanization
rate can significantly inhibit the growth of the LCCECI in the
central region, but has no obvious effect in the eastern and
western regions. According to the American urban geographer
Northam’s three-stage theory of urbanization development, that
is, the process of urbanization needs to go through three stages:
the early stage, the middle stage and the late stage (with
urbanization rates below 30%, between 30% and 70%, and
between 70% and 90%, respectively). As can be seen from
Figure 3, some parts of the central region have approached
the urbanization level of the eastern region, indicating that the
central region is in a stage of rapid urbanization development,
probably because the central region has adopted active
urbanization policies and measures, providing more
opportunities for urban construction and development.
Government support and investment in urban planning,
infrastructure construction, land use and other aspects also
provide a basis for the rapid development of urbanization,
and also provide a basis for strengthening the agglomeration

TABLE 5 The direct and indirect effects of SDM model.

Variable Direct effect Indirect effect The total effect

lnT −0.464*** (0.097) −0.161 (0.177) −0.625*** (0.190)

lnP 0.236 (0.457) −0.285 (0.585) −0.049 (0.525)

lnUR −0.566 (1.015) −0.999 (1.781) −1.565 (1.730)

lnA 1.313*** (0.211) −0.480** (0.207) 0.833*** (0.254)

lnCI 0.438*** (0.063) 0.241** (0.100) 0.679*** (0.095)

lnES 0.053 (0.145) 0.502** (0.230) 0.555** (0.227)

Note: ***p < 0.01, **p < 0.05, *p < 0.1; The brackets are robust standard errors, same below.
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effect of the construction industry. The scale economy brought
by population and economic activities plays an important role in
controlling and reducing the LCCECI in the central region.

(3) The per capita GDP has a significant positive effect on the
LCCECI in the eastern, central and western regions, but the
positive driving effect is the largest in the eastern region.
Benefiting from its geographical advantages and national
policy support, the eastern region has a higher level of
social and economic development. In 2018, the per capita
GDP of the eastern region reached 64,376 Yuan/person,
much higher than 34,060 Yuan/person in the central region
and 33,249 Yuan/person in the western region. It may be
that with the enrichment of material and cultural life, the
demand for construction tends to be diversified, which
increases the scale of construction to a certain extent. In
addition, regions with high per capita GDP can drive
housing demand and promote the construction of
supporting infrastructure, thus increasing the
construction area and material consumption of the
construction industry, causing the rapid rise of
the LCCECI.

4.5 Robustness test

4.5.1. Robustness tests with different spatial
weight matrices

In order to test the robustness of the model, this paper constructs a
spatial distancematrix and a spatial economicmatrix based on the study
of Jiao et al. (2018), which incorporates regional geographic distance and
economic activities into the framework. The results are shown in Table 7,
whether using the spatial distance matrix or the spatial economymatrix,
technological progress still has significant changes in the LCCECI.
Although the coefficients of the estimation results change, their
direction and significance level do not change fundamentally, and the
R2 of the 0–1 adjacency matrix is 0.851, which is larger than the other
weight matrices. This indicates that the results are robust and reliable.

4.5.2 Robustness tests with alternative measures
In order to assess the consistency of the spatial regression results,

the construction intensity (CI) and energy consumption structure (ES)
of the control variables are replaced by the industrial structure (IS) and
the degree of population aging (PS) respectively, to further test the
robustness of the model. The results are shown in Table 8. From the
regression results in Table 8, it can be seen that the influence of other
variables on the LCCECI has not changed substantially. In summary,
the method of replacing control variables proves that the factors and
research results selected above are reliable and robust.

5 Conclusion and suggestion

Due to the significant energy consumption in the materials
manufacturing, construction, and operation of building stages,
including the combustion of fossil fuels, the construction industry
generates a substantial amount of carbon dioxide emissions. These
emissions make the construction industry a significant contributor to
global greenhouse gas emissions, playing a crucial role in climate change
and global warming. Therefore, reducing carbon emissions in the
construction industry can help slow down the pace of climate
change and mitigate the extent of global temperature rise. By
reducing carbon emissions, the construction industry can actively
contribute to achieving global sustainable development goals. The

TABLE 6 Estimation results of influencing factors of the LCCECI in three major regions of China.

Variable Overall East West Central

lnT −0.474*** (0.097) −0.454*** (0.151) −0.638*** (0.140) −0.737*** (0.204)

lnP 0.200 (0.426) −0.151 (0.502) −0.042 (0.689) 0.961 (1.932)

lnUR −0.597 (−0.597) −1.940 (1.638) −3.611 (2.240) −4.188* (2.523)

lnA 1.255*** (0.211) 1.891*** (0.437) 0.790** (0.336) 1.875*** (0.634)

lnCI 0.455*** (0.065) 0.370*** (0.103) 0.319*** (0.096) 0.990*** (0.150)

lnES 0.079 (0.141) 0.045 (0.195) 0.062 (0.212) 0.318 (0.321)

ρ −0.258*** −0.158* −0.345*** −0.367***

R2 0.851 0.825 0.867 0.805

N 30 11 11 8

FIGURE 3
Distribution of urbanization rate by provinces in the country of
China in 2018.
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classical econometrics model assumes that samples are independent of
each other, if the spatial correlation is ignored, the research conclusion
cannot accurately reflect the mutual relationship between samples.
Therefore, based on the theory of spatial econometrics and the life
cycle perspective, this paper takes the LCCECI in 30 provinces of China
during 2004–2018 as the research object, and describes the spatial and
temporal distribution pattern of the LCCECI in China. Taking the
SBM-Malmquist TFP index as an index to measure technological
progress, and establishing a spatial econometric model based on
STIRPAT model, this paper studies the driving factors and
heterogeneity of the LCCECI in China’s provinces and three regions.
It helps the central and provincial government to formulate policies and
guidelines in line with the level of economic development and regional
characteristics, promoting the green development of the construction
industry. The conclusions of this paper are as follows:

1) The LCCECI between 200–500 megatons increased from 6.65%
in 2004 to 36.67% in 2018, and the LCCECI mainly come from the
building materials manufacturing stage and the building operation
stage. The eastern region accounts for more than half of the
LCCECI, and the LCCECI shows a trend of decreasing distribution
from the east coast to the west. 2) The results of the SDM model with

bilateral fixed effects show that the improvement of the SBM-
Malmquist TFP index has a significant inhibitory effect on the local
LCCECI, but the spatial spillover effect is not significant. The total
population and the urbanization rate do not significantly affect the
LCCECI. The growth of the per capita GDP is one of the main driving
factors leading to the growth of the LCCECI in China, and there is a
significant negative spatial spillover effect on the surrounding areas. 3)
The results of spatial heterogeneity analysis of influencing factors
showed that, the improvement of SBM-Malmquist TFP Index is all
favorable to reduce the LCCECI in the threemajor regions. However, in
different regions, the emission reduction effect of SBM-Malmquist TFP
index is different, and the emission reduction effect of the central and
western regions is greater than that of the eastern region. The
urbanization rate only significantly inhibited the growth of the
LCCECI in the central region. The per capita GDP has a significant
positive impact on the LCCECI in the three regions, but the positive
driving effect on the eastern region is the largest.

In response to the above conclusions, the following
recommendations are made:

1) Develop emission reduction measures at all stages of the
construction industry’s life cycle to improve the SBM-Malmquist

TABLE 7 Robustness tests with different spatial weight matrices.

Variable 0–1 adjacency matrix Distance matrix Economic matrix

lnT −0.474*** −0.424*** −0.463***

lnP 0.200 −0.067 0.361

lnUR −0.597 −1.381 −0.414

lnA 1.255*** 1.089*** 1.016***

lnCI 0.455*** 0.480*** 0.470***

lnES 0.079 0.096 0.171

ρ −0.258*** −0.911*** −0.206***

R2 0.851 0.830 0.848

Log-likelihood 91.066 100.178 90.824

TABLE 8 Robustness tests with alternative measures.

Variable SDM Replacement of variable 1 Replacement of variable 2

lnT −0.474*** −0.478*** −0.459***

lnP 0.200 −0.111 0.231

lnUR −0.597 −0.396 −1.021

lnA 1.255*** 1.158*** 1.205***

lnCI 0.455*** 0.459***

lnES 0.079 0.020

ln IS 3.465

lnPS 0.928

ρ −0.258*** −0.296*** −0.258***

R2 0.851 0.841 0.857

Log-likelihood 91.066 94.167 92.141
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TFP index of the whole life cycle. At the stage of building materials
manufacturing, governments can encourage the widespread use of low-
carbon materials, promote the optimization of production processes,
and promote carbon capture and storage technology. In the
construction phase, advanced technology and equipment are
introduced to improve the efficiency of construction production. In
the operation phase, accelerate the renewal of the thermal insulation
system of existing buildings, accelerate the research and development of
key technologies for green buildings and tax policies to promote the
development of green buildings. 2) Actively promote the urbanization
process to ensure the sustainable development of the construction
industry. According to the research results, urbanization rate has no
significant impact on the LCCECI, but the promotion of urbanization
can provide more scientific research and innovation opportunities, help
promote the innovation and upgrading of building technology and
materials, improve the energy efficiency and environmental protection
level of buildings, and further reduce carbon emissions. 3) Establishing
region-specific objectives to promote the green development of the
construction industry. By matching the targets with the actual local
situation, it is possible tomotivate different regions to adopt appropriate
emission reductionmeasures to reduce the LCCECI. The eastern region
could set more stringent carbon reduction targets, encourage the
promotion of green buildings and energy efficient technologies, and
promote the industrialization of construction. The western region
should speed up the urbanization process and focus on improving
supporting infrastructure in order to use urban population
intensification to curb the growth of carbon emissions in the
construction industry. The three major regions should also establish
collaborative mechanisms for carbon emissions to break down regional
barriers and expedite coordinated development between regions, while
formulating synchronized carbon reduction policies.

This study takes China as an example and focuses on analyzing the
impact effects and heterogeneity of technological level, population size,
urbanization rate and affluence on the LCCECI. The conclusions drawn
from this study can be extended to other countries, such as developing
nations like India and Brazil. In terms of carbon emission reduction,
China is gradually transitioning from a follower to a leader and can serve
as a model for other countries. However, this paper may have the
following limitations: First, due to data limitations, this paper only
analyzes the LCCECI at the provincial level in China, but does not delve
into emissions at the cities, county, and construction company levels.
The next research direction should focus on the carbon emissions at the
level of cities, counties and construction companies, including detailed
research on the carbon emissions of the construction industry in
different cities, the carbon emissions of construction companies in
the construction process and the investigation and analysis of the
carbon emissions of the construction industry in county-level units.
To understand the differences in carbon emissions between different
regions and study the reasons behind them and the potential to reduce
emissions. Such in-depth research can provide a scientific basis for
formulating more targeted emission reduction strategies and promote
the transformation of the construction industry to low-carbon
development. Secondly, due to driving factors on the LCCECI are
numerous and complex, and the development of various industries
can impact the construction industry. This paper only studies the main
representative driving factors, and will further improve the indicators of
driving factors for in-depth research in the future. Future research will
focus on further refining and improving the indicators of driving factors,

as well as conducting in-depth studies on the specific impacts of various
industries on the construction industry. This will involve collecting and
analyzing relevant data from different industries, as well as conducting
in-depth research on industry trends and policies. Through such in-
depth research, we can have a more comprehensive understanding of
the impacts of various industries on the construction industry and
provide more accurate scientific evidence for the formulation of
corresponding policies and strategies.
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