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In order to solve the difficulty that complex power quality disturbances (PQDs) are
difficult to recognize accurately and efficiently under the new power system
background, this paper proposes a novel PQDs recognition method based on
markov transition field (MTF) and improved densely connected network
(DenseNet). Firstly, the one-dimensional PQDs signal is mapped into the two-
dimensional image with clear texture features by using MTF encoding method.
Then, a DenseNet-S lightweight network is designed and the convolutional
attention module (CBAM) is introduced to improve its feature extraction
ability, so as to enhance the performance of the network. Finally, the images
are input into the improved model for training and learning, and PQDs
recognition is realized through the optimal model. In order to verify the
effectiveness of the proposed method, experimental tests are carried out
based on IEEE 1159 standard simulation dataset and real-world field measured
signals dataset, and compared with existing recognition methods. The results
show that the proposed method can effectively improve the recognition
accuracy and noise robustness of complex PQDs, and has more advantages in
disturbances recognition efficiency. It can meet the recognition accuracy and
efficiency requirements of massive and complex PQDs events in engineering
applications.
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1 Introduction

With the increase of the penetration rate of distributed source loads, which is mainly
dominated by wind and solar power generation and new energy charging piles, the power
system presents a typical trend of power electronization (Wang et al., 2021), and the PQDs
problem of power grid has shown some new features compared with the past. The typical
features mainly include two points: 1) the expansion of the scale of new power system
disturbance sources; 2) the coupling and superposition of PQDs are strengthened (Wang
and Chen, 2019). The interactive coupling of PQDs will exhibit extremely complex non-
stationary fluctuation phenomena and further deteriorate the grid power quality, which will
not only bring problems such as sensitive equipment damage, data loss, equipment energy
consumption increase and other problems to the end user side, but even lead to large-scale
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power outage accidents in serious cases (Cui et al., 2022). PQDs
recognition algorithm is mainly used in the monitoring and
management of power systems and power equipment, which can
help us detect and identify power quality problems, such as voltage
sag, harmonic, flicker, etc., which is crucial to ensure the stable
operation of power system, prevent equipment damage and improve
the electrical energy use efficiency. Therefore, accurate and efficient
classification and recognition of PQDs under the new power system
background is the basic requirement to ensure the safe, stable and
economic operation of power grid.

The traditional PQDs recognition methods are based on
manually extracting features, constructing feature matrices, and
using the feature data to train classification model to realize
disturbances recognition. Amongst these, feature extraction
mostly applies signal processing techniques such as Fourier
transform (Huang et al., 2016), Stockwell transform (Yin et al.,
2021; Cui et al., 2022), and wavelet transform (Wu et al., 2022). After
manual feature extraction, classification algorithms such as support
vector machine (Tang et al., 2020), decision tree (Huang et al.,
2017a), and artificial neural network (Li et al., 2020) are combined to
establish the mapping relationship from continuous features to
discrete labels to realize the classification and identification of
PQDs. However, the parameter selection and processing process
of the above methods are cumbersome, and heavily rely on expert
experience, which makes it less generalizable. With the growing
penetration of new energy sources, the complexity of PQDs
increases accordingly, and the classification methods based on
artificial feature extraction are difficult to meet the needs of
PQDs classification under the new power system background.

In recent years, deep learning technology has become an
important research hotspot in the field of PQDs recognition due
to its excellent generalization performance and feature self-
extraction capability. Among them, the deep learning methods
that have been widely researched and applied are the

Convolutional Neural Network (CNN), which can extract spatial
features, and the Recurrent Neural Network (RNN), which has the
memory ability of temporal features, to mine the potential
relationship between spatial and temporal features of one-
dimensional PQDs signals, and then recognize the specific type
of PQDs (Ahmadi and Tani, 2019; Wang and Chen, 2019; Sindi
et al., 2021). However, although the one-dimensional
convolutional layer used in this method can extract temporal
features to a certain extent, its temporal characteristics and
disturbances classification ability are significantly reduced, and
the problem of network gradient vanishing is serious. At the same
time, it is not effective in dealing with the problem of feature
extraction for multi-type coupling PQDs. To overcome the above
problems, some scholars combine the advantages of machine
vision and propose the visual conversion of one-dimensional
signals, such as Gramian Angular Field (GAF), combined with
the current mainstream image classification networks, such as
CNN, deep residual network (ResNet), to discover the absolute
temporal and spatial relationships of the original signal, and then
extract more complete deep-level features of disturbance signals.
He et al. (2023) and Jyoti et al. (2021) use the GAF color coding
method to convert one-dimensional disturbance signals into
rectangular images with different pattern features, which are
used as inputs to CNN and ResNet for training and
classification respectively, making up for the defects of
artificial feature selection. However, GAF uses the Cartesian
coordinate system to encode sequences in polar coordinates,
and then converts them into Gram matrix using trigonometric
operations, which is a complex cross-domain encoding
conversion process, computationally intensive, and prone to
aliasing with noise. At the same time, its conversion efficiency
is on the low side, which makes it difficult to satisfy the
recognition efficiency demand of massive and complex PQDs
events in engineering practice.

TABLE 1 Mathematical model of PQDs.

PQDs Equation Parameters

Normal f(t) � sin(ωt) ω � 2πf0 , f0 � 50Hz

Sag f(t) � 1 − α[ε(t − t1) − ε(t − t2)]{ } sin(ωt) 0.1≤ α≤ 0.9, T≤ t2 − t1 ≤ 9T

Swell f(t) � 1 + α[ε(t − t1) − ε(t − t2)]{ } sin(ωt) 0.1≤ α≤ 0.8, T≤ t2 − t1 ≤ 9T

Interruption f(t) � 1 − α[ε(t − t1) − ε(t − t2)]{ } sin(ωt) 0.9≤ α≤ 1, T≤ t2 − t1 ≤ 9T

Harmonic f(t) � sin(ωt) + ∑
i�3,5,7

αi sin(iωt) 0.05≤ αi ≤ 0.15

Oscillatory transient f(t) � sin(ωt) + αe−(t−t1 )/τ sin(βωt) · [ε(t − t1) − ε(t − t2)] 0.1≤ α≤ 0.8, 0.5T≤ t2 − t1 ≤ 3T0.008≤ τ ≤ 0.04, 8≤ β≤ 32

Pulse f(t) � sin(ωt) + α[ε(t − t1) − ε(t − t2)] 1≤ α≤ 3, 1ms≤ t2 − t1 ≤ 3ms

Flicker f(t) � [1 + α sin(βωt)] sin(ωt) 0.1≤ α≤ 0.2, 0.1≤ β≤ 0.5

Notch f(t) � sin(ωt) − sgn(sin(ωt))
× ∑9

n�0
k × [ε(t − (t1 + 0.02n)) − ε(t − (t2 + 0.02n))]⎧⎨⎩ ⎫⎬⎭

0.1≤ k≤ 0.4, 0≤ t2 , t1 ≤ 0.5T0.01T≤ t2 − t1 ≤ 0.05T

Spike f(t) � sin(ωt) + sgn(sin(ωt))
× ∑9

n�0
k × [ε(t − (t1 + 0.02n)) − ε(t − (t2 + 0.02n))]⎧⎨⎩ ⎫⎬⎭

0.1≤ k≤ 0.4, 0≤ t2 , t1 ≤ 0.5T0.01T≤ t2 − t1 ≤ 0.05T
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Overall, there have been limited investigations into integrating
signal visualization with image classification networks to recognize
complex PQDs. Existing studies mainly concentrate on enhancing
the disturbances recognition accuracy of the overall method,
ignoring the performance of visualization imaging technology
and deep learning model in terms of conversion and recognition
efficiency. With the massive increase of power quality monitoring
data, the recognition efficiency of PQDs is becoming increasingly
crucial for power system health condition monitoring. To address
this challenge, a novel PQDs recognition method based onMTF and
improved DenseNet-SC is proposed in this paper. The proposed
method utilizes theMTF encoding method with straightforward and
efficient conversion process and clear features to color code the
original disturbance signal to form PQDs feature image, and then
designing lightweight network DenseNet-S and integrating CBAM
attention mechanism to improve the feature capturing ability of the
model. Finally, based on IEEE standard and the real-world field data
collected by the substation, simulation and measurement dataset of
PQDs are established to test the proposedmethod. The experimental
results verify the effectiveness and superiority of the proposed
method in PQDs recognition efficiency and precision.

2 PQDs data visualization based onMTF

2.1 PQDs model construction

For various complicated PQDs problems in power system, the
real data is difficult to be collected by equipment. Therefore,
according to IEEE Std, 2019 power quality standard,
mathematical modeling of PQDs signal is carried out in this
paper. The nine categories for common basic disturbance signals
are sag, swell, interruption, harmonic, oscillatory transient, pulse,
flicker, gap, and spike. Corresponding mathematical models for
these categories are presented in Table 1.

Complex PQDs are typically overlaid with multiple basic
disturbances, including a variety of different categories and
different start and end times. The resulting composite waveforms
exhibit a complex, cumbersome, and irregular pattern, posing
challenges in accurately recognizing the disturbance types.

2.2 Markov transition field

The conversion methods of one-dimensional PQD signal
into two-dimensional image are currently mainly investigated
using the GAF and its variants. However, due to the need for
cross-domain encoding and matrix operation of sequence data,
the conversion process of GAF is complex and low efficiency.
In addition, the loss of time sequence feature information is
easy to occur when processing disturbance signals in noisy
environment.

To address the above shortcomings and deficiencies, this
paper proposes a visual conversion method of PQDs based on
MTF. The correlation between amplitude and time is the main
relationship in time-series data. MTF can convert one-
dimensional time series data into two-dimensional feature
images by considering the time and position information on

the basis of Markov chain and using Markov transition
probability for coding, so as to maintain the time order and
statistical dynamics in the generated images (Wang and Oates,
2015). Due to its excellent time-series information retention
ability, MTF coding technology has been partially applied in
fault diagnosis (Yan et al., 2022) and surface electromyography
signal analysis (Li et al., 2022). However, as far as we know, MTF
coding technology has not been applied to PQDs recognition
research in the existing literature.

Given a set of time series signal X � x1, x2, . . . , xN{ }, xi is the
i-th sampling signal point. MTF method firstly divides the time
series signal into Q quantile units qj(j ∈ [1, Q]) according to its
amplitude for discretization processing, quantizes each value,
and any numerical point xi can be mapped to the corresponding
quantile qi. Then, by calculating the probability of sampling
signal point xt−1 and xt transferring from region qi to qj in
the form of a first-order Markov chain along the time axis, and
taking each calculated probability p as element wij, the Markov
state transition matrixW of Q × Q dimension is constructed. The
expression is shown in Eq. 1:

W �
w11 w12 / w1Q

w21 w22 / w2Q

..

. ..
.

1 ..
.

wQ1 wQ2 / wQQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

p1,1 xt ∈ q1
∣∣∣∣xt−1 ∈ q1( ) / p1,Q xt ∈ q1

∣∣∣∣∣xt−1 ∈ qQ( )
p2,1 xt ∈ q2

∣∣∣∣xt−1 ∈ q1( ) / p2,Q xt ∈ q2
∣∣∣∣∣xt−1 ∈ qQ( )

..

.
1 ..

.

pQ,1 xt ∈ qQ
∣∣∣∣∣xt−1 ∈ q1( ) / pQ,Q xt ∈ qQ

∣∣∣∣∣xt−1 ∈ qQ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

Nonetheless, Markov chain is memoryless, and the
probability of state transition at the current moment only
depends on the state at the previous moment, without
considering the dynamic probability transition of time series
data. Therefore, the Markov state transition matrix constructed
by Markov chain is also memoryless, which completely ignores
the dependence of time step on one-dimensional time series
signal X. If the Markov state transition matrix is used directly,
a large amount of one-dimensional time series information will
be lost. To solve this problem, MTF is used to improve it. By
considering the time and position relationship, each transition
probability is arranged in time order, and the Markov state
transition matrix W is extended to the MTF matrix M across
time scales, preserving the time correlation of the original signal.
The expression of M is shown in Eq. 2:

M �
M11 M12 / M1N

M21 M22 / M2N

..

. ..
.

1 ..
.

MN1 MN2 / MNN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

pi,j x1 ∈ qi
∣∣∣∣∣x1 ∈ qj( ) / pi,j x1 ∈ qi

∣∣∣∣∣xN ∈ qj( )
pi,j x2 ∈ qi

∣∣∣∣∣x1 ∈ qj( ) / pi,j x2 ∈ qi
∣∣∣∣∣xN ∈ qj( )

..

.
1 ..

.

pi,j xN ∈ qi
∣∣∣∣∣x1 ∈ qj( ) / pi,j xN ∈ qi

∣∣∣∣∣xN ∈ qj( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)
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where Mmn represents the probability of transferring from quantile
region qi corresponding to sampling signal point xm to region qj
corresponding to xn, that is, the transition probability of the quantile
relationship between qi and qj on the matrixW , while the elements
on the diagonal are the corresponding self-transfer probability.

Taking one-dimensional sinusoidal signal as an instance,
according to the above MTF dynamic transfer information
encoding method, its two-dimensional MTF visual image
generation process is shown in Figure 1.

Considering that when N is large, using the original MTF to
directly generate images will make the images too large and
occupy more computer storage space, which is not conducive
to the rapid calculation and analysis of on-site intelligent devices
or grid background systems. For this purpose, fuzzy kernel
1/n2{ }n×n is used to average each non-overlapping pixel to
obtain a two-dimensional MTF image of the aggregated n × n
dimension, that is, an aggregated image with dynamic transition
probability, which is used as the image modal input data for
power quality analysis.

The MTF image coding method offers a technique for
visualizing sequences that maintains time dependency. The
use of MTF to convert time series signals has the following
advantages:

(1) By considering the dependence between each quantile unit
and time step, the correlation between moments can be
effectively represented, and the time series information loss
of one-dimensional sequence signals can be avoided;

(2) The one-dimensional time-series signal and MTF image
coding method are mapped relations, preventing the loss
of feature information.

(3) The pixel amplitude information is the value of Mij, and the
color depth reflects the transformation probability from qi to

qj. The two-dimensional image features after visualization are
clear and easy to distinguish, which is very conducive to the
learning and recognition of deep learning network.

(4) Compared with GAF, the MTF conversion process is
concise and computationally efficient. The introduction
of quantile division makes MTF more resistant to
interference and noise.

2.3 Visualization of PQDs signal

To achieve a two-dimensional visualization of PQDs data
while preserving the temporal correlation and full feature details
of signals, this study utilizes the MTF coding technique to
convert one-dimensional PQDs signal into two-dimensional
MTF image. Based on the mathematical model of PQDs
presented in Table 1 and the MTF conversion process
detailed in Section 2.2, the fundamental frequency is set to
50 Hz, with the sampling frequency of 3.2 kHz and the
sampling length of 10 cycles. Consequently, MTF feature
images are generated corresponding to the nine basic PQDs
signals as illustrated in Figure 2. The size of the images’
horizontal and vertical axes represents their respective
dimensions. The conversion result order is in line with the
PQD types’ order in Table 1.

As depicted in Figure 2, the MTF feature image
differentiates time-series signals of various PQDs types at the
same spatial location by employing dissimilarities in pixel
colors and texture shapes. The feature information of each
image is lucid and easily distinguishable, thereby facilitating
feature extraction after disturbances composite superposition,
and laying a foundation for deep learning network to accurately
recognize PQDs.

FIGURE 1
MTF visualization image generation process.
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3 PQDs recognition based on
improved DenseNet

3.1 Fundamental principle of DenseNet

Traditional CNNs come with an abundance of parameters and
frequently encounter two primary issues: first, overfitting is easy to
occur owing to limited training data, and second, the network layers
tend to be shallow, causing inadequate extraction of more advanced
information. Deeper networks produce more distinguishable
characteristics by acquiring superior-level feature maps, thus it’s
easier for them to recognize inherent and underlying features.

However, deep neural networks often encounter issues such as
gradient vanishing and explosion, which can negatively impact
network training and recognition performance (Huang
et al., 2017b).

DenseNet incorporates a bypass connection approach similar
to ResNet and establishes a dense connection mechanism
between convolutional layers, enhancing feature reuse through
inter-channel splicing (Huang et al., 2017a). As a result,
DenseNet effectively resolves the aforementioned issues. As its
core component module, the dense block (DB) structure as
depicted in Figure 3, which is designed to ensure maximum
information flow between network layers, where: x0 is the input

FIGURE 2
MTF visualization image of PQDs basic signals.
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feature information, the input of H1 is x0, while the inputs of H2

are x0 and x1, where x1 is the output of H1, and so on. In this
architecture, each layer uses inputs from all previous layers and
passes its corresponding feature maps to all subsequent layers.
Therefore, this network structure can extract more global and
important features, which can achieve more accurate and
efficient training effect.

Unlike the conventional convolutional network structure, the
number of connections increases to L(L + 1)/2 from L when the
number of DB layers is L. As a result, the feature map obtains from
the L-th layer is the outcome of the feature maps that are produced
from all previous layers after being spliced in the channel dimension
using the following Eq. 3:

xl � Hl x0, x1, . . . , xl−1[ ]( ) (3)

where xl represents the output of layer l. The splicing operation of
the output feature map of each layer is denoted by [x0, x1, . . . , xl−1].
Hl(·) represents a nonlinear combinatorial function, which consists
of a batch normalization layer (BN), a linear activation function
(ReLU), and a 3 × 3 convolutional layer (Conv).

Each DB includes multiple convolutional layer structures with
the same padding utilized for splicing operations. Although this
structure adopts a densely connected pattern, it requires fewer
parameters than traditional CNNs. In fact, this network
architecture eliminates the need to learn redundant information,
reduces the number of feature maps required at the network layer,

FIGURE 3
A dense block structure.

TABLE 2 Network structure design of DenseNet-S.

Network layer DenseNet-S (k = 48) Output size (input size: 128 × 128 × 3)

Convolution 7 × 7 Conv, stride 2 64 × 64×64

Pooling 3 × 3 Max pool, stride 2 32 × 32×64

Dense Block 1 1 × 1Conv
3 × 3Conv
[ ] × 3

32 × 32×208

Transition Layer 1 × 1 Conv 16 × 16×104

2 × 2 Average pool, stride 2

Dense Block 2 1 × 1Conv
3 × 3Conv
[ ] × 6

16 × 16×392

Transition Layer 1 × 1 Conv 8 × 8×196

2 × 2 Average pool, stride 2

Dense Block 3 1 × 1Conv
3 × 3Conv
[ ] × 9

8 × 8×628

Transition Layer 1 × 1 Conv 4 × 4×314

2 × 2 Average pool, stride 2

Dense Block4 1 × 1Conv
3 × 3Conv
[ ] × 6

4 × 4×602

Classification Layer Adaptive average pool 1 × 1×602

1000D fully-connected, softmax
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and significantly improves parametric efficiency. On the other hand,
the continuous concatenation of different layers requires each layer
to access the gradient from the original input data and the loss
function. This fast access improves the information flow between
layers, mitigates the gradient vanishing issue, and facilitates the
extraction of deeper semantic information.

3.2 Foundational network
architecture design

To avoid overfitting and create a more lightweight network,
this paper designs a more compact and lightweight architecture
termed DenseNet-S through numerous experimental tests. This
architecture serves as the backbone of deep learning network

while ensuring the network’s classification precision. Its network
structure is shown in Table 2. Among them, the DenseNet-S
network contains four groups of DBs, each group is composed of
3, 6, 9, and 6 groups of convolutional layer superposition
connections, and the growth rate k � 48. To enhance the
network’s computational efficiency and compactness,
bottleneck layer and transition layer are introduced for feature
map dimensionality reduction. The bottleneck layer is located in
DB and consists of 1 × 1 convolutional layers preceding 3 × 3
convolutional layers. The transition layer is located between two
sets of DBs and consists of a batch normalization layer, a 1 × 1
convolutional layer, and a 2 × 2 average pooling layer. For m
feature maps output by DB, θ times will be reduced after
conversion by transition layer. θ ∈ (0, 1) is the compression
coefficient. In this paper, we use θ � 0.5.

FIGURE 4
Schematic diagram of CBAM.

FIGURE 5
PQDs recognition framework based on MTF and improved DenseNet.
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3.3 CBAM attention mechanism

Accurate extraction of feature image information is crucial for
improving the recognition accuracy of PQDs. The convolutional and
pooling operation of CNNs defaults the importance of each channel
in the feature map to be the same, but due to the different
importance of information carried, it is unreasonable to identify
the same importance of channels. Based on the processing
mechanism of the human visual system, CBAM (Woo et al.,
2018) performs dynamic weighted processing of features through
autonomous learning on spatial domains and feature channels to
enhance the capture of key feature information of images while
reducing the interference of non-key information, thus improving
the recognition precision. Therefore, this paper introduces CBAM
attention mechanism to improve the ability of feature extraction

network to focus details in MTF images corresponding to various
PQDs, so as to obtain better recognition effect.

CBAM comprises two modules: channel attention module
(CAM) and spatial attention module (SAM). CAM assigns
weight coefficients to the feature channels based on their
significance. Firstly, all channels information is aggregated
through average-pooling and max-pooling to generate two
different one-dimensional feature vectors, and then, after
fully connected layer operation, element by element addition
is performed, channel attention weight Mc is generated through
activation operation, which is then multiplied element by
element with the input feature map to obtain the channel
attention weighted feature map F1. The calculation process of
CAM module is shown in Figure 4A, and its calculation
expression is shown in Eq. 4:

FIGURE 6
Comparison of recognition results on validation set.

FIGURE 7
Comparison of the class activation heatmap output before and after the CBAM module of improved model.

Frontiers in Energy Research frontiersin.org08

Zhou et al. 10.3389/fenrg.2024.1328994

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1328994


MC F( ) � σ MLP(AvgPool F( )( ) +MLP MaxPool F( ))( ) (4)
where F represents the input feature map, AvgPool and MaxPool
indicate average-pooling and max-pooling operations, respectively.
MLP denotes the fully connected operation, while σ represents the
sigmoid function.

The SAM module uses the feature map F1 as the input, which
has been weighted by CAM. As shown in Figure 4B, the input feature
map F1 undergoes spatially max-pooling and average-pooling
resulting in two two-dimensional feature maps, which are
splicing for convolution operation and activation operation, and
finally generates spatial attention weight Ms to obtain features
weighted by SAM. The formula for calculating the spatial
attention is shown in Eq. 5:

MS F( ) � σ(f3×3 AvgPool F( );[(
MaxPool F( )])) � σ(f3×3 FS

avg;F
S
max[ ]( )) (5)

where f3×3 represents the dimensionality reduction convolution
operation with a convolution kernel size of 3 × 3. (The study
discovers that using 3 × 3 convolution kernel size for

dimensionality reduction of feature channel results in better
intelligent network recognition performance than 7 × 7
convolution kernel size. Therefore, the convolution operation
with the kernel size of 3 × 3 is utilized here).

3.4 PQDs recognition framework
construction

Combining the imaging advantages of MTF with DenseNet’s
efficient training and deep feature extraction capabilities, this paper
proposes a novel PQDs recognition method based on MTF and
improved DenseNet. The PQDs recognition framework is shown in
Figure 5. The whole framework mainly includes four parts: signal
visualization module, dense connection learning module, attention
mechanism module and classification module.

(1) Signal visualization module: The one-dimensional PQDs
time-series sampling signals are deconstructed through
MTF dynamic coding, reorganized into MTF matrix to

FIGURE 8
Confusion matrix of 43 types PQDs recognition results (SNR = 20 dB).

Frontiers in Energy Research frontiersin.org09

Zhou et al. 10.3389/fenrg.2024.1328994

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1328994


retain the original temporal information. Finally, the matrix is
mapped into a two-dimensional image with easy-to-recognize
features and temporal correlation, having a pixel size of
128 × 128. This approach indirectly enhances the
recognition precision of disturbance types from the data level.

(2) Dense connection learning module: This module comprises
DBs and transition layers. RGB feature maps undergo
convolution and dimension reduction via 7 × 7
convolution layers and 3 × 3 max-pooling layers to extract
shallow feature information. Following feature extraction, the
feature information needs to traverse four sets of DBs, with a
transition layer connecting every two sets of DBs. When
passing through DBs, feature reuse is performed on feature
maps from different layers in channel dimension based on
dense connection mechanism, which is conducive to
extracting deeper feature information and combining
shallow layer and deep layer information in the network,
which greatly improves feature utilization. Simultaneously,
transition layers are introduced to reduce feature dimensions,
which reduces network parameter redundancy and enhances
the overall efficiency of the model’s learning and
computation.

(3) Attention mechanism module: Adding the CBAM
attention module between the dense connection learning
module and the classification module of DenseNet-S can
effectively enhance the network’s recognition precision, as
evidenced by extensive experimentation. The feature map
F output by Dense Block 4 enters the CAM module, where
max-pooling and average-pooling operations are
performed and result in two 1 × 1 × 602 one-
dimensional feature vectors. Then the two feature
vectors are sent into the full connection layer for
calculation and sum operation. After activation
operation, the CAM module generates channel attention
weights Mc, which are then multiplied with the feature
map F to derive F1 that is the input feature map for the
SAM module. In the SAM module, the feature map F1

undergoes separate max-pooling and average-pooling
operations according to spatial position, and the two
results are splicing to generate a 4 × 4 × 2 feature
map. Subsequently, this map undergoes dimensional
reduction through a 1-channel convolution layer. The
spatial attention weight Ms is then obtained by Sigmoid
function activation. Ultimately, the feature obtained by
multiplying the weights Ms with the input feature map F1

represents the feature enhanced by CBAM.

FIGURE 9
Comparison of recognition accuracy between DenseNet-SC and
matinstream deep learning networks.

TABLE 3 Comparison of recognition performance on Test set.

Recognition network Recognition accuracy/% Computational efficiency metrics

0 dB 50 dB 30 dB 20 dB Params/106 FLOPs/109 Model Size/MB Time/ms

GoogleNet 88.09 87.35 86.23 81.24 24.46 5.75 93.47 92.84

VGG-16 96.28 95.67 94.37 90.79 134.44 15.47 512.84 65.31

ResNet-18 97.85 97.23 96.43 92.91 11.20 1.82 42.76 43.05

DenseNet-121 97.89 97.28 95.82 92.80 6.99 2.89 27.02 56.28

DenseNet-169 97.70 97.18 95.79 92.56 12.56 3.43 48.51 61.30

DenseNet-201 97.52 97.10 95.65 92.43 18.18 4.39 70.21 66.09

DenseNet-SC 98.29 97.64 96.80 93.26 3.88 0.72 14.94 15.22
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(4) Classification Module: This module consists of an adaptive
average-pooling layer, two fully connected layers, and a
Softmax classifier. Firstly, the feature maps enhanced by
CBAM are converted into one-dimensional feature vectors
using adaptive average pooling, which is then input into the
fully connected layer. Finally, the feature information output
from the fully connected layer is input into the Softmax
classifier. Softmax function is used to calculate the
probability value of each PQDs type corresponding to the
MTF feature image, and the category of the maximum value is
output as the classification result to realize the recognition
of PQDs type.

4 Simulation analysis

4.1 PQDs visualization dataset generation

According to IEEE Std 1159–2019, 34 composite disturbances are
generated by combining ninemathematical models of basic disturbance
signals. These composite disturbances included 18 double disturbances,
11 triple disturbances, and 5 quadruple disturbances. The random
parameters of PQDs including fluctuation amplitude and duration are
based on Table 1. Additionally, in alignment with Section 2.3’s outlined
signal sampling parameters, 1,000 samples are generated for each
disturbance with uniform amplitude and phase distribution. These
samples are produced at varying signal-to-noise ratios (SNRs) of 0 dB,
20 dB, 30 dB, and 50 dB to better simulate real-world PQDs scenarios.
Through the visual conversion process of PQDs signal in Section 2.3,
MTF is used to map samples into two-dimensional images, and a total
of 43 types of PQDs visualization dataset is constructed.

This paper presents the development of a PQDs recognition
model utilizing the PyTorch deep learning framework in Python 3.9.
The experimental environment uses AMD Ryzen 3,970X @
3.70 GHz CPU, 128 GB RAM, and NVIDIA RTX 3090 GPU.
The cross-validation technique is used in the training process. In
each epoch, the data from all categories are randomly arranged and
divided into training, validation, and test sets according to the ratio
of 6:2:2, and the optimal model is saved according to the recognition
accuracy of validation sets.

4.2 Model parameter settings and
evaluation criteria

When training the PQDs recognition model, the batch size is set to
64, the number of training epochs is set to 50, and the initial learning rate
is set to 0.001. In order to obtain the optimal trainingmodel, the stochastic
gradient optimizer (SGD, weight_decay = 0.0001, momentum = 0.9) is
used to optimize themodel, and the cross entropy loss function is used to
calculate the loss value. To ensure the network learning efficiency and
prevent overfitting, a dynamic adjustment strategy is used to update the
learning rate. After 50% of the total epochs are completed, the learning
rate is adjusted to the original 10%.

To evaluate the model’s performance, this paper uses multiple
evaluation metrics such as average recognition accuracy (Accuracy),
floating-point operations (FLOPs), parameters (Params), and model
size. Accuracy is calculated using the subsequent Eq. 6: The formula
for calculating the spatial attention weights is as follows:

Accuracy � 1
N
∑n
j�1

Mjj

Mj
× 100% (6)

FIGURE 10
Real-world field measured waveform and MTF conversion diagram of typical PQDs event.
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where N is the total number of categories, Mj is the number of the
j-th category, and Mjj is the number of correct recognition for the
j-th category.

Params and FLOPs in CNNs are widely used to evaluate the
complexity of the model (Paoletti et al., 2021). The formulas is
calculated using the subsequent equation: for calculating Params
and FLOPs in the convolution layer and the fully connected layer are
as Eqs 7–10:

PCNN ~ O ∑d
l�1

nl−1 · s2l + 1( ) · nl⎛⎝ ⎞⎠ (7)

CCNN ~ O ∑d
l�1
nl−1 · s2l · nl ·m2

l
⎛⎝ ⎞⎠ (8)

PFCN ~ O ∑d
l�1

nl−1 + 1( ) · nl⎛⎝ ⎞⎠ (9)

CFCN ~ O ∑d
l�1
nl−1 · nl⎛⎝ ⎞⎠ (10)

where l is the index of a convolutional layer, and d is the depth
(number of convolutional layers). nl is the number of filters (also
known as “width”) in the l-th layer. nl−1 is also known as the number
of input channels of the l-th layer. sl is the spatial size (length) of the
filter. ml is the spatial size of the output feature map.

4.3 Experimental results and analysis

In order to verify the performance of the improved DenseNet-
SC model designed in this paper in recognizing PQDs types, the
improved model is compared with the DenseNet-S model and six
mainstream deep learning classification networks under the same

experimental environment and SNR conditions, so as to verify the
effectiveness and superiority of the improved model.

4.3.1 DenseNet-SC model capability assessment
The improved DenseNet-SC model and the DenseNet-S model

without CBAM module are trained with the same dataset and
experimental environment. After 50 epochs of training, the
recognition accuracy and loss value changes of the verification set
in the training process of the model are obtained, as shown in
Figure 6. At the same time, comparison results of various models’
recognition accuracy on the test set can be obtained under different
SNR environments, among which the overall recognition accuracy
of DenseNet-S is 95.72%, 95.06%, 93.92%, and 89.72% under no
noise, 50 dB, 30 dB, and 20 dB environments, respectively. In the
identical SNR environments, the overall recognition accuracy of
DenseNet-SC is 98.29%, 97.64%, 96.80%, and 93.26%, respectively.

As can be seen from Figure 6, the accuracy and convergence rate of
the improved DenseNet-SC model are significantly better than that of
the DenseNet-S model during the epochs. Once it reaches the state of
convergence, the accuracy of the former is stable at about 98%, and the
loss value is stable at about 0.07, while the accuracy and loss value of the
latter are oscillating at about 95% and 0.17, respectively. This suggests
that the addition of CBAMmodule to the DenseNet-Smodel effectively
improves the extraction of detailed features in the MTF images that
correspond to PQDs signals, so as to grasp the feature information in
the input image more accurately. By comparing the overall recognition
results of the two models on the test set, it can be seen that the
DenseNet-SC model also performs better than DenseNet-S in PQDs
recognition under four noise environments: no noise, 50 dB, 30 dB, and
20 dB. The recognition accuracy is improved by 2.57, 2.58, 2.88, and
3.54 percentage points respectively, which further indicates that adding
CBAM attention mechanism between the dense connection learning
module and the classification module of model is more helpful for the

TABLE 4 Recognition results of real-world field measured PQDs signal.

Serial number Disturbance types Recognition results of the proposed algorithm

1 Sag: 51 Groups Sag: 45 Groups/Interruption: 2 Groups Sag + Oscillation transient:
3 Groups/Sag + Notch: 1 Group

2 Swell: 22 Groups Swell: 22 Groups

3 Interruption: 3 Groups Interruption: 3 Groups

4 Harmonic: 24 Groups Harmonic: 23 Groups/Harmonic + Oscillation transient: 1 Group

5 Pulse: 5 Groups Pulse: 5 Groups

6 Flicker: 34 Groups Flicker: 30 Groups/Flicker + Harmonic: 3 Group/Flicker + Pulse:
1 Group

7 Sag + Harmonic: 15 Groups Sag + Harmonic: 13 Groups/Sag: 2 Groups

8 Sag + Oscillation transient: 10 Groups Sag + Oscillation transient: 8 Groups/Sag + Harmonic: 1 Group/Sag
+ Oscillation transient + Harmonic: 1 Group

9 Flicker + Pulse: 4 Groups Flicker + Pulse: 4 Groups

10 Swell + Spike: 5 Groups Swell + Spike: 5 Groups

11 Sag + Harmonic + Flicker: 5 Groups Sag + Harmonic + Flicker: 5 Groups

12 Interruption + Harmonic + Oscillation transient: 3 Groups Interruption + Harmonic + Oscillation transient: 2 Groups/Sag +
Harmonic: 1 Group
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model to focus on key feature information, so as to improve the
recognition performance.

TheGrad-Cammethod (Selvaraju et al., 2020) showcases the degree
to which different network modules concentrate on image features via a
heatmap. The heatmap’s colorbar value indicates the degree of network
focus, with higher values indicating a greater level of focus. The class
activation heatmaps of the output features of some samples before and
after CBAMmodule by the improvedmodel are shown in Figure 7. The
figure indicates that, regardless of basic, double, triple, or quadruple
disturbances, the image areas of focus are more precise and
comprehensive in capturing key texture features in the MTF images
when passing through the CBAM module than when passing through
the dense connection learning module. The reason for this is that the
deeper features of feature extraction module are more related to global
information, and the CBAMmodule assigns more weight coefficients to
the network from a global viewpoint. Therefore, deep global features can
be better extracted and learned through CBAMmodule, which enables
the focused feature areas to cover theMTF texture pattern areas with key
feature information more comprehensively.

4.3.2 Model noise resistance performance
evaluation

In noisy environments, PQDs signals may become distorted,
potentially interfering with the model’s judgment of their real class
and causing a reduction in the network’s recognition precision. To
evaluate the anti-noise ability of the improved model, combined with
the model recognition performance under different SNR environments
in the previous section, the recognition effect on various types of
disturbances is tested respectively in the 20 dB SNR environment.
The corresponding confusion matrix of the test results is shown in
Figure 8, where the rows indicate the actual disturbance labels while the
columns reflect the model’s recognition outcomes.

The test results show that under the 20 dB strong noise
environment, the recognition accuracy of some complex
disturbances containing oscillatory transient, harmonic, flicker

and spike, is below average. Among them, some disturbances are
easily confused with complex disturbances containing notch and
spike (C1 → C5/C6,C3 → C5/C6,C14 → C17). Some double
disturbances with harmonic can be easily identified as triple
disturbances (C2 → C8,C24 → C28,C32 → C36) and the
quadruple disturbances with oscillatory transient are easily
confused with the triple disturbances without oscillatory transient
(C9 → C10,C20 → C21), resulting in a significant decline in
recognition accuracy. On the other hand, the overall recognition
accuracy of the improved model can still reach 93.26% even under
20 dB strong noise environment, which shows good recognition
performance and noise robustness.

4.3.3 Comparison of recognition precision
performance among different deep
learning models

To further verify the precision performance of DenseNet-SC
model in recognizing PQDs, we performed comparative
experiments with six mainstream deep learning classification
networks: GoogleNet (Inception V3), Vgg-16, ResNet-18, and
DenseNet-121/169/201 under equivalent conditions of MTF
dataset and experimental settings. These classification
networks utilize the corresponding framework structure and
parameters setting from the original papers. Figure 9 shows
the comparison curves of recognition accuracy, while Table 3
presents the recognition accuracy results on the test set. It is
important to note that MTF images need to be upsampled to
299 × 299 and 224 × 224 respectively before being input into the
networks so as to adapt to the pre-trained GoogleNet and the
other five classification networks, while the proposed DenseNet-
SC does not require any prior information.

As shown in Figure 9A, compared with the three DenseNet series
classification networks, although the initial recognition accuracy of the
improved model is relatively low, its accuracy continues to increase and
the rising trend is very stable with the increase of epochs, and there is no

FIGURE 11
Comparison of precision and efficiency metrics of different PQDs recognition frameworks.
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obvious fluctuation. In the 16th epoch, the initial synchronization with
other models is achieved, and the surpassing is completed in the later
stage. In addition, as can be seen from Table 3, the recognition accuracy
of the improvedmodel under different SNR environments is superior to
the other three models in terms of accuracy performance verification of
the test set. In summary, although DenseNet-SCmodel is lightweight in
the network architecture, the increase in growth rate and the injection of
CBAM attention module strengthen the propagation of feature
information and the extraction of key features, improve the
information flow and feature capture capability of the whole
network, and optimize its recognition precision performance for PQDs.

According to Figure 9B; Table 3, GoogleNet underperforms on the
MTF dataset. Its recognition accuracy is lower than that of othermodels
in both training and testing phases. Compared with VGG-16 and
ResNet-18 models, on the one hand, although the improved model
exhibits subpar performance during the early training phase, the
recognition accuracy gradually exceeds that of two models with the
increase of epochs, and finally stabilizes around 98%. On the other
hand, in terms of test performance, the overall recognition accuracy of
the improved model under the SNR of 0, 20, 30, and 50 dB is improved
by 2.01/0.44, 1.97/0.41, 2.43/0.37, and 2.47/0.35 percentage points
compared with the two models, respectively. These results
demonstrate the improved model’s superiority in terms of PQDs
recognition precision and noise resistance.

4.3.4 Comparison of recognition efficiency
performance among different deep
learning models

Considering the high requirement of PQDs recognition efficiency
for power system health status monitoring, the size of recognition
model and its operational efficiency are important evaluationmetrics to
judge its performance. The size and operational performance of
different recognition models are shown in Table 3, where time refers
to the average time of taking the model to recognize a sample image
from the test set over 100 tests.

As can be seen from Table 3, when compared with ResNet-18
and the three DenseNet series models, the recognition accuracy
of Densenet-SC model improves relatively little, but the number
of Params, FLOPs, model size and recognition time are greatly
reduced. Among them, the Params and the model size of
DenseNet-SC are only 55.51% of DenseNet121 model, which
is the lightest model among the six comparison models, while the
FLOPs and the recognition time to recognize an image are less
than 40% of ResNet-18 model, which has the highest operational
efficiency among the comparison models. This can not only
effectively reduce the memory ratio and computing power, but
also help to improve the training and testing efficiency of the
model, so as to realize the PQDs recognition operation
performance upgrade of the model. On the other hand,
compared with the GoogleNet and VGG-16 models, the
proposed model has achieved significant optimization in terms
of recognition accuracy, model size and computing performance.
In addition, due to the influence of input image size and its own
network structure, GoogleNet’s efficiency of recognizing an
image is lower than that of VGG-16. To sum up, the
DenseNet-SC model designed in this paper not only improves
the network recognition precision, but also realizes the
lightweight and high efficiency of the network, making it able

to be deployed on the hardware terminal equipment with small
storage capacity and low computing performance configuration,
which provides the possibility for further exploring the
construction of mobile PQDs recognition system.

5 Real-world field measured
signals analysis

5.1 Practical effectiveness analysis of the
proposed PQD recognition method

To assess the effectiveness of the proposed method for
practical engineering use, real-world field measured PQDs
signal data is utilized to test its recognition performance. The
data used for testing are gathered from a power quality
monitoring device in a 10 kV substation located in the
southern region of Jiangsu Province, China. The data
collection period ranges from March 2020 to August 2021,
comprising a total of 181 sets of samples. The recording
device has a sampling frequency of 12.8 kHz and the signal
lasted for 0.624 s. To conform with IEEE Std1159-2019 and
the input requirements of the proposed recognition network,
the 10-cycle typical data of each set of signals is intercepted and
normalized as the input of signal visualization module. The real-
world field measured waveforms of PQDs typical events and their
MTF conversion images are shown in Figure 10. It can be seen
that the MTF image corresponding to each disturbance measured
signal still have clear and easily distinguishable texture pattern
features, which are basically consistent with the theoretical MTF
image features. Therefore, it can be seen that the MTF conversion
mode also has good feature expression ability for the real-world
field measured signal data. MTF samples corresponding to all
measured signals are identified by the DenseNet-SC optimal
training model, and the results are shown in Table 4.

As can be seen from Table 4, in terms of sag recognition,
2 groups are recognized as interruption due to the too low sag
amplitude of signal sequence, and 4 groups are recognized as sag +
oscillatory transient/notch due to environmental noise interference.
In terms of flicker recognition, 3 groups are detected to contain
harmonic components due to the influence of noise, and 1 group is
identified to contain pulse disturbance due to the presence of serious
noise point. In terms of double disturbance recognition, the two
groups of sag + harmonic are identified as sag. Further analysis
shows that the harmonic content in the measured signal is small and
its total proportion is relatively small, resulting in label loss. In
addition, a group of triple disturbance signals (interruption +
harmonic + oscillatory transient) are recognized as sag +
harmonic because the signal sag amplitude is near the critical
value and the oscillatory amplitude is relatively small. In
summary, due to the mismatch between the real-world field
measured signal data and the simulation signal data simulated by
mathematical model, the recognition accuracy of some measured
disturbance types decreases compared with the simulation results,
but on the whole, the measured disturbance signal types can be
effectively recognized with a high precision of 91.16%. Therefore, the
effectiveness and reliability of the proposed method in engineering
practice are verified.
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5.2 Comparative performance analysis with
existing PQDs recognition frameworks

To further verify the comprehensive performance advantages of the
proposedmethod in terms of efficiency and accuracy, six existing PQDs
identification algorithms that have achieved excellent performance are
selected as benchmark algorithms for comparative analysis with the
proposed algorithm on the real-world field measured dataset. The
benchmark algorithms are divided into machine learning algorithms
and deep learning algorithms.

The machine learning algorithms include DWT + PNN
(Khokhar et al., 2017) and ST + RBF (Wang et al., 2018), while
the deep learning algorithms include the one-dimensional deep
learning algorithms GRU (Deng et al., 2019) and LSTM (Xu
et al., 2022), which directly take one-dimensional signals as
model inputs, and the two-dimensional deep learning algorithms
GASF + CNN (Zheng et al., 2021) and GASF-GADF + ResNet18,
which convert one-dimensional signals into two-dimensional
visualization images and then combine advanced image
recognition algorithms for PQDs classification.

To ensure the fairness of various algorithms in the PQDs
recognition performance test, we process the data and train the
classifier models based on the same original one-dimensional signal
dataset under the same experimental environment. Among them,
the original dataset is divided according to the same dataset
partitioning ratio as in this paper, the classifier model structure is
consistent with that in the original paper, and the hyperparameter
settings are consistent with that in this paper. After the training of
various algorithm models and saving the optimal models, they are
applied to the measured signal dataset and the comprehensive
performance is compared with the proposed method. The results
are shown in Figure 11. Among them, the visual conversion and
network classification time are the average time obtained for a signal
sample after 100 consecutive tests. Sequence conversion time and
network classification time refers to the average time used to process
and recognize a signal sample in the dataset, respectively.

According to the test results, the overall accuracy performance
of machine learning algorithms is poor. This is because this
algorithm type relies heavily on expert knowledge when manually
extracting features, and its generalization performance is greatly
limited when facing measured signals with more complex changing
states. In addition, machine learning models often have shallow
depth, which leads to their lack of deep feature capture ability,
thereby causing a decline in PQDs recognition accuracy
performance. One-dimensional deep learning algorithms directly
take one-dimensional sequence data as model input without any
data processing, so they are superior to other algorithms in efficiency
performance. However, their accuracy performance is limited due to
its limitation in information mining of complex time series data.
With the deep feature mining ability and strong generalization of
advanced image recognition algorithms, the accuracy performance
of two-dimensional deep learning algorithms is better than that of
traditional machine learning algorithms and one-dimensional deep
learning algorithms. Among them, due to the limited temporal and
spatial features of the PQDs signals extracted by single-channel
GASF in the coding process, and the shallow depth of CNN network,
the deep-level semantic information of the image cannot be
captured, thus the overall recognition accuracy of GASF + CNN

is only 67.96%. Compared with single-channel GASF, double-
channel GASF-GADF can provide more abundant PQDs time-
series feature information. However, real-world disturbance signal
aliases environmental noise and its state changes are more complex,
which makes the GAF visualization process requiring coordinate
conversion and matrix coding inevitably lose some important
feature information. It interferes with the classification network
to capture important feature information, and then reduces the
recognition performance of the model, so its accuracy is also limited.
Compared with GAF, MTF is more resistant to interference and
noise through the introduction of quantile division, and the encoded
image obtained by conversion can retain more comprehensive
temporal and spatial feature information. In terms of recognition
efficiency, the visual conversion efficiency of the proposed method is
much higher than other two methods, because the MTF conversion
process is very simple and computationally small, and it does not
need to carry out complex coordinate conversion andmatrix coding.
In addition, due to the lightweight structural design, the model
recognition efficiency is higher than that of the larger ResNet-18, but
it is lower than that of CNN, because CNN has a simpler structure
(the number of parameters and the model size are 2.18 M and
8.32 MB, respectively). However, CNN has obvious defects in the
recognition accuracy performance. In summary, the experimental
results of measured signals prove that the MTF + DenseNet-SC
method proposed in this paper has better comprehensive
performance in PQDs recognition than other algorithms.

6 Conclusion

Tomeet the recognition efficiency and precision requirements of
massive and complex PQDs events under the background of new
power system, and give full play to the deep sensing capability of
DenseNet and the simple conversion and anti-interference
capability of MTF, a novel PQDs recognition method based on
MTF and improved DenseNet is proposed in this paper. The specific
advantages are as follows:

1) MTF can effectively extract the disturbance characteristics of
one-dimensional signals, and has certain anti-interference
ability. The two-dimensional images after visualization can
effectively express the sample disturbance information.

2) A DenseNet-S lightweight network structure is designed, and
by introducing an attention mechanism, the improved model
can capture the texture pattern features of each MTF sample
more accurately and comprehensively. The recognition
accuracy of 43 PQDs types can reach 98.29% and 93.26%
respectively under noise-free and 20 dB strong noise
environment, which effectively improves the PQDs
recognition precision and noise robustness.

3) The improved DenseNet-SC model has obvious advantages over
six mainstream deep learning image classificationmodels, such as
ResNet-18 and DenseNet-121, in terms of model size, Paras,
FLOPs and recognition time. While improving recognition
precision, the lightweight of model and the high efficiency of
data analysis are realized. In addition, this paper constructs
12 types of real-world field measured PQDs signal dataset to
comprehensively test the recognition performance of the
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proposed method. The test results verify the effectiveness and
superiority of the proposedmethod in the accuracy and efficiency
of real-world field measured PQDs recognition, which can meet
the classification accuracy and efficiency requirements of massive
and complex PQDs events in engineering applications.
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