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A two-stage robust planning method for energy storage in distribution networks
based on load prediction is proposed to address the uncertainty of active load in
energy storage planning. First, considering the uncertainty of active load, a short-
term load forecasting model combining the mutual information method and
BiLSTM is established based on k-means++ clustering. Second, based on the
results of load forecasting, a comprehensive norm-constrained uncertainty set is
constructed, and a two-stage robust model for distribution network energy
storage planning is established. The first stage aims to minimize the annual
investment cost of the energy storage system, while the second stage aims to
minimize the daily operating cost of the distribution network. At the same time, a
second-order cone relaxation transformation model with non-convex
constraints is introduced to ultimately achieve the optimal economy of the
distribution network in energy storage planning. Finally, the effectiveness of
the proposed method and model is validated on the IEEE 33-node distribution
network model using the MATLAB platform.
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1 Introduction

For the development of a high-proportion renewable energy source (RES), the access of
a large number of RESs and the increase in load demand have brought new challenges for
the flexible and efficient operation of the power system, and energy storage technology is
considered to be an important means to solve the instability of RES output and demand
(Yang et al., 2022a; Yang et al., 2022b; Yang et al., 2022c). Therefore, it is necessary to study
how to plan energy storage in the distribution network (Nan et al., 2018; Yang et al., 2022d).

At present, there is a lot of research on energy storage planning conducted by many
scholars. Huang et al. (2023) proposed a new power system energy storage planning method
considering the demand response resources. Zhu and Shan (2023) established a distributed
robust capacity planning model based on the uncertainty of new energy output, which fully
considers the flexibility of system operation. Lan et al. (2022) proposed a hybrid energy
storage model in order to smooth wind power fluctuations. The energy storage capacity of
an isolated island microgrid was configured by Li et al. (2016). In the work of Li et al. (2016),
Lan et al. (2022), Huang et al. (2023), and Zhu and Shan (2023), energy storage planning is
only based on a local power system or a microgrid and does not extend to the distribution
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network. Ren et al. (2019), Zhang et al. (2023a), Yang et al. (2023),
and Zheng et al. (2023) established the energy storage planning
model in the distribution network. Among them, Zheng et al. (2023)
considered the long-term and short-term energy storage joint
planning of the source and storage transport under the high
proportion of wind power penetration. Yang et al. (2023)
considered the energy storage planning of auxiliary service
income. Zhang et al. (2023a) guided the energy storage location
by evaluating the distribution of system inertia and then planned the
energy storage capacity with the minimum investment and system
operating cost as the goal. Ren et al. (2019) considered both active
and reactive power, and a model of optimal location and capacity
allocation for battery energy storage power stations was established
based on the improved system impedance matrix. Although Li et al.
(2016), Ren et al. (2019), Lan et al. (2022), Zhang et al. (2023a),
Huang et al. (2023), Yang et al. (2023), Zheng et al. (2023), and Zhu
and Shan (2023) have carried out research on the planning of energy
storage power stations, the focus is only on energy storage. With
the increasing load demand in power systems, its uncertainty
will become a factor that cannot be ignored in energy
storage planning.

At this stage, the main methods of dealing with uncertainty
problems in power systems are stochastic optimization (SO) (Lei
et al., 2022; Zuo et al., 2022) and robust optimization (RO) (Ma et al.,
2023; Wang et al., 2023). While maximizing the expected benefits,
SO may not be feasible to achieve without involving other possible
uncertainties. RO methods can guarantee robustness within a pre-
specified set of uncertainties, but the decision process violates
unpredictability, and complex “min–max” structures can lead to
computational difficulties. In addition, RO is unable to merge
distribution information, leading to overly conservative solutions.
Distributed robust optimization (DRO) resolves the problem of
difficult and overly conservative parameter acquisition by making
decisions under the worst probability distribution of random
variables. For DRO, however, a fuzzy set based on moment
information (Wu and Fang, 2023) is limited in the information it
can describe and does not include the true distribution well. The
uncertain output of RES in the work of Wang et al. (2022) is based
on the coupling of the Kullback–Leibler (KL) divergence. Although
the calculation amount is reduced, the KL divergence is an
asymmetric measure. If the two distributions are far apart, the
KL divergence value is meaningless. Fuzzy assemblies based on
Wasserstein metrics (Hou et al., 2023; Liu et al., 2023) lead to
computational difficulties.

Regardless of the method of uncertainty, one source of data is
based on the predicted value. In the work of Feng et al. (2019), Cai
et al. (2020), and Han et al. (2021), load prediction was carried out
based on the machine learning method. Cecati et al. (2015), Wang
et al. (2015), and Su et al. (2017) made use of the artificial neural
network method, which is one of the popular applications at present.
However, Cecati et al. (2015), Wang et al. (2015), Su et al. (2017),
Feng et al. (2019), Cai et al. (2020), and Han et al. (2021) ignored the
timing of load in their work. Zhang et al. (2017) and Zheng et al.
(2020) used the long short-term memory (LSTM) network and
Jixiang et al. (2019) used the bidirectional long short-term memory
(BiLSTM) network to well solve the temporal problems in the
process of load prediction, but the factors affecting load change
are not fully considered. Peng et al. (2020) and Jinpeng et al. (2021)

considered the key factors affecting load, such as date and weather,
in the process of load forecasting, but effective information on load
fluctuation was not extracted, and load forecasting was not applied
to energy storage planning.

To sum up, considering the shortcomings of the existing
research, this paper proposes a two-stage robust planning
method for energy storage in a distribution network based on
load prediction. First, in order to extract effective and
comprehensive forecasting information from load fluctuations
and improve forecasting accuracy, a mutual information (MI)
method and BiLSTM short-term load forecasting model
considering feature importance fluctuations are established based
on k-means++ clustering. Based on load prediction, a DRO
uncertainty set with comprehensive norm constraints is
constructed to establish a two-stage distribution network energy-
storage planning model. The first stage aims at the minimum annual
investment cost of energy storage, the second stage aims at the
minimum daily operating cost of the distribution network, and the
second-order cone relaxation transformation model is introduced.
Finally, the economy and effectiveness of the proposed model and
method are verified on the IEEE 33-node distribution
network model.

2 Load model

2.1 Load clustering

One of the characteristics of a power system load is its
periodicity. Developing short-term load forecasting based on the
periodic characteristics of the load is the basis for improving the
forecasting accuracy. The periodicity of the load is reflected in the
overall change law of 24 h a day with a similar trend (Zhang et al.,
2023b; Fu et al., 2023). In addition, the daily load scenario is affected
by a variety of factors (date characteristics, temperature, humidity,
etc.) and can be divided into different types, and the importance of
the input characteristics also shows obvious differences. Aiming at
the above characteristics, this paper first performs cluster analysis on
the daily load curve based on the k-means++ algorithm.

As an improvement of k-means, k-means++ is used to make the
distance between the initial cluster centers as far as possible in the
process of cluster initialization to avoid the problem of local
optimization of cluster centers to select relatively better cluster
centers. The k-means++ algorithm effectively solves the initial
center selection problem of the k-means algorithm, but it does not
provide an effective solution for the selection of cluster number k.

This cluster takes meteorological characteristics as input to
subdivide the daily load scenarios. Meteorological features include
different types of data, such as temperature and humidity. Since
temperature is a significant factor affecting the variation of daily load,
the temperature of a day is selected as the input of clustering, and the
final result of daily load scene division is obtained.

2.2 Wave matrix

The MI method is used to measure the importance of input
features, and the extracted MI value is used to represent the
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importance value of the input features. The greater the MI value, the
greater the correlation between the input features and load, that is,
the greater the importance value. MI comes from the concept of
entropy in information theory, which reflects the correlation
between any two random variables. The MI value between the
input feature and the load is used to characterize the importance
value of the input feature. Therefore, based on dividing different
daily load scenarios from the original database, the importance value
fluctuation matrix of the input features is extracted for the
specific scenarios.

The formula for calculating the MI value M(A, B) is as follows:

M A,B( ) � ∑
α

∑
β

hAB α, β( )log2 hAB α, β( )
hA α( )hB β( ), (1)

where hAB(α, β) is the joint probability density function of variables
α and β, A and B are variable sets, and hA(α) and hB(β) are the edge
probability density functions of their corresponding variables.

The steps for constructing the importance fluctuation matrix are
as follows:

Step 1: According to the clustering result of the daily load scenario,
the load data are divided into n groups according to the number of
load sampling points in a day. Then, the output load dataset is
as follows:

P � P1, P2, ..., Pt, ..., Pn[ ], (2)
where Pt is the load output during the t period.

Step 2: The input feature matrix E corresponding to the above
output load dataset is taken.

E �
E1,1 / Et,1 / En,1

E1,2 / Et,2 / En,2

..

. ..
. ..

. ..
. ..

.

E1,m / Et,m / En,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where Et,m is input to the mth feature of Pt.

Step 3: The MI value Et of the input and output load in the t period
is calculated, and normalization processing is carried out.

Et �
M Et,1, Pt( )
M Et,2, Pt( )

..

.

M Et,m, Pt( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where M(Et,1, Pt) is the level of importance of the class 1 input in
the t period.

Step 4: t iteratively solves the input importance values at different
moments from 1 to n and obtains the input importance fluctuation
matrix M with time.

M �
M E1,1, P1( ) / M Et,1, Pt( ) / M En,1, Pn( )
M E1,2, P1( ) / M Et,2, Pt( ) / M En,2, Pn( )

..

. ..
. ..

. ..
. ..

.

M E1,m, P1( ) / M Et,m, Pt( ) / M En,m, Pn( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

2.3 BiLSTM model

Considering that there is a certain relationship between the load
in the current period and the load in the previous and later periods
in short-term load forecasting, BiLSTM, which considers two-way
time information, is chosen as the underlying model of short-term
load forecasting. The calculation formula of BiLSTM is as follows:

rt
→ � ULSTM

������→
rt−1, mt, at−1( ), (6)

rt
← � ULSTM

←������
rt+1, mt, at+1( ), (7)

Ψt � bt rt
→+ ct rt

←+ at−1, (8)
where rt

→ and rt
←

are the predicted load values before and after the t
period;ULSTM

������→(·) andULSTM
←������(·) represent the forward and backward

calculation process of LSTM, respectively; mt is the input feature at
time t; bt, ct, and at−1 are optimization parameters; andΨt is the load
prediction value of BiLSTM during the t period.

2.4 MI-BiLSTM prediction process

The process of the short-term load forecasting method based on
MI-BiLSTM is shown in Figure 1. At the same time, in order to make
up for the time-invariance of the weight-sharing structure of the
BiLSTM model, the extracted importance value fluctuation matrix
M is used as the input feature of BiLSTM.

2.5 An uncertain set of loads

Based on the load prediction results of each scenario and combined
with the comprehensive norm constraints in DRO (including 1-norm
and infinite norm), the uncertainty set of predicted load values is
constructed to enhance the robustness of the power system operation
(Li et al., 2021; Li et al., 2023a). The uncertainty setQ is shown as follows:

Q � ps{ }
∑S
s�1

ps − ps.0

∣∣∣∣ ∣∣∣∣≤ω1

max
1≤ s≤ S

ps − ps.0

∣∣∣∣ ∣∣∣∣≤ω∞

∑S
s�1
ps � 1

ps ≥ 0, s � 1, 2, ..., S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (9)

where ps.0 is the initial probability value of the predicted sth discrete
scenario, ps is the actual probability value of the sth discrete scenario
when the system is running, ω1 and ω∞ are the 1-norm threshold
and the infinite norm threshold, respectively, for the constraints
satisfied, and S is the number of scenes.

Meanwhile, the probability distribution of the load scenario
satisfies the following confidence constraints:

Pr ∑S
s�1

ps − ps.0

∣∣∣∣ ∣∣∣∣≤ω1

⎧⎨⎩ ⎫⎬⎭ ≤ ξ1

Pr max
1≤ s≤ S

ps − ps.0

∣∣∣∣ ∣∣∣∣≤ω∞{ }≤ ξ∞

ξ1 � 1 − 2Se−
2Wω1

S

ξ∞ � 1 − 2Se−2Wω∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (10)
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where ξ1 and ξ∞ are the confidence levels and W is the load initial
sample number.

3 Two-stage planning model

Based on the constructed load uncertainty set, a two-stage
energy storage planning model of a distribution network is
established (Zhou et al., 2023). Then, the non-convex constraints
of the model are transformed based on second-order cone
relaxation, and finally, the operation optimization problem of the
distribution network is solved.

3.1 First-stage model

The first-stage model aims to minimize the annual
investment cost of energy storage, and the specific expression
is as follows:

C1 � r 1 + r( )Y
1 + r( )Y − 1

ζ1Pbat + ζ2Qbat( ), (11)

where r is the annual interest rate, Y is the operating life of the
system, Pbat and Qbat are the maximum power and capacity
configured for energy storage, and ζ1 and ζ2 are the unit
installation cost of energy storage power and capacity, respectively.

3.2 Second-stage model

The objective function of the second-stage model is the lowest
daily operating cost C2 of the distribution network, which includes
the network loss cost C3, energy storage charge and discharge cost
C4, and distribution network generation cost C5. The specific
expression is as follows:

C2 � C3 + C4 + C5, (12)

C3 � ∑T
t�1
Ploss.tγ1 � ∑T

t�1
∑
ij∈Ω

rijI
2
ij.t, (13)

C4 � ∑T
t�1

Pcha
i.t + Pdis

i.t( )γ2, (14)

C5 � ∑T
t�1
γ3.tP

grid
i.t , (15)

where Ploss.t is the power loss of the grid at time t, Pcha
i.t and Pdis

i.t are
the charge and discharge power stored at node i at time t, Pgrid

i.t is the
power generation power of the grid at node i at time t, γ1 is the cost
of unit grid loss, γ2 is the charge and discharge power cost per unit of
energy storage, γ3.t is the time-of-use price of the grid, rij is the
resistance on the branch ij, and Iij.t is the current on the branch ij
at time t.

3.3 Constraint condition

(1) Power flow constraint

Pi.t � ∑
k∈δ j( )

Pjk.t − ∑
i∈π j( )

Pij.t − rijI
2
ij.t( ) + gjV

2
j.t, (16)

Pi.t � PWT
i.t + PPV

i.t + Pgrid
i.t − Pload

s.i.t , (17)
Qi.t � ∑

k∈δ j( )
Qjk.t − ∑

i∈π j( )
Qij.t − xijI

2
ij.t( ) + bjV

2
j.t, (18)

Qi.t � Qgrid
i.t − Qload

i.t , (19)
V2

j.t � V2
i.t − 2 Pij.trij + Qij.txij( ) + I2ij.t r2ij + x2

ij( ), (20)

I2ij.t �
P2
ij.t + Q2

ij.t

V2
i.t

, (21)

where δ(j) and π(j) are a collection of branch nodes, with j as the
first and as the end, xij is the reactance on the branch ij, gj and bj are
the admittance of node j, Pi.t andQi.t are the active and reactive work
at node i, Vj.t is the voltage at node j at time t, Pij.t and Qij.t are,
respectively, the active and reactive power of the branch ij in time t,
PWT
i.t , PPV

i.t , and P
load
s.i.t are, respectively, theWT and PV output at node

i in the t period and the active load in the s scenario, and Qgrid
i.t and

Qload
i.t are, respectively, the reactive power and reactive power load

emitted by the power grid at node i of the time period t.
Here, equation 21 uses second-order cone relaxation to deal with

nonlinearity (Li et al., 2023b), specifically as follows:

2Pij.t

2Qij.t

I2ij.t − V2
i.t

�����������
�����������
2

≤ I2ij.t − V2
i.t. (22)

(2) Current constraint

0≤ Iij.t ≤ Iij.t
max, (23)

where Iij.t max is the maximum current on the branch ij at time t.

(3) Voltage constraint

Vi.t
min ≤Vi.t ≤Vi.t

max, (24)
where Vi.t

min and Vi.t
max are the minimum and maximum voltages

at node i at time t.

(4) Energy storage constraints

0≤Pcha
i.t ≤Bcha

i.t P
cha
max

0≤Pdis
i.t ≤Bdis

i.t P
dis
max

Bcha
i.t + Bdis

i.t ≤ 1,Bcha
i.t , B

dis
i.t ∈ 0, 1{ }

Et+1 � Et + ηchaP
cha
i.t − Pdis

i.t /ηdis
E0 � ET

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (25)

where Bcha
i.t and Bdis

i.t are the charge and discharge markers for the t
period, P cha

max and P dis
max are the maximum charge and discharge

power, Et is the energy storage capacity at time t, and ηcha and ηdis
are the charge and discharge efficiency.

3.4 Robust model

According to equations 11–15, the energy storage capacity,
power, and charging and discharging variables are designed as
the variables of the first stage, while the remaining variables are
variables of the second stage (Li et al., 2023c). For concise
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expression, the above model is expressed in the matrix form
as follows:

min
x

aTx + max
ps{ }∈Q min

ys ,z,u
∑S
s�1
ps zTCz + bTu( ), (26)

s.t.

Dx ≤ e
Fz + f
���� ����2 ≤Gz + g
Hz + Kys + Ju≤ l
Lps ≤ o

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (27)

where x, ys, z , and u are the decision variables and the rest are the
coefficient matrices.

4 Model solving

The robust model in equation 27 is decomposed into the master
problem (MP) and sub-problem (SP) for solving life-science
identifiers.

MP is shown as follows:

MP( )min
x,η

aTx + η, (28)

η≥∑S
s�1
ps.λ* zTCz + bTu( ), (29)

where η is the upper bound value and λ is the number of iterations.
SP is used to solve the lowest daily operating cost of the

distribution network under the worst scenario probability
distribution when the variables are given in the first stage, as follows:

SP( ) max
ps{ }∈Q min

ys ,z,u
∑S
s�1
ps zTCz + bTu( ). (30)

Since the variables and constraints in equation 30 are not directly
related to the variables and constraints in the second stage, the inner
solution can be obtained first and then the outer solution.

υs � min
ys ,z,u

zTCz + bTu( ), (31)

 � max
ps{ }∈Q∑

S

s�1
psυs. (32)

The process of solving the two-stage robust model can be seen
in Figure 2.

5 Case study

5.1 Basic parameter

Here, the grid parameters of IEEE 33 nodes are used, among
which the 16th node is connected to the photovoltaic and the 20th
node is connected to the fan. The allowable voltage range of nodes is
0.95–1.05 pu. The specific network architecture is shown in Figure 3.
The original data of typical daily PV, fan, and 1-year active load are
shown in Figures 4 and 5. The unit installation cost of energy storage
power and capacity is 1,008 yuan/kw and 1,400 yuan/kw,
respectively, the annual bank interest rate is 0.05, the operating
life is 10 years, and the TOU price is referenced (Yang et al., 2023).
The following examples are simulated and analyzed by MATLAB.

FIGURE 1
Flow chart of load forecast.
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5.2 Comparative analysis of load
forecasting results

The annual load data of a region in the east of China are used as daily
k-means++ clustering, and the four best types of scenarios and the
probability of each scenario are divided by simulation, as shown in

Figure 6. The mean absolute percentage error (MAPE) and root mean
square error (RMSE) are used to analyze the load forecasting results. After
scene clustering, the annual load curve is clustered into four different daily
load scenarios, and the day-ahead forecasting is carried out.

Four different models, LSTM, BiLSTM, MI-LSTM, and MI-
BiLSTM, are selected for comparison. Since the main work of

FIGURE 2
Solution flow chart.

FIGURE 3
33-node network architecture.
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prediction is to extract the importance value fluctuation matrix and
modify the original input features, the relevant parameters of the
deep neural network model should be controlled to remain
unchanged during comparison, and the original input features
and modified features should be observed to change the accuracy
of prediction by substituting them into the model. Therefore, the
parameter settings of the LSTM and MI-LSTM models are
consistent, and the parameter settings of the BiLSTM and MI-
BiLSTM models are also consistent. The hyperparameters of the
LSTM and BiLSTM models are optimized by the control variable
method. MAPE and RMSE are recorded under different daily load
scenarios. The prediction results under the four methods are shown
in Table 1.

As can be seen from Table 1, among the four models, the LSTM
model has the lowest average prediction accuracy, while the
established BiLSTM model has higher prediction accuracy
compared to the LSTM model due to the consideration of
bidirectional information, and the MI-LSTM model has a
significantly improved prediction accuracy compared with the

LSTM model due to the consideration of the fluctuation of the
importance of input features. For the MI-BiLSTM model, the
prediction accuracy is better than that of the other models in
four different daily load scenarios, which indicates that the
fluctuation matrix of importance value extracted by the MI
method has a more obvious improvement effect on accuracy
compared with other methods.

In scenarios one to four, the MAPE of the MI-BiLSTM model
was 2.45%, 2.17%, 2.77%, and 2.46%, respectively. Compared with
other models in all the scenarios, the average value of the MI-
BiLSTM model is the lowest, and so is its RMSE.

The comparison of the results of different models is shown in
Figure 7. As can be seen from Figure 7, the prediction accuracy of
the MI-BiLSTM model is the highest among the four models. At
the peaks and troughs of the load curve, the model not only
considers the bidirectional information flow but also realizes the
dynamic tracking of the fluctuation of the importance value of the
input features, which has a better fitting effect for the real
load curve.

5.3 Energy storage planning analysis

In order to verify the effectiveness and economy of energy
storage planning, the following three schemes were compared.

Case 1: Considering neither energy storage planning nor
incorporating wind turbines or photovoltaics.

Case 2: Considering incorporating WT and PV without
considering energy storage planning.

Case 3: Considering incorporating wind turbines, photovoltaics,
and energy storage.

The indicators, energy storage capacity configuration results,
and node position pairs under different schemes are shown in
Table 2, and the node voltage is shown in Figure 8.

FIGURE 4
Output of wind turbines and photovoltaics.

FIGURE 5
Annual load curve.

FIGURE 6
Load clustering scenario and its probability.
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According to Table 2 and Figure 8, although there is no energy
storage investment cost in Case 1 without considering the
installation of energy storage and distributed energy, the daily
operating cost and electricity distribution cost of the distribution
network are higher than those in other schemes, and the voltage
fluctuation of Case 1 is also significantly different from that of the
other schemes. Case 2 has more distributed energy than Case 1.
Although the network loss cost increases, the other indicators are
improved. Case 3 has the lowest daily operating cost after planning
energy storage, and the fundamental reason is that the increase in
energy storage meets more load demand and reduces the power
generation in the distribution network. Although the network loss
increases by 320.855 yuan compared with Case 1, it is negligible
when considering the reduced operating cost.

As can be seen from Figure 8, the voltage of all the cases is within
a reasonable range; Case 1 has the largest voltage fluctuation, Case
2 has a slight improvement compared with Case 1, and Case 3 has a
significant improvement compared with Case 1 and Case 2.

It is not difficult to see that the implementation of energy storage
planning for the distribution network on the basis of load forecasting
has improved the operating costs, voltage fluctuations, and network
losses of the distribution network.

5.4 Comparison of uncertain methods

To verify the advantages of the DRO energy storage planning
presented in this article, the results of DRO are compared with

TABLE 1 Comparison of the prediction results of different models under different scenarios.

Scenario LSTM BiLSTM MI-LSTM MI-BiLSTM

MAPE (%) RMSE (kw) MAPE (%) RMSE (kw) MAPE (%) RMSE (kw) MAPE (%) RMSE (kw)

1 6.52 103.21 6.09 96.16 5.09 79.67 4.07 64.91

2 6.32 100.37 5.28 82.96 4.85 76.28 4.15 65.94

3 7.20 117.17 5.95 95.25 5.21 82.88 4.43 70.47

4 7.49 114.83 6.28 97.54 5.96 92.79 5.03 78.00

Average 6.88 108.89 5.90 92.98 5.28 82.90 4.42 69.83

FIGURE 7
Comparison of load forecasting under different scenarios.
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those of SO and RO. Among them, SO is optimized based on the
expected value of the load forecast, while RO considers the worst
case based on the expected value of the load forecast, and the
expected value of the load forecast fluctuates ±10%. Table 3
shows the comparison of the energy storage planning results
under different uncertain methods. Figure 9 and Figure 10 are
the comparison of power generation and energy storage
charging and discharging of the distribution network,
respectively.

As can be seen from Table 3 and Figures 9 and 10, in terms of
distribution network operating costs, the SO results are the most
aggressive, RO is the most conservative, and DRO is somewhere in
between. The reasons for this are the following.

RO ignored the distribution information of the load and only
considered the worst-case system operation, which led to an increase
in the cost of power purchase to meet the load demand. Second, the
configured energy storage charge and discharge cannot meet the
worst-case load at all times, so the energy storage capacity decreases,
which also increases the power generation of the distribution
network unit.

In contrast, SO considers only a single empirical distribution,
while DRO considers the worst distribution of load compliance in an
uncertain concentration, which results in the lowest daily operating
costs in SO.

In summary, the DRO model presented here takes into account the
distribution information in the known load sample data and optimizes it
for theworst-case scenario, effectively balancing robustness and economy.

TABLE 2 Comparison of the indicators and configuration results.

Case C1 (10
4 yuan) C2 (yuan) C5 (yuan) C3 (yuan) Capacity (MWh) Node

1 — 35,631.004 35,073.653 557.351 — —

2 — 23,588.062 22,636.892 951.170 — —

3 121.125 22,117.791 20,979.319 878.206 1.793 27

FIGURE 8
Voltage fluctuations of different cases.

TABLE 3 Comparison of the energy storage planning results under different uncertain methods.

Method C1 (10
4 yuan) C2 (yuan) C5 (yuan) C3 (yuan) C4 (yuan) Capacity (MWh) Node

SO 119.92 21,819.64 20,678.81 883.16 257.67 1.78 20

DRO 121.13 22,117.79 20,979.32 878.21 260.27 1.79 27

RO 119.83 24,440.52 23,326.73 856.31 257.48 1.77 18

FIGURE 9
Comparison of generation power in the distribution network
under different uncertainty methods.
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6 Conclusion

In order to track the fluctuation of the importance value of
input features and further improve the prediction accuracy, a MI-
BiLSTM short-term load forecasting method considering the
fluctuation of importance value of the features is proposed on
the basis of k-means++ clustering. Then, based on load
forecasting, a comprehensive norm-constrained uncertainty set
is constructed. A two-stage robust model for energy storage
planning of a distribution network is constructed to optimize
the network loss. After a case analysis, the following conclusions
are reached:

1) The MI-BiLSTM short-term load forecasting method
using a feature importance value fluctuation matrix can
make up for the defects of LSTM and improve the
forecasting accuracy.

2) Under various daily load scenarios, the prediction methods
presented in this paper show higher prediction accuracy. This
shows that the method is not limited to a specific scenario and
has good adaptability and stability.

3) Based on load prediction, energy storage planning for a
distribution network not only reduces the daily operating
cost of the distribution network but also improves the
power flow distribution of the system, further reduces
network loss, and improves voltage fluctuation, which is of
practical significance.

4) For uncertainty, the DRO method based on comprehensive
norm can improve the robustness of the uncertainty set, and

compared with SO and RO, this method has a better
performance in planning and economic problems and the
effect is stable.
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